
13 Partial Information and the Puzzle of War

In Lecture 12 we took for granted, albeit implicitly, that the values of the parameters κ,
b1 and b2 were common knowledge, so that either nation had full information about the
other and hence would be able to compute the Nash equilibrium. Often, however, one
of two nations will have only partial information about the other, and we consider that
possibility in this lecture. We begin, however, by continuing to assume full information,
in order to mathematize what has often been called the central puzzle of war—e.g., by
Field and Briffa (2013, p. 321), who state it as the question, ”why, when war is so self-
evidently risky, costly and destructive, has it occurred with such regularity throughout
history?” The mathemization is due to Fearon (1995).

Let us suppose that, as in Lecture 9, all possible status quos—and hence all possible
outcomes of war—between two nations can be idealized as points of the unit interval
[0, 1], and that the utility for Nation 1 or Nation 2 of status quo x can be idealized as U(x)
or V (x), respectively, where

U ′(x) > 0, V ′(x) < 0 (13.1)

for all x ∈ (0, 1) with

U(0) = 0 = V (1), U(1) = 1 = V (0). (13.2)

Thus, as in Lecture 9, the left-hand extreme of [0, 1] represents the best possible outcome
for Nation 2 and worst for Nation 1, while the right-hand extreme represents the best
possible outcome for Nation 1 and worst for Nation 2. Let us now follow Fearon (1995,
p. 387) in further supposing that if these nations go to war, then Nation i incurs costs
totalling ci(> 0) and wins with probability pi, where

p1 + p2 = 1 (13.3)

and ci includes costs of any kind, measured as a loss of utility, so that

ci ∈ (0, 1) (13.4)

for both i. If Nation 1 wins then the outcome is 1, whereas if Nation 2 wins then the
outcome is 0. So the expected utility of war is

p1U(1) + p2U(0)− c1 = p1 − c1 (13.5)

for Nation 1 and
p1V (1) + p2V (0)− c2 = p2 − c2 (13.6)

for Nation 2. If, instead of going to war, these two nations bargain their way to a new
status quo x, then their utilities are U(x) and V (x), respectively. So both nations should
prefer a new status quo x—and peace—to the outcome of war if both

U(x) ≥ p1 − c1 (13.7)



Figure 13.1: Negotiated outcomes that both sides prefer to fighting. The bargaining range
B is indicated in blue for (a) ρ1 = ρ2 = 1

2 , (b) ρ1 = ρ2 = 1 and (c) ρ1 = ρ2 = 3
2 in (13.9)

with p1 = 2
5 , p2 = 3

5 and c1 = c2 = 1
5 in (13.7)–(13.8), whose left- and right-hand sides are

shown solid and dashed, respectively, in green for U and in red for V ; whereas B = ∅ for
(d) ρ1 = ρ2 = 2 (and the same values of pi, ci as elsewhere).
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and
V (x) ≥ p2 − c2. (13.8)

Let us satisfy (13.1)–(13.2) by setting

U(x) = xρ1 , V (x) = (1− x)ρ2 (13.9)

as in Lecture 9, so that ρi measures risk-proneness for Nation i (which is risk-averse, risk-
neutral or risk-prone according to whether ρi < 1, ρi = 1 or ρi > 1, respectively). Then
Figure 13.1 shows that there typically exists a status-quo interval

B = [x−, x+], (13.10)

called the bargaining range, such that both sides prefer any x ∈ B to war, where

x− = U−1(p1 − c1) (13.11)
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and
x+ = V −1(p2 − c2) (13.12)

(and −1 denotes an inverse, which must exist by 13.1). Indeed it is clear on geometrical
grounds1 that B ̸= ∅ as long as neither nation is risk-prone; for example, if both nations
are risk-neutral (Figure13.1(b)), so that ρi = 1 for both i, then (13.9)–(13.12) imply

B = [p− c1, 1− p2 + c2]

= [p1 − c1, p1 + c2]
(13.13)

by (13.3). But B ̸= ∅ may hold even if both nations are mildly risk-prone (Figure13.1(c)),
although x− > x+ =⇒ B = ∅ for highly risk-prone nations (Figure13.1(d)). If typically
there exists a bargaining range, then why is war ever considered rational, especially by
nations that are either risk-neutral or risk-averse? This is in essence the puzzle of war.

A possible answer is partial information. For the sake of definiteness, let us suppose
that Nation 1 changes the status quo in its favor—that is, increases the current value of
x—by annexing some territory from Nation 2. Will Nation 2 accept this new status quo,
or react by declaring war on Nation 1? From (13.8) and (13.12), if x ≤ x+, then Nation
2 should accept; whereas if x > x+, then Nation 2 should declare war. Moreover, since
larger x is better for Nation 1, it should annex just enough territory to increase the status
quo all the way up to x = x+. However, Nation 1 will know x+ only if it knows both p2
and c2—and perhaps it doesn’t.

For the sake of simplicity, let us first suppose that both nations are risk-neutral and
that p1, p2 are common knowledge,2 but that only Nation 2 knows c2. Then, in view of
(13.4), from Nation 1’s perspective, c2 is the realized value of a random variable, say Y ,
with a continuous distribution on [0, 1]. Let gY and GY denote its pdf and cdf, respectively.
Then because Nation 2 will desist from war when (13.8) holds and otherwise declare war,
and because V (x) ≥ p2 − c2 for Nation 2 (which knows c2) translates to V (x) ≥ p2 − Y
for Nation 1 (which doesn’t know c2), the payoff to Nation 1 from unilaterally shifting the
status quo to x is the random variable

F1 =

{

p1 − c1 if V (x) < p2 − Y

U(x) if V (x) ≥ p2 − Y
=

{

p1 − c1 if Y < x− p1
x if Y ≥ x− p1

(13.14)

by risk-neutrality and (13.3), and so Nation 1’s reward from choosing x is

f1(x) = E[F1] = (p1 − c1) · Prob(Y < x− p1) + x · Prob(Y ≥ x− p1)

= {p1 − c1}GY (x− p1) + x {1−GY (x− p1)}
= x+ {p1 − c1 − x}GY (x− p1).

(13.15)

Again for the sake of simplicity, let us now further assume that Y is uniformly distributed
over [0, 1], so that gY (y) = 1 or

GY (y) = y (13.16)

1And formally proven by Fearon (1995, p. 410).
2In effect we have already made this assumption, since (13.3) could be false only if pi were Nation i’s

subjective assessment of its probability of victory—as opposed to its objective probability of victory. For a
discussion of this point, see, e.g., Mesterton-Gibbons (2007, pp. 291–293).
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for y ∈ [0, 1]. Then (13.15) reduces to

f1(x) = x+ (p1 − c1 − x)(x− p1) (13.17)

which is maximized by

x∗ =

{

p1 +
1
2(1− c1) if p1 <

1
2(1 + c1)

1 if p1 ≥ 1
2(1 + c1)

(13.18)

with

f1(x
∗) =

{

p1 +
1
4(1− c1)2 if p1 <

1
2(1 + c1)

1− (1− p1)(1− p1 + c1) if p1 ≥ 1
2(1 + c1).

(13.19)

The corresponding probability of war is

pw = Prob(V (x∗) < p2 − Y ) = Prob(Y < x∗ − p1)

= GY (x
∗ − p1) = x∗ − p1

=

{

1
2(1− c1) if p1 <

1
2(1 + c1)

1− p1 if p1 ≥ 1
2(1 + c1)

(13.20)

which is always positive (unless Nation 1 has zero chance of winning a war), though it is
small if c1 is large. Thus partial information about the other nation’s costs will favor war,
even though there exists a negotiated solution that both sides would prefer.

Perhaps, however, only Nation 1 knows c1, and only Nations 1 and 2 know p1 and p2.
How would an external observer assess the overall probability of war between the two na-
tions? One way to answer this question is to assume that (p1, c1) is uniformly distributed
over the unit square—since we have no basis for assuming any other distribution. Then
the overall probability of war can be assessed as

E[pw] =

1
∫

0

1
2 (1+c1)
∫

0

1
2(1− c1) · 1 dp1 dc1 +

1
∫

0

1
∫

1
2 (1+c1)

(1− p1) · 1 dp1 dc1

= 5
24 ≈ 0.2083,

(13.21)

where E denotes expected value.
Let us now relax the assumption that p1, p2 are common knowledge between Nations

1 and 2, and assume instead that only Nation i knows pi, which therefore becomes a
subjective assessment of its probability of victory—as opposed to an objective one. So we
can no longer assume that (13.3) holds; rather, the most we can assume in general is that

0 ≤ p1, p2 ≤ p1 + p2 ≤ 2. (13.22)

Now, from Nation 1’s perspective, p2 also is the realized value of a random variable, say
X , and so the point (X, Y ) is continously distributed over the unit square [0, 1] × [0, 1].
Let us assume that this distribution is uniform, so that the joint pdf of X and Y is 1.
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Then because Nation 2 will desist from war when (13.8) holds and otherwise declare war,
and because V (x) ≥ p2 − c2 for Nation 2 (which knows p2) translates to V (x) ≥ X − Y for
Nation 1 (which knows neither p2 nor c2), the payoff to Nation 1 from unilaterally shifting
the status quo to x is the random variable

F1 =

{

p1 − c1 if V (x) < X − Y

U(x) if V (x) ≥ X − Y
=

{

x if Θ ≤ 1− x

p1 − c1 if Θ > 1− x
(13.23)

by risk-neutrality, where
Θ = X − Y (13.24)

is distributed over [−1, 1]. So Nation 1’s reward from choosing x is

f1(x) = E[F1] = x · Prob(Θ ≤ 1− x) + (p1 − c1) · Prob(Θ > 1− x)

= xGΘ(1− x) + {p1 − c1}{1−GΘ(1− x)}
= p1 − c1 + {x− p1 + c1}GΘ(1− x).

(13.25)

Because (X, Y ) is uniformly distributed over [0, 1]× [0, 1], for θ ∈ [−1, 1] we obtain

GΘ(θ) = Prob(Θ ≤ θ) = Prob(X − Y ≤ θ) =

{

1
2(1 + θ)2 if −1 ≤ θ < 0

1− 1
2(1− θ)2 if 0 ≤ θ ≤ 1.

(13.26)

So, for 1− x ∈ [0, 1], (13.25) reduces to

f1(x) = p1 − c1 + {x− p1 + c1}
{

1− 1
2x

2
}

= x− 1
2{x− p1 + c1}x2,

(13.27)

which is maximized by

x∗ =

{

1
3

{

p1 − c1 +
√

(p1 − c1)2 + 6
}

if p1 <
1
2 + c1

1 if p1 ≥ 1
2 + c1

(13.28)

with

f1(x
∗) =

{

1
54∆(

√
∆2 + 6 +∆)(

√
∆2 + 6 +∆ + 12/∆) if ∆ < 1

2
1
2(1 +∆) if ∆ ≥ 1

2

(13.29)

where
∆ = p1 − c1. (13.30)

The corresponding probability of war is now

Pw = Prob(V (x∗) < Θ) = Prob(Θ > 1− x∗)

= 1−GΘ(1− x∗) = 1
2x

∗2

=

{

1
18

{

p1 − c1 +
√

(p1 − c1)2 + 6
}2

if p1 <
1
2 + c1

1
2 if p1 ≥ 1

2 + c1

(13.31)
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which again is always positive. In fact Pw invariably exceeds 1
3 , whereas pw can be close

to zero (when c1 is small). Thus uncertainty over capabilities compounds uncertainy over
costs, increasing the probability of war.

How much is the overall probability of war increased from the viewpoint of an exter-
nal observer? Again, we can answer this question by assuming that (p1, c1) is uniformly
distributed over the unit square. Then the overall probability of war can be assessed as

E[Pw] =

1
∫

0

min( 12+c1,1)
∫

0

1
18

{

p1 − c1 +
√

(p1 − c1)2 + 6
}2

· 1 dp1 dc1 +

1
2

∫

0

1
∫

1
2
+c1

1
2 · 1 dp1 dc1

= 719
864 −

4
27

√
7− 1

2 arccoth(5)−
1
2 arccsch(

√
6) + 1

2 ln
(

3
2

)

≈ 0.3427, (13.32)

which of course exceeds 1
3 . So, comparing with (13.21), we find that the overall probability

of war increases by almost 2
3 .
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