Algebra Qualifying Exam—Addendum

August 19, 2023

- (1) Let k be a field, and $R = k[x]/(x^N)$ for some N > 0. Denote by \bar{x} the class of x in R. (Recall that in a commutative ring R the localization at a prime \mathfrak{p} means $S^{-1}R$, where $S = R \setminus \mathfrak{p}$.)
 - (i) Prove that $(\bar{x}) \subset R$ is prime.
 - (ii) Let M be an R-module such that $M_{(\vec{x})}=0$. Prove that M=0.
- (2) Let $R = \mathbb{Z}[\sqrt{3}] \cong \mathbb{Z}[t]/(t^2 3)$.
 - (i) Prove that $a \pm \sqrt{3}$, $a \in \mathbb{Z}$, is prime in R if and only if its norm $a^2 3$ is prime in \mathbb{Z} .
 - (ii) Let $f = x^n r \in R[x]$ and assume that f(x) is reducible. If $4 + \sqrt{3}$ divides r, prove that 13 also divides r.
- (3) Consider the ring $R = \mathbb{C}[x, y, z]/(xy z^2)$. Is it an UFD?
- (4) Consider the matrix

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

over $k = \mathbb{F}_3$ (the field with three elements).

- (i) Find the rational canonical form over k.
- (ii) Is the Jordan form defined over k?
- (5) Let k be a field, and consider a finite field extension $k \subseteq F$. Suppose [F : k] is odd, and $\alpha \in F$ is such that $F = k(\alpha)$. Prove that $F = k(\alpha^2)$.