
4 Epstein’s Adaptive Model of War

Lanchester’s equations1 are symmetric with regard to role: neither side is specifically
regarded as the attacker or the defender. By contrast, in constructing an adaptive model
to address his criticisms of Lanchester’s models, Epstein (1997) introduces an asymmetry
by distinguishing between those roles at the very outset. We introduce his model below.

Before proceeding, however, we digress to state the obvious: there is more than one
way to generalize Lanchester’s original equations. We have already used two such differ-
ent generalizations in Lecture 3, since it is clear that (3.1) is not a special case of (3.9), and
easily checked that (3.9) is a special case of (3.1) only if g(n/m) = (n/m)θg(m/n), which is
true if g(r) = rθ/2 but not in general—for example, it fails to hold for (3.17). In this regard,
Epstein generalizes Lanchester’s equations from (2.1) and (2.11) to
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is the instantaneous casualty-exchange ratio for (3.5) in Lecture 3. Clearly, neither is—in
general—a special case of the other.

Epstein’s model is formulated as a discrete dynamical system. Two key variables are
A(t) and D(t), the number of surviving units of force on the attacking side and on the
defending side, respectively, at the start of day t. Thus, as a matter of definition, the
attrition rates per day on day t are

αa(t) =
A(t)−A(t + 1)

A(t)
(4.4)

for the attacking side and

αd(t) =
D(t)−D(t+ 1)

D(t)
(4.5)

for the defender, and the casualty-exchange ratio on day t—that is, the ratio of attackers
lost on day t to defenders lost on day t—is

ρ(t) =
A(t)−A(t + 1)

D(t)−D(t+ 1)
=

αa(t)A(t)

αd(t)D(t)
. (4.6)

1Excluding (2.25), which are Deitchman’s (1962) equations.



Epstein regards the casualty-exchange ratio as something to be specified. Moreover, by
analogy with (4.2), he chooses

ρ(t) = ρ0
D(t)λd

A(t)λa
(4.7)

as “a plausible and relatively general functional form” for it. In effect, he replaces m, n, θ1,
θ2 and αn/αm in (4.2) by A(t), D(t), λa, λd and ρ0, respectively. Note that, because Epstein
allows for the possibility that λa = 0 = λd, he allows for the possibility that

ρ(t) = ρ0 (4.8)

is constant.
Two further key variables are W (t), the defender’s rate of withdrawal on day t, and

P (t), the attacker’s “prosecution” rate on day t. In turn, two key parameters—on which
W and P depend—are threshold attrition rates, αdT ∈ (0, 1) for the defender and αaT ∈
(0, 1) for the attacker. The first of these rates, αdT , is the maximum daily attrition rate
that the defender is willing to suffer to hold the territory it currently occupies. Thus
unacceptable previous-day attrition rates for the defender all fall in the interval (αdT , 1),
with values of αd(t − 1) near 1 being least acceptable and values of αd(t − 1) near αdT

being most acceptable (though all are unacceptable). The defending side will remain in
place on day t if its attrition rate on day t−1 does not exceed the critical threshold αdT , or
αd(t−1) ≤ αdT . Otherwise, the defending side will increase its rate of withdrawal in such
a way that the relative reduction of its capacity to withdraw corresponds to the relative
decrease in acceptability of the attrition rate or

Wmax −W (t)

Wmax −W (t− 1)
=

1− αd(t− 1)

1− αdT
(4.9)

where Wmax is the maximum rate of withdrawal. That is,

W (t) =

{

0 if αd(t− 1) ≤ αdT
(αd(t−1)−αdT

1−αdT

)

Wmax +
(1−αd(t−1)

1−αdT

)

W (t− 1) if αd(t− 1) > αdT

(4.10)

Likewise, αaT is the maximum daily attrition rate that the attacker is willing to suffer
to take the territory. Acceptable previous-day attrition rates for the attacker all fall in the
interval (0,αaT ), with values of αa(t − 1) near αaT being least acceptable and values of
αa(t− 1) near 0 being most acceptable; and unacceptable previous-day attrition rates for
the attacker all fall in the interval (αaT , 1). If the actual attrition rate on day t − 1 equals
αaT , then the prosecution rate does not change, that is, P (t) = P (t − 1). Otherwise, the
attacking side will increase or decrease its prosecution rate according to whether its rate
of attrition is below or above the critical threshold, in such a way that the relative change
corresponds to the relative change in acceptability of the attrition rate. That is,

P (t)

P (t− 1)
=

1− αa(t− 1)

1− αaT
. (4.11)

Finally, the attacking side’s attrition rate αa(t) will increase with its prosecution rate P (t)
but decrease with the defender’s rate of withdrawal W (t), in such a way that αa(t) → 0
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as W (t) → Wmax. It is therefore reasonable to posit that

αa(t) =

(

1−
W (t)

Wmax

)

P (t). (4.12)

The values of A(t), D(t), P (t), W (t), αa(t) and αd(t) can now be generated for all t ≥ 1
from given values of the parameters λa, λd, ρ0, αaT , αdT , Wmax and the recursion

A(t) =
(

1− αa(t− 1)
)

A(t− 1) (4.13a)

D(t) = D(t− 1)−
αa(t− 1)A(t− 1)λa+1

ρ0D(t− 1)λd
(4.13b)

P (t) =
1− αa(t− 1)

1− αaT
P (t− 1) (4.13c)

W (t) =

{

0 if αd(t− 1) ≤ αdT
(αd(t−1)−αdT

1−αdT

)

Wmax +
(1−αd(t−1)

1−αdT

)

W (t− 1) if αd(t− 1) > αdT

(4.13d)

αa(t) =

(

1−
W (t)

Wmax

)

P (t) (4.13e)

αd(t) =
αa(t)A(t)

λa+1

ρ0D(t)λd+1 (4.13f)

together with initial values for A(t), D(t), P (t) and W (t). Note that (4.13a) is just a re-
arrangement of (4.4) with t replaced by t − 1; (4.13b) is likewise a rearrangement of (4.5)
with t replaced by t − 1, and using (4.6) to substitute for αd(t)D(t) and (4.7) to substitute
for ρ(t); (4.13c) is a rearrangement of (4.11); (4.13d) and (4.13e) are just restatements of
(4.10) and (4.12), respectively; and (4.13f) is obtained by substituting in (4.6) from (4.7) for
ρ(t). Also note that we do not need initial values for αa(t) and αd(t) because

αa(1) =

(

1−
W (1)

Wmax

)

P (1), αd(1) =
αa(1)A(1)

λa+1

ρ0D(1)λd+1 (4.14)

from (4.13e)–(4.13f). Results from this recursion are exemplified by Figures 4.1–4.4.
According to Epstein (1997, p. 40), the parameters αdT and αaT “allow one to reflect

the different ways in which given forces can behave.” But one could also, for example,
allow λa and λd to differ from zero (as in Figures 4.3–4.4) or consider plausible functional
forms for ρ that differ from (4.7). Epstein unleashes the “full apparatus” (Epstein, 1997,
p. 30) of his adaptive dynamic model only in an earlier book (Epstein, 1990, pp. 85-89),
where he distinguishes between ground forces, ground reinforcements and air power to
construct a more elaborate discrete dynamical system than the one discussed above. If
any of you is sufficiently interested, perhaps this work could form the basis of a more
in-depth investigation leading to an end-of-term presentation.

For the rest of us, however, this is as far as we go for now!
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Figure 4.1: Solution of discrete-time dynamical system (4.13) for λa = 0 = λd, ρ0 = 1.1,
αaT = 0.6, αdT = 0.3 and Wmax = 20 with P (1) = 0.1, W (1) = 0 and A(1) = 0.5 ·106 = D(1);
attacker in green, defender in red. (a) The solid curve is for P (t), the thick dashed curves
for αa(t) and αd(t) and the thin dashed curves for the thresholds, αaT and αdT . (b) The
solid curve is for W (t), the dashed curves for A(t) and D(t). The curves for P and W
agree with Figure 2.4 of Epstein (1997, p. 38). Note that, by (4.12), αa(t) = P (t) for t ≥ 7
because W (t) = 0.
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Figure 4.2: Solution of discrete-time dynamical system (4.13) for λa = 0 = λd, ρ0 = 1.1,
αaT = 0.1, αdT = 0.1 and Wmax = 20 with P (1) = 0.2, W (1) = 0 and A(1) = 0.5 ·106 = D(1);
attacker in green, defender in red. (a) The solid curve is for P (t), the thick dashed curves
for αa(t) and αd(t) and the thin dashed curves for the thresholds, αaT and αdT . (b) The
solid curve is for W (t), the dashed curves for A(t) and D(t). The curves for P and W
agree with Figure 2.5 of Epstein (1997, p. 39). Note that, by (4.12), αa(t) = P (t) for t ≥ 10
because W (t) = 0.
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Figure 4.3: Solution of discrete-time dynamical system (4.13) for λa = 1 = λd, ρ0 = 1.1,
αaT = 0.6, αdT = 0.3 and Wmax = 20 with P (1) = 0.1, W (1) = 0 and A(1) = 0.5 ·106 = D(1);
attacker in green, defender in red. (a) The solid curve is for P (t), the thick dashed curves
for αa(t) and αd(t) and the thin dashed curves for the thresholds, αaT and αdT . (b) The
solid curve is for W (t), the dashed curves for A(t) and D(t). The curves for P and W
agree with Figure 2.4 of Epstein (1997, p. 38). Note that, by (4.12), αa(t) = P (t) for t ≥ 6
because W (t) = 0.
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Figure 4.4: Solution of discrete-time dynamical system (4.13) for λa = 1 = λd, ρ0 = 1.1,
αaT = 0.1, αdT = 0.1 and Wmax = 20 with P (1) = 0.2, W (1) = 0 and A(1) = 0.5 ·106 = D(1);
attacker in green, defender in red. (a) The solid curve is for P (t), the thick dashed curves
for αa(t) and αd(t) and the thin dashed curves for the thresholds, αaT and αdT . (b) The
solid curve is for W (t), the dashed curves for A(t) and D(t). The curves for P and W
agree with Figure 2.5 of Epstein (1997, p. 39). Note that, by (4.12), αa(t) = P (t) for t ≥ 6
because W (t) = 0.
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