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Abstract: Limited-memory versions of quasi-Newton methods are efficient methods for large-
scale optimization problems in the Euclidean space. In particular, a quasi-Newton symmetric
rank-one update used in a trust-region setting has proven to be an effective method. In this
paper, we present a Riemannian version of a limited-memory symmetric rank-one trust-region
method with an efficient algorithm for solving its subproblem. Following from a known standard
result, we show the global convergence of the proposed method. The numerical experiments are
performed to compare our method with other Riemannian optimization methods.
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1. INTRODUCTION

Addressing the tradeoff between the convergence rate
and the complexity of an individual iteration in order
to achieve low total computational work for the required
accuracy is a key task in designing and implementing effi-
cient algorithms. For numerical optimization this usually
involves considering the cost of assembling and solving
the problem that determines the direction and scale of
the update to the current iterate. For many methods this
involves using information local to the current and recent
iterates to construct a linear operator and solve a linear
system for line search methods or solve a constrained
optimization subproblem for trust-region methods.

In both the line-search and trust-region settings for Eu-
clidean and Riemannian optimization problems, quasi-
Netwon updates that enforce some version of a local secant
condition, e.g., the Broyden family of updates, have been
successfully used to efficiently construct each iterate’s lin-
ear operator, see e.g., Liu and Vander Wiel (2007); Huang
et al. (2015b). If a method is to be used for problems
defined on high-dimensional spaces then additional de-
sign techniques such as the use of limited-memory ver-
sions of the updates are usually employed. Efficient and
effective limited-memory line search methods have been
designed for both Euclidean and Riemannian optimiza-
tion problems. For trust-region methods in the Euclidean
setting, recent works in Brust et al. (2017); Burdakov
et al. (2017) have combined a quasi-Newton update with
a low-complexity solution technique for the constrained
optimization subproblem solved for every iteration.
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In this paper, we build on our earlier work on quasi-
Newton-based Riemannian trust-region methods (Huang
et al. (2015a)) and combine it with this recent work
on the Euclidean constrained subproblem to produce an
efficient quasi-Newton-based limited-memory Riemannian
trust-region algorithm. In numerical experiments, the joint
diagonalization problem in independent component analy-
sis and the matrix completion problem are used to demon-
strate that the new algorithm is competitive to the state-
of-the-art limited-memory line search quasi-Newton algo-
rithm in Huang et al. (2018b).

This paper is organized as follows. Section 2 gives notation
used in this paper. Section 3 describes the limited-memory
quasi-Newotn-based Riemannian trust-region method and
presents an efficient algorithm for its subproblem. Numer-
ical experiments are reported in Section 4 and finally the
conclusion and future work are discussed in Section 5.

2. NOTATION

The notation in this paper follows the standard liter-
ature Absil et al. (2008). Let the function f denote a
continuously differentiable cost function defined on a d-
dimensional Riemannian manifold M with the Rieman-
nian metric g : (ηx, ξx) 7→ gx(ηx, ξx) ∈ R. TxM denotes
the tangent space ofM at x and TM denotes the tangent
bundle, i.e., the union of all tangent spaces. The Rieman-
nian gradient of f at x is denoted by gradf(x). Given
ηx ∈ TxM, η[x represents the flat of ηx, i.e., η[x : TxM→
R : ξx 7→ gx(ηx, ξx). The norm of ηx is defined by ‖ηx‖x =√
gx(ηx, ηx). Let Bx(a) denote {ηx ∈ TxM : ‖ηx‖x ≤

a}. Given a linear operator Ax on TxM and a ∈ R,

let La(Ax) denote La(Ax) =
∑d
i=1 min(a, σi)uiv

[
i , where

Ax =
∑d
i=1 σiuiv

[
i is the singular value decomposition,



ui ∈ TxM and vi ∈ TxM, i = 1, . . . , d are left and right
singular vectors, respectively. Given a matrix A ∈ Rd×d,
let La(A) denote La(A) =

∑d
i=1 min(σi, a)uiv

T
i , where

A =
∑d
i=1 σiuiv

T
i is the singular value decomposition of

the matrix A.

A retraction R is a C1 map from the tangent bundle to
the manifold such that (i) R(0x) = x for all x ∈M (where
0x denotes the origin of TM) and (ii) d

dtR(tξx)|t=0 =
ξx for all ξx ∈ TxM. The notation Rx denotes the
retraction R restricting its domain to TxM. A vector
transport T : TM ⊕ TM → TM : (ηx, ξx) 7→ Tηxξx
with associated retraction R is a C1 map such that, for
all (x, ηx) in the domain of R and all ξx ∈ TxM, the
following two conditions hold (i) Tηxξx ∈ TRx(ηx)M and
(ii) Tηx is a linear map. An isometric vector transport TS

additionally satisfies gRx(ηx)(TSηx
ξx, TSηx

ζx) = gx(ξx, ζx),
for all ζx, ξx, ηx ∈ TxM.

3. A LIMITED-MEMORY RIEMANNIAN
TRUST-REGION METHOD WITH SYMMETRIC

RANK-ONE UPDATE

The proposed limited-memory Riemannian trust-region
method with symmetric rank-one update is described in
Algorithm 1. The algorithm statement is discussed in
Section 3.1. The algorithm for solving the subproblem in
Algorithm 1 is given in Section 3.2, and the convergence
result is stated in Section 3.3.

3.1 A guide to Algorithm 1

The trust-region method relies on minimizing an approxi-
mation of the objective function in a neighborhood of the
current iterate. In this paper, the approximation of f at
k-th iterate xk is

mk(s) = f(xk) + g(gradf(xk), s) +
1

2
g(s,Bks), (3.1)

where s ∈ Bx(∆k), ∆k > 0 is the radius of the trust
region, and Bk is a linear operator on TxkM. There are
many choices for the linear operator Bk. For example,
the standard Riemannian trust-region method uses the
Hessian operator in Absil et al. (2007) and a symmetric
rank-one update (SR1) is used in Huang et al. (2015a)
to define the Riemannian symmetric rank-one trust-region
method.

In this paper, we use the operator used in Huang et al.
(2015a) to develop an efficient limited-memory method. To
describe the limited-memory approach, let sk be a global
solution of arg mins∈Bxk (∆k)mk(s) and

yk = T −1
sk

gradf(Rxk(sk))− gradf(xk)

and let Sk,m and Yk,m contain the (at most) m lat-
est pairs of (sk, yk), which in the Riemannian set-
ting are all transported to the tangent space TxkM,

yielding Sk,m = {s(k)
k−`, s

(k)
k−`+1, . . . , s

(k)
k−1} and Yk,m =

{y(k)
k−`, y

(k)
k−`+1, . . . , y

(k)
k−1}, where ` = min{m, k} and where

s(k) denotes s transported to TxkM. Moreover, let Pk,m =
Dk,m + Lk,m + LTk,m, where

Dk,m = diag{g(sk−`, yk−`), . . . , g(sk−1, yk−1)},

and

(Lk,m)i,j =

{
g(s

(k−`+i−1)
k−`+i−1 , y

(k−`+i−1)
k−`+j−1 ), if i > j;

0, otherwise.

The limited-memory version of Riemannian SR1 is then
given by

B̃k = γkid + Ψk,mM
†
k,mΨ[

k,m, (3.2a)

Bk = Lα
(
B̃k
)

(3.2b)

where

γk = g(yk−1, yk−1)/g(sk−1, yk−1), (3.3)

Ψk,m = Yk,m − γkSk,m, (3.4)

Mk,m = Pk,m − γkQk,m, (3.5)

Qk,m = S[k,mSk,m, † denotes the pseudo-inverse operator,
and α is a given constant.

The update (3.2a) is a Riemannian generalization of the
Euclidean SR1 in the sense that if the manifold M is
the Euclidean space, then (3.2a) is the Euclidean ver-
sion of SR1 in (Brust et al., 2017, (4)). Moreover, if
the vector transport is isometric, then (3.2a) is the up-
date (Huang et al., 2015a, (46)). Equation (3.2b) guar-
antees that the norm of the Hessian approximation Bk is
uniformly bounded from above by the constant α. This
condition is used in the global convergence in Section 3.3.

Note that the fact that the vector transport in Huang et al.
(2015a) is an isometry is used for the local superlinear
convergence analysis of the trust region method with
symmetric rank-one update. In this paper, we do not
require the vector transport to be an isometry to make
the method easier to use in practice since isometric vector
transports may not be easy to construct or efficient in all
cases.

By solving Problem (3.1), we obtain sk and the candidate
for the next iterate xk+1 is Rxk(sk). The quality of the can-

didate is measured by the value of ρk =
f(xk)−f(Rxk (sk))

mk(0)−mk(sk) .

When ρk is sufficiently large the candidate sufficiently
reduces the objective function, and the candidate is ac-
cepted as the next iterate. Otherwise, the candidate is
rejected. The radius ∆k of the trust region is then adjusted
accordingly, i.e., shrinking ∆k if ρk is small, enlarging ∆k

if ρk is large. The details are stated in Algorithm 1.

3.2 Algorithm for the subproblem

In the Euclidean setting, the subproblem in the trust-
region method with SR1 has been investigated and efficient
methods have also been proposed, see e.g., Burdakov et al.
(2017); Brust et al. (2017). In this section, we reformulate
the subproblem in Algorithm 1

sk = arg min
s∈Bxk (∆k)

f(xk) + g(gradf(xk), s) +
1

2
g(s,Bks),

(3.6)

into appropriate matrix expressions by exploiting the in-
trinsic representation proposed in Huang et al. (2016). The
resulting problem has the same form as the subproblem
in the Euclidean setting thereby enabling the use of the
algorithm for the subproblem in Brust et al. (2017).

The intrinsic representation of tangent vector relies on
a field of tangent bases B for all x, i.e., B : x 7→ Bx,



Algorithm 1 Limited-memory Riemannian trust-region
with symmetric rank-one update (LRTR-SR1)

Input: Riemannian manifoldM with Riemannian metric
g; retraction R; vector transport T ; smooth function
f on M; initial iterate x0 ∈M;

1: Choose an integer m > 0 and real numbers ∆0 > 0,
ν ∈ (0, 1), c ∈ (0, 0.1), α > 0, τ1 ∈ (0, 1), and τ2 > 1;
Set k ← 0, `← 0, γ0 ← 1;

2: Obtain sk ∈ TxkM by (approximately) solving

sk = arg min
s∈Bxk (∆k)

f(xk) + g(gradf(xk), s) +
1

2
g(s,Bks),

where Bk is defined in accordance with (3.2);

3: Set ρk ←
f(xk)−f(Rxk (sk))

mk(0)−mk(sk) ;

4: Set yk ← T −1
ηk

gradf(Rxk(sk))− gradf(xk);
5: if |g(sk, yk − Bksk)| ≥ ν‖sk‖‖yk − Bksk‖ then
6: γk+1 ← g(yk,yk)

g(sk,yk) ; Add s
(k)
k and y

(k)
k into storage;

If ` ≥ m, then discard vector pair {s(k)
k−`, y

(k)
k−`} from

storage, else ` ← ` + 1; Compute matrices Pk,m and
Qk,m by updating Pk−1,m and Qk−1,m if available;

7: else
8: Set γk+1 ← γk, Pk+1,m ← Pk,m, Qk+1,m ← Qk,m

9: {s(k)
k , y

(k)
k } ← {s(k)

k−1, y
(k)
k−1}, . . . , {s

(k)
k−`+1, y

(k)
k−`+1} ←

{s(k)
k−`, y

(k)
k−`}.

10: end if
11: if ρk > c then
12: xk+1 ← Rxk(sk); Transport

s
(k)
k−`+1, s

(k)
k−`+2, . . . , s

(k)
k and y

(k)
k−`+1, y

(k)
k−`+2, . . . , y

(k)
k

from TxkM to Txk+1
M by T ;

13: else
14: xk+1 ← xk;
15: end if
16: if ρk >

3
4 then

17: if ‖ηk‖ ≥ 0.8∆k then
18: ∆k+1 ← τ2∆k;
19: else
20: ∆k+1 ← ∆k;
21: end if
22: else if ρk < 0.1 then
23: ∆k+1 ← τ1∆k;
24: else
25: ∆k+1 ← ∆k;
26: end if
27: k ← k + 1, goto 2 until convergence.

where Bx is a basis of TxM. Here, it is assumed, without
loss of generality, that Bx is an orthonormal basis for
all x. For any tangent vector ηx ∈ TxM, its intrinsic
representation under the basis Bx is a vector cx ∈ Rd such
that ηx = Bxcx. Since Bx is orthonormal, it follows that
cx = B[xηx. Converting a tangent vector to its intrinsic
representation and the other way round can be computed
in reasonable computational cost for many manifolds,
such as the Stiefel manifold, the manifold of fixed-rank
matrices, and the manifold of symmetric positive definite
matrices, see details in Huang et al. (2016); Yuan et al.
(2019).

Note that in Huang et al. (2016) and Yuan et al. (2019), the
field of tangent bases B is required to be a smooth function
at least locally since it is used to define a specific vector

transport – vector transport by parallelization Tηxξx =

BRx(ηx)
B[x. In this paper, smoothness is not required.

When the intrinsic representation is used, the linear op-
erator of TxM is a d-by-d matrix. Let H ∈ Rd×d denote
B[xkBkBxk . It follows from (3.2) that

H =B[xkLα
(
γkid + Ψk,mM

†
k,mΨ[

k,m

)
Bxk

=Lα

(
γkId +B[xkΨk,mM

†
k,mΨ[

k,mBxk

)
=Lα

(
γkId + Ψ̃k,mM

†
k,mΨ̃T

k,m

)
,

where Ψ̃k,m = B[xkΨk,m ∈ Rd×`. It follows that the
subproblem (3.6) in the intrinsic representation is

c∗ = arg min
c∈Rd,‖c‖2≤∆k

f(xk) + cTw +
1

2
cTHc (3.7)

where w = B[xkgradf(xk) ∈ Rd. The solution sk in (3.6) is
therefore sk = Bxkc∗.

In order to solve (3.7) efficiently, the spectral decompo-

sition of H is used. Let Ψ̃k,m = QR be the thin QR

factorization of Ψ̃ and let RM†k,mR
T = USUT ∈ R`×`

be the spectral decomposition of RM†k,mR
T , where S =

diag(s1, s2, . . . , s`) and s1 ≤ s2 . . . ≤ s`. We have

H = Lα
(
γkId +QUSUTQT

)
.

Let P⊥ ∈ Rd×(d−`) denote the orthonormal complement
of QU , i.e., PPT = Ip, where P = [QU P⊥]. Let Λ =
diag(λ1, . . . , λd) denote the diagonal matrix

Lα(diag(γk + s1, . . . , γk + s`, γk, . . . γk)). (3.8)

Let Λ1 and Λ2 denote the first `-by-` block and the last
(d− `)-by-(d− `) block of Λ, i.e.,

Λ =

[
Λ1

Λ2

]
. (3.9)

The spectral decomposition of H is therefore

H =PΛPT = Pdiag(λ1, . . . , λd)P
T

= [QU P⊥]

[
Λ1

Λ2

]
[QU P⊥]

T
.

The necessary and sufficient optimality condition of (3.7)
can be found in Nocedal and Wright (2006) and is stated
in Lemma 3.1.

Lemma 3.1. A vector c∗ is a global solution of the trust-
region subproblem (3.7) if and only if ‖c∗‖2 ≤ ∆k and
there exists a unique σ∗ ≥ 0 such that H+σ∗Id is positive
semidefinite,

(H + σ∗Id)ck = −w, and (3.10)

σ∗(∆k − ‖c∗‖2) = 0. (3.11)

Moreover, if H + σ∗Id is positive definite, then the global
minimizer is unique.

Two functions ϕ(σ) = −(H + σId)
†w and φ(σ) =

1/‖ϕ(σ)‖2 − 1/∆k play important roles in finding the σ∗
and c∗ in Lemma 3.1. It can be shown that

ϕ(σ) =

{
κ(σ), if σ = −γk;

κ(σ)− 1

γk + σ
(Id −QUUTQT )w, otherwise;

where κ(σ) = −QU(Λ1 + σI`)
†UTQTw, and



φ(σ) =


− 1

∆k
if σ = −λi and ai 6= 0,

1√ ∑
ai 6=0

a2
i

(λi+σ)2

− 1

∆k
otherwise;

where a = [a1 a2 . . . a`+1] ∈ R`+1,

aj = (UTQTw)j for j = 1, . . . , `, (3.12a)

a`+1 =
√
‖w‖22 − ‖UTQTw‖22. (3.12b)

The resulting algorithm for the Riemannian trust-region
symmetric rank-one subproblem (3.6) is given in Algo-
rithm 2.

Algorithm 2 Solving Riemannian SR1 trust-region sub-
problem (3.6)

Input: Riemannian manifoldM with Riemannian metric
g; two maps θ : TxM → Rd : ηx 7→ B[xηx and ϑ :
Rd → TxM : cx 7→ Bxcx, where Bx = [b1 b2 . . . bd]
is an orthonormal basis of TxM with respect to the

Riemannian metric g; Sk,m = {s(k)
k−`, s

(k)
k−`+1, . . . , s

(k)
k−1}

and Yk,m = {y(k)
k−`, y

(k)
k−`+1, . . . , y

(k)
k−1};

Output: A global solution sk;
1: Compute γk and Mk,m by (3.3) and (3.5);

2: Compute Ψ̃k,m ∈ Rd×` = B[xΨk,m by(
Ψ̃k,m

)
:,j

= θ(y
(k)
k−`+j−1 − γks

(k)
k−`+j−1),

for j = 1, . . . , `, where M:,j denotes the j-th column
of the matrix M , and Ψk,m is defined in (3.4);

3: Compute QR = Ψ̃ by the thin QR factorization;

4: Compute RM†k,mR
T = USUT by the spectral decom-

position;
5: Let λi, i = 1, . . . , d, Λ1 and Λ2 be defined in (3.8)

and (3.9);
6: Compute a ∈ R`+1 by (3.12);
7: Let λmin = min(λ1, γk) and let r be the algebraic

multiplicity of λmin in Λ;
8: if λmin > 0 and φ(0) ≥ 0 then
9: σ∗ = 0 and compute c∗ = ϕ(0);

10: else if λmin ≤ 0 and φ(−λmin) ≥ 0 then
11: σ∗ = −λmin and compute c̃∗ = ϕ(−λmin);
12: if λmin < 0 then
13: Let u be the first column of QU if λmin = λ1;

and u be any column of P⊥ otherwise;
14: Compute c∗ = c̃∗ + tu, where t ∈ R such that
‖c∗‖2 = ∆k.

15: else
16: c∗ = c̃∗;
17: end if
18: else
19: Use Newton’s method to find σ∗, a root of φ, in

(max(−λmin, 0),∞) with initial iterate

σ0 = max

(
0, max

1≤i≤`+1
{‖ai‖/∆k − λi}

)
;

20: Compute c∗ = ϕ(σ∗);
21: end if
22: sk = ϑ(c∗);

3.3 Global convergence

It is proven in Absil et al. (2007); Huang et al. (2015a)
that under the assumption that there exists a constant β
such that ‖Bk‖ < β for all k and the assumption that the
subproblem is solved accurate enough in the sense that

mk(0)−mk(sk) ≥ σ1‖gradf(xk)‖min

(
∆k, σ2

‖gradf(xk)‖
‖Bk‖

)
holds for some positive constant σ1 and σ2, the Rieman-
nian version of the trust region method converges in the
sense that limk→ gradf(xk) = 0. Here, the first assumption
is not required since we explicitly force the norm of Bk
to be smaller than the given constant α. We assume the
second assumption holds since Algorithm 2 aims to find
high accuracy solution and the root of the scalar function
φ(σ) is found in high accuracy (|φ(σ)| < 10−10 in our
experiments). The global convergence is stated in Theo-
rem 3.1 for completeness.

Theorem 3.1. Let Ω be the sublevel set {x ∈ M : f(x) ≤
f(x0)}. Suppose there exists µ > 0 and δµ > 0 such that

‖ξ‖ ≥ µdist(x,Rx(ξ))

for all x ∈ Ω, for all ξ ∈ TxM, ‖ξ‖ ≤ δµ. Then (i) if
f ∈ C2 is bounded below on the sublevel set Ω, then
limk→∞ gradf(xk) = 0; (ii) if f ∈ C2, M is compact,
then limk→∞ gradf(xk) = 0, {xk} has at least one limit
point, and every limit point of {xk} is a stationary point
of f ; and (iii) if f ∈ C2, the sublevel set Ω is compact, f
has a unique stationary point x∗ in Ω, then {xk} converges
to x∗.

4. NUMERICAL EXPERIMENTS

In this section, LRTR-SR1 is compared to the limited-
memory Riemannian line-search method with BFGS up-
date (LRBFGS) developed in Huang et al. (2018b). LRTR-
SR1 is also compared to a variant of the quasi-Newton
method that discards all the pairs of (sk, yk) when their
number in memory reaches the given maximum number m,
rather than only discarding the oldest pair on each itera-
tion. The resulting “restarted” methods of LRBFGS and
LRTR-SR1 are denoted by LRBFGS-R and LRTRSR1-R,
respectively. The problem of joint diagonalization in inde-
pendent component analysis from Theis et al. (2009) and
the matrix completion problem from Vandereycken (2013)
are used to investigate the performance of these methods.
The experiments are performed in Matlab R2018b on a
64 bit Ubuntu platform with 3.5Ghz CPU (Intel Core i7-
7800X). The C++ package ROPTLIB from Huang et al.
(2018a) with its Matlab interface is used.

4.1 Joint diagonalization in independent component analysis

The objective function in the joint diagonalization problem
is

f : St(p, n)→ R : X 7→ −
N∑
i=1

∥∥diag(XTCiX)
∥∥2

2
,

where C1, . . . , CN are given symmetric matrices, diag(M)
denotes the vector formed by the diagonal entries of M ,
and St(p, n) = {X ∈ Rn×p : XTX = Ip} is the compact
Stiefel manifold.



The Riemannian metric of St(p, n) endowed from its em-
bedding space Rn×p, as in (Edelman et al., 1998, Sec-
tion 2.2) is used. The corresponding Riemannian gradient
is given in Theis et al. (2009). The vector transport by
parallelization defined in Huang et al. (2016) is used. The
retraction R on St(p, n) is based on the QR factorization
defined in (Absil et al., 2008, (4.8)).

The initial radius ∆0 is set to 1, ν is the square root of
machine epsilon, c is set to 0.1, τ1 to 0.25, and τ2 to 2. The
memory size m is set to 4. The upper bound α for Bk is
set to 1000Nnp. The algorithms terminate when the norm
of the gradient is reduced by a factor of 106 compared to
the norm of the initial gradient.

The matrices Ci are selected as Ci = diag(n, n−1, . . . , 1)+
Ri+R

T
i , where the entries of Ri ∈ Rn×n are independently

drawn from the standard normal distribution. The initial
iterate X0 is computed by orthonormalizing a matrix M ,
i.e., X0 = orth(M), where the entries of M are drawn from
the standard normal distribution.

Table 1 reports an average result of 10 random runs. In the
table, iter, nf, ng, ‖gff‖/‖gf0‖, f, and time, respectively,
denote the number of iterations, the number of function
evaluations, the number of gradient evaluations, the ratio
of norm of final gradient to the norm of initial gradient,
final function value, and computational time in seconds.

Table 1 shows that the line-search quasi-Newton methods
LRBFGS and LRBFGS-R perform similarly in the sense
that both methods use similar the number of function
and gradient evaluations and computational time to get
similar accuracy in their solutions. However, LRTRSR1-R
outperforms LRTRSR1 implying that the restarting strat-
egy is important here. Finally, quasi-Newton trust-region
LRTRSR1-R is slower, but not catastrophically so, than
LRBFGS and LRBFGS-R. A representative trajectory of
the gradient norms is given in Figure 1 supporting these
observations.

Table 1. An average result of 10 random runs
for the joint diagonalization on the Stiefel

manifold with n = 12, p = 6, N = 5000.

LRBFGS LRBFGS-R LRTRSR1 LRTRSR1-R

iter 228 237 373 227
nf 258 273 374 228
ng 229 238 374 228
‖gff‖
‖gf0‖

7.85−7 9.10−7 8.68−7 8.66−7

f −4.236 −4.236 −4.236 −4.236
time 1.93 2.03 3.00 1.84

4.2 Matrix completion

For the matrix completion we consider the objective func-
tion proposed in Vandereycken (2013)

min
X∈Rm×n

r

f(X) :=
1

2
‖PΩ(X −A)‖2F ,

where Rm×nr = {X ∈ Rm×n : rank(X) = r} is the
manifold of fixed-rank matrices,

PΩ : Rm×n → Rm×n : Xi,j 7→
{
Xi,j , if (i, j) ∈ Ω;

0, if (i, j) 6∈ Ω,
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LRBFGS-R

LRTRSR1

LRTRSR1-R

Fig. 1. A representative trajectory of the norms of the
gradients versus the computational time in seconds for
the joint diagonalization problem on the Stiefel mani-
fold. The truncation for the Hessian approximation in
LRTRSR1 and LRTRSR1-R are 5 and 0, respectively.

Ω is a given index set, and PΩ(A) is the given sparse
matrix.

The Riemannian metric is endowed from Rm×n, and is also
used in Vandereycken (2013). The Riemannian gradient
is also given therein. The default retraction and vector
transport in ROPTLIB are used, i.e., retraction based on
polar decomposition and vector transport by paralleliza-
tion. The parameters in LRTRSR1 and LRTRSR1-R are
the same as those in Section 4.1.

The matrix A is generated by GHT , where G ∈ Rm×r,
H ∈ Rn×r, and the entries of G and H are drawn from
the standard normal distribution. The number of entries
in Ω is fixed to be 3(m+ n− k)k. Note that (m+ n− k)k
is the dimension of the manifold Rm×nr . The set Ω is given
by the first 3(m+n−k)k entries of a random permutation
vector with size mn. The initial iterate is generated by
X0 = UDV T , where the entries in D are drawn from the
standard normal distribution and the entries of U and V
obtained by orthonomalizing two matrices whose entries
are drawn from the standard normal distribution. The
upper bound α for Bk is set to 1000.

The numerical results are reported in Table 2 and Figure 2.
As with the numerical results in Section 4.1, the line-
search methods LRBFGS-R and LRBFGS perform sim-
ilarly and the trust-region method LRTRSR1-R outper-
forms LRTRSR1. Therefore, we conclude that restarting
strategy plays an important role in LRTRSR1 method.
However, unlike the results in Section 4.1, LRTRSR1-
R is competitive with and, in fact, slightly less efficient,
than LRBFGS and LRBFGS-R for this matrix completion
problem. Therefore, whether LRBFGS(-r) or LRTRSR1-R
is more efficient is problem-dependent but there is leading
evidence that the use of limited-memory quasi-Newton
updates the usual gap between the robust trust-region
approach and the simpler line-search approach for large
scale Riemannian and Euclidean optimization.

5. CONCLUSION AND FUTURE WORK

In this paper, we have used our work in Riemannian
line-search and trust-region methods, quasi-Newton up-



Table 2. An average result of 10 random runs
for the matrix completion problem on the
manifold of fixed-rank matrices with m = n =

4000, r = 20.

LRBFGS LRBFGS-R LRTRSR1 LRTRSR1-R

iter 76 76 95 87
nf 82 82 96 88
ng 77 77 96 88
‖gff‖
‖gf0‖

8.35−7 8.27−7 8.02−7 6.35−7

f 3.06−6 4.28−6 3.78−6 1.62−6

time 1.95 1.90 3.99 2.53
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Fig. 2. A representative trajectory of the norms of the
gradients versus the computational time in second
for the matrix completion problem on manifold of
fixed-rank matrices. The truncation for the Hessian
approximation in LRTRSR1 and LRTRSR1-R are 0
and 5, respectively.

dates, limited-memory Riemannian method, vector trans-
port and efficient Riemannian optimization algorithm de-
velopment in combination with recent important innova-
tive work on the efficient solution of the local optimization
problem in limited-memory quasi-Newton updates in a Eu-
clidean trust-region approach to improve the efficiency of
Riemannian trust-region methods using a limited-memory
symmetric rank-one quasi-Newton update. Leading evi-
dence is provided on two standard Riemannian optimiza-
tion problems that the performance gap between Rieman-
nian line-search and trust-region methods can be reduced
or reversed by the proposed Riemannian methods. The
new method has fewer technical restrictions compared to
our earlier limited-memory SR-1 work in that an isometric
vector transport is no longer required.

Ongoing and future work on this topic includes the formal
derivation of the limited-memory version from the full Rie-
mannian SR-1 method, investigating guaranteeing conver-
gence and boundedness of Bk without use of the spectral
threshold guard α, and a systematic characterization of
the strengths and weakness of the proposed approach to
Riemannian line-search methods and restarting vs trun-
cated versions of both.
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