Algebra Qualifying Exam

January 7, 2023

Please value accuracy and precision: 7 approximate solutions will carry far less weight than 5 complete ones. You may use standard results, provided you carefully state them in full.

Five problems carry full credit.

(1) For any set S, let $\mathbb{Z}[S]$ denote the free abelian group over S. Now, let S, T be two sets, with S finite. Prove that

$$\mathbb{Z}[S \times T] \cong \bigoplus_{s \in S} \mathbb{Z}[T].$$

(HINT: It is convenient to think of $S \times T$ as a disjoint union.)

- (2) Let G be a group, and let H be a subgroup of G such that [G:H] is finite. Prove that there exists a normal subgroup N of G such that $N \subseteq H$ and that [G:N] is finite.
- (3) Classify all groups of order 2023.
- (4) Let k be a field, and $R = k[x]/(x^N)$ for some N > 0. Denote by \bar{x} the class of x in R. (Recall that in a commutative ring R the localization at a prime \mathfrak{p} means $S^{-1}R$, where $S = R \setminus \mathfrak{p}$.)
 - (i) Prove that $(\bar{x}) \subset R$ is prime.
 - (ii) Let M be an R-module such that $M_{(\bar{x})} = 0$. Prove that M = 0.
- (5) Let $R = \mathbb{Z}[\sqrt{3}]$.
 - (i) Prove that $\mathbb{Z}[\sqrt{3}] \cong \mathbb{Z}[t]/(t^2 3)$.
 - (ii) Prove that $a \pm \sqrt{3}$, $a \in \mathbb{Z}$, is prime if and only if its norm $a^2 3$ is prime in \mathbb{Z} .
 - (iii) Let $f = x^n r \in R[x]$. Assume p = 13 divides r, but p^2 does not. Prove that f is irreducible.
- (6) Prove that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/(n\mathbb{Z}),\mathbb{Z}/(m\mathbb{Z})) \cong \mathbb{Z}/(n,m)\mathbb{Z}$, where (n,m) denotes the gcd of n,m.
- (7) Let $G = GL_3(\mathbb{F}_2)$, the group of invertible 3×3 matrices with entries in \mathbb{F}_2 , the field with two elements. Let G act on $M_3(\mathbb{F}_2)$, the set of 3×3 matrices, by $A \mapsto gAg^{-1}$, where $g \in G$ and $A \in M_3(\mathbb{F}_2)$. Classify the orbits of this action.