
31. The method of maximum likelihood.

In Lectures 19 and 21, we fitted continuous distributions to samples of discrete data by
minimizing discrepancy between the continuous c.d.f. of the model and the discrete
c.d.f. of the sample.  The result was a model of the sample distribution.  Usually,
however, what we really want is a model of the population from which the sample is
taken.  Here we explain how to obtain such a fit between model and population (as
opposed to between model and sample).

A simple example will serve to introduce the method.  Accordingly, let X be the
winner of a contest between two male toads.  If X = 1 then the smaller toad wins, if X =
2 then the larger one wins.  So X is a discrete random variable with sample space {1, 2}.
Contests in nature are usually won by the larger animal.  Moreover, the greater the
discrepancy in size between animals, the more likely it is that the larger one wins.
Thus if p = Prob(X = 1) is the probability of victory by the smaller animal (so that 1 – p
the probability of victory by the larger animal), we can safely assume that p ≤ 1/2 and
that p is a decreasing function of size discrepancy.  In a study of dominance hierarchies,
Mesterton-Gibbons and Dugatkin (1995) assumed that

  
p=

1
2

e
−αz

(31.1)

where α is a positive parameter and z (≥ 0) is the difference in size.  We know from
Lecture 22 that (1) makes p decrease with z.  Moreover, if z is extremely large, then p is
virtually zero; whereas if z is very close to zero, then p is virtually 0.5, and the smaller
animal has an almost even chance of winning.  Thus p has qualitatively the right
dependence on z.  But how do we obtain a value for α?

To illustrate, consider 41 fights that Davies and Halliday (1977) staged between
males of the species Bufo bufo.   Thirteen fights were won by the male with smaller
snout-vent length, and 28 were won by the larger male.  In every case, the difference in
snout-vent length was 10 mm.  Thus, from (1), the probability of victory by a smaller
male was   e

−10α
/2, and the probability of victory by a larger one was 1 –   e

−10α
/2.  The

probability of the observed sequence of wins and losses by smaller animals is the
product of the 41 individual probabilities.  That is, if L denotes the probability of the
observed outcome, then

  
L(α)=

1
2

e
−10α 





13

1−
1
2

e
−10α 





28

.(31.2)

The function L defined by (2) is called the likelihood (of the observed outcome, given
that the parameter had value α).

The graph of L is plotted in Figure 1.  You can see that L(α) is always extremely
small, being largest at α = 0.0455, where it assumes the scarcely enormous value of
0.754 ×   10

−11
.  Yet L(α) is the probability of an event that actually occurred!  An event

that occurred cannot have had a thoroughly negligible probability, so we choose for α
the value that makes L(α) least neglible, i.e., the maximum likelihood estimate or
MLE, which we denote by   ̂α.  Here, for example,   ̂α = 0.0455.

In practice, MLEs are often obtained not from the likelihood function itself, but
instead from the loglikelihood function Q defined by

  Q(α)=ln(L(α)).(31.3)
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Because the logarithm is a strictly increasing function, if L increases to a maximum
before decreasing again, then Q must do exactly the same.  Thus the maximum of Q
must always correspond to the maximum of L, as illustrated by Figure 1(b).  But the
maximum of Q is often easier to find than the maximum of L.

In the case of B. bufo, for example, from (2)-(3) we have

  

Q(α)=13ln
1
2e

−10α
()+28ln1−

1
2e

−10α
()

=−13ln(2)−130α+28ln1−
1
2e

−10α
(),

(31.4)

implying

  
′ Q(α)=

5e
−10α

1−
1
2e

−10α−130(31.5)

 (Exercise 1).  It is now straightforward to show that   ′ Q(α) = 0 where   e
−10α

 = 26/41,
implying that the MLE of α is

  ̂α=
1

10ln41/26 ().(31.6)

So far, we have introduced the maximum likelihood method only for discrete
distributions, but it works for continuous ones also.  Suppose that the sequence {xk} =
{x1, x2, ... , xN} is a sample of size N from the distribution of a random variable X with
p.d.f. f.  Now, in practice, observing xk means observing x such that

  
xk−

h
2

≤x≤xk+
h
2

,(31.7)

where h is small and due to measurement error.  So, in practice, the probability of
observing xk  becomes Prob(xk –h/2 ≤ X ≤ xk + h/2)  =  Area(f, [xk –h/2, xk + h/2]).  For
sufficiently small h, this area approximately equals hf(xk).1  The probability of
observing x1, x2, ... , xN in turn is the product of the N individual probabilities.  It is
therefore approximately equal to hf(x1) multiplied by hf(x2) multiplied by hf(x3), and so
on, all the way down to hf(xN), or

    h
N

f(x1)f(x2)f(x3)Lf(xN).(31.8)
It is convenient, however, to have a more compact notation for the product of

all the f(xk) between k = 1 and k = N, and so we define

    
f(xk)

k=1

N

∏=f(x1)f(x2)f(x3)Lf(xN),(31.9)

by analogy with Σ for sum in Lecture 2.  Then, by (8), the probability of observing x1, x2,
... , xN  in turn is approximately equal to   h

N
L, where

  
L=f(xk)

k=1

N

∏(31.10)

is called the likelihood, as before.  The probability   h
N
L is always extremely small, by

virtue of h being so small, yet it corresponds to an event that actually happened; so the
event cannot have had a thoroughly negligible probability.  Hence any parameter s on
which L depends is chosen to make     f(x1)f(x2)f(x3)Lf(xN) least negligible.  As before,
this value of s is the maximum likelihood estimate or MLE, which we denote by   ̂s.

For example, suppose that we want to fit the exponential distribution defined by

1 More precisely, the area is hf(xk) + O[h].  Similarly, the probability in (8) more precisely equals
    h

N
f(x1)f(x2)f(x3)Lf(xN){1+O[h]}
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f(x)=

1
s

e
−x/s

,(31.11)

not to Lecture 19's finite sample of prairie-dog lifetimes, but rather to the population of
prairie-dog lifetimes from which the sample was drawn.  Here N = 545, and so from
(10)-(11) the likelihood is

    

L(s)=f(xk)
k=1

N

∏=
1
s

e
−xk/s

k=1

N

∏

=
1
s

e
−x1/s

⋅
1
s

e
−x2/s

⋅
1
s

e
−x3/s

L
1
s

e
−xN/s

=
1

s
Ne

−x1/s
⋅e

−x2/s
⋅e

−x3/s
Le

−xN/s

=s
−N

e
−{x1+x2+x3+L+xN}/s

.

(31.12)

The loglikelihood is therefore

    

Q(s)=lnL(s) ()=lns
−N

()+lne
−{x1+x2+x3+L+xN}/s

()
=−Nln(s)−

1
s

x1+x2+x3+L+xN {}

=−Nln(s)−s
−1

xk
k=1

N

∑

=−Nln(s)+
x
s









,

(31.13)

where

  
x=

1
N

xk
k=1

N

∑(31.14)

is called the sample mean.
 

YEAR OF
DEATH

FREQUENCY

1312
2101
374
435
512
68

≥ 70

Table 31.1    Prairie-dog lifetimes

You may recall from Lecture 19 that the individual prairie-dog lifetimes were
not available.  Nevertheless, from Table 1, we can estimate the sample mean by
supposing that the 312 lifetimes of a year or less correspond to xk = 0.5, the 101 lifetimes
of between 1 year and two years to xk = 1.5, and so on.  We thus estimate

  
x=

1
545

xk=
k=1

545

∑
1

545312×0.5+101×1.5+74×2.5+35×3.5+12×4.5+8×5.5 {}
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=
713
545

=1.308(31.15)

years.  Then, with N = 545, we have

  
Q(s)=−545ln(s)−

713
s

(31.16)

from (13).  The function Q is graphed in Figure 2(a), from which you can see that the
maximum occurs near s = 1.3.  To obtain the MLE precisely, we use

  
′ Q(s)=−N

1
s

−
x
s

2








=
N
s

2(x−s)(31.17)

(Exercise 2), from which the maximum occurs at s =   x, because   ′ Q(x) = 0 with   ′ Q(s) > 0
if s <   x and   ′ Q(s) < 0 if s >   x.  So the MLE is   ̂s =   x = 1.308.  Both p.d.f. defined by (11)
with s =   ̂s and c.d.f. defined by F(x)  =  1 –   e

−x/ŝ
 are shown solid in Figure 2, with the

corresponding curves from Lecture 19 shown dotted.  The results are virtually
indistinguishable, in this particular case.

In general, however, we expect the distribution that best fits a sample to differ
from the distribution that best fits the population which yielded the sample, because
rare individuals must be accounted for in the population but are unlikely to appear in
the sample.  In particular, if rare individuals are larger, then we expect population size
distributions to have somewhat thicker tails (hence lower peaks) than sample size
distributions.  To illustrate, we fit the distribution with p.d.f. defined by

  
f(x)=

2x
s

2e
−x

2
/s

2

,(31.18)

not to Lecture 21's finite sample of 22 rat pupil radii, but rather to the population of rat
pupil radii from which the sample was drawn.  Here N = 22, and so from (10) and (18)
the likelihood is

    

L(s)=f(xk)
k=1

N

∏=
2xk

s
2e

−xk
2

/s
2

k=1

N

∏

=
2x1

s
2e

−x1
2

/s
2

⋅
2x2

s
2e

−x2
2

/s
2

⋅
2x3

s
2e

−x3
2

/s
2

L
2xN

s
2e

−xN
2

/s
2

=
2

N

s
2Nx1x2x3LxNe

−x1
2

/s
2

⋅e
−x2

2
/s

2

⋅e
−x3

2
/s

2

Le
−xN

2
/s

2

=2
N

s
−2N

xk
k=1

N

∏




e

−{x1
2

+x2
2

+x3
2

+L+xN
2

}/s
2

.

(31.19)

The loglikelihood is therefore

    

Q(s)=lnL(s) ()=ln2
N

()+lns
−2N

()+lnxk
k=1

N

∏




+lne

−{x1
2

+x2
2

+x3
2

+L+xN
2

}/s
2

()
=Nln(2)−2Nln(s)+ln(xk)

k=1

N

∑−
1
s

2x1
2

+x2
2

+x3
2

+L+xN
2

{}

=Nln(2)+ln(xk)
k=1

N

∑−2Nln(s)−s
−2

xk
2

k=1

N

∑.

(31.20)
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RADIUSFREQUENCYRADIUSFREQUENCY

0.25 mm21.0 mm3
0.375 mm41.25 mm1
0.5 mm71.5 mm1

0.75 mm31.75 mm1

Table 31.2Pupil radii from an experiment with laboratory rats

The requisite rat pupil data from Lecture 21 are recorded in Table 2, from which

  

xk
2

k=1

22

∑=2×0.25
2

+4×0.375
2

+7×0.5
2

+3×0.75
2

+

3×1.0
2

+1×1.25
2

+1×1.5
2

+1×1.75
2

=14.
(31.21)

Thus, from (20) with N = 22, we have

  
Q(s)=4.02648−44ln(s)−

14
s

2.(31.22)

This loglikelihood function is graphed in Figure 3(a), where the maximum occurs near
s = 0.8.  To obtain the MLE precisely, we use

  
′ Q(s)=−

2N
s

+2s
−3

xk
2

k=1

N

∑=
2
s

3xk
2

−Ns
2

k=1

N

∑








,(31.23)

(Exercise 2), from which the maximum occurs at

  
ŝ=

1
N

xk
2

k=1

22

∑,(31.24)

because   ′ Q(ŝ) = 0 with   ′ Q(s) > 0 if s <   ̂s and   ′ Q(s) < 0 if s >   ̂s.  So the MLE is   ̂s =   7/11

= 0.798 mm.  Both p.d.f. defined by (18) with s =   ̂s and c.d.f. defined by F(x)  =  1 –   e
−x

2
/ŝ

2

are shown solid in Figure 3, with the corresponding curves from Lecture 21 shown
dotted.

The distributions defined by (11) and (18) are special cases of the Weibull with
shape parameters c = 1 and c = 2, respectively.  In the general case we have

  
f(x)=

cx
c−1

s
ce

−x
2

/s
2

(31.25)

where, in view of Lecture 22, c need not be an integer.  Thus, in general, the Weibull
likelihood and loglikelihood functions are not ordinary functions of s; rather, they are
bivariate functions of c and s.  Specifically, from (25) we have

    

L(c,s)=f(xk)
k=1

N

∏=
cxk

c−1

s
ce

−xk
c

/s
c

k=1

N

∏

=
cx1

c−1

s
ce

−x1
c

/s
c

⋅
cx2

c−1

s
ce

−x2
c

/s
c

⋅
cx3

c−1

s
ce

−x3
c

/s
c

L
cxN

c−1

s
ce

−xN
c

/s
c

=
c

N

s
cNx1

c−1
x2

c−1
x3

c−1
LxN

c−1
e

−x1
c

/s
c

⋅e
−x2

c
/s

c

⋅e
−x3

c
/s

c

Le
−xN

c
/s

c

=c
N

s
−cN

xk
c−1

k=1

N

∏




e

−{x1
c

+x2
c

+x3
c

+L+xN
c

}/s
c

(31.26)

and
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Q(c,s)=lnL(c,s) ()=lnc

N
()+lns

−cN
()+lnxk

c−1

k=1

N

∏




+lne

−{x1
c

+x2
c

+x3
c

+L+xN
c

}/s
c

()

       

    

=Nln(c)−cNln(s)+ln(xk
c−1

)
k=1

N

∑−
1
s

cx1
c

+x2
c

+x3
c

+L+xN
c

{}

=Nln(c)+ln(xk
c−1

)
k=1

N

∑−cNln(s)−s
−c

xk
c

k=1

N

∑.
(31.27)

in place of (19)-(20).
As before, any parameter on which L (and hence Q) depends is chosen to make

    f(x1)f(x2)f(x3)Lf(xN) least negligible, but now there are two parameters instead of one.
Let the MLEs of c and s, i.e., the values of c and s that maximize Q(c, s), be denoted by   ̂c
and   ̂s, respectively.  In other words, Q(  ̂c,   ̂s) is the maximum loglikelihood, implying
that L(  ̂c,   ̂s) is the maximum likelihood.  Then, for the rat pupil data in Figure 2, the
summit of the hilltop in Figure 4(a), where altitude represents loglikelihood, has
coordinates (  ̂c,   ̂s, Q(  ̂c,   ̂s)).  But it is difficult to estimate   ̂c and   ̂s from this diagram, and
so Figure 4(b) shows the corresponding contour map, where the horizontal coordinates
of points with the same altitude are joined by continous curves.  From innermost to
outermost, the three closed contours correspond to Q = –7.98,  Q = –8 and Q = –8.1,
respectively; thereafter, Q decreases by 0.1, so that, e.g., the contour that touches the
right-hand edge of the plot (c = 2.25) is where Q = –8.6.  For a fixed decrement, the
closer together the contours, the steeper the hill; and the smaller the length of a closed
contour, the nearer the summit.  So the hill is quite gentle near the summit, which is
represented by the point (  ̂c,   ̂s) ≈ (1.9, 0.79).  The precise MLEs (correct to 4 s.f.) are
  ̂c≈1.899 and   ̂s≈0.7871 (with Q(  ̂c,   ̂s) = –7.974).2

This is not, however, the only way to find the Weibull MLEs, and it will be
instructive to discuss another.  Suppose that c is temporarily fixed.  Then (27) yields     

  

∂Q
∂s

=∂
∂s

Nln(c)+ln(xk
c−1

)
k=1

N

∑−cNln(s)−s
−c

xk
c

k=1

N

∑








=−cN∂
∂s

ln(s) {}−xk
c

k=1

N

∑
∂
∂s

s
−c

{}

=−cN
1
s

−xk
c

k=1

N

∑−cs
−c−1

{}

=
Nc
s

c+1

1
N

xk
c

−s
c

k=1

N

∑








(31.28)

because the first two terms of Q are independent of s.  If we define an ordinary function
u by

  
u(c)=

1
N

xk
c

k=1

N

∑






1
c
,(31.29)

then ∂Q/∂s = 0 for s = u(c).  Moreover, s < u(c) implies ∂Q/∂s > 0 and s > u(c) implies
∂Q/∂s < 0.  Thus, for any given c, Q has a maximum where s = u(c), and the value of

2 The exact values can be found, e.g., by the Mathematica command FindMinimum[–Q[c,s],{c,1.9},{s, 0.8}].
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the maximum is Q(c, s) = Q(c, u(c)), which defines an ordinary function of c.  That is,
on substituting (29) back into (27), we have

       

  

Q(c,u(c))=Nln(c)+ln(xk
c−1

)
k=1

N

∑−cNln(u(c))−
1

{u(c)}
cxk

c

k=1

N

∑

=Nln(c)+ln(xk
c−1

)
k=1

N

∑−Nln
1
N

xk
c

k=1

N

∑




−N.

(31.30)

Now we can use tried and true methods for ordinary functions, e.g., drawing an
accurate graph, to find the MLE   ̂c as the value of c that maximizes Q(c, u(c)); and the
MLE   ̂s follows directly from (29).  For example, z = Q(c, u(c)) is graphed in Figure 5(a)
for the rat pupil data from Figure 2.  The global maximizer is   ̂c = 1.899, and from (29)
and (21) we have   ̂s = u(  ̂c) =   0.63458

1/ĉ
 = 0.787.  The corresponding distribution, defined

by (25) with c =   ̂c and s =   ̂s or

  f(x)=2.993x
0.8994

e
−1.576x

1.899

,(31.31)
is shown dashed in Figure 6.

The same approach yields the MLEs of c and s for a Gamma distribution, with
p.d.f. defined by

  
f(x)=

x
c−1

e
−x/s

s
c
Γ(c)

(31.32)

and likelihood

    

L(c,s)=f(xk)
k=1

N

∏=
xk

c−1

s
c
Γ(c)

e
−xk/s

k=1

N

∏

=
x1

c−1

s
c
Γ(c)

e
−x1/s

⋅
x2

c−1

s
c
Γ(c)

e
−x2/s

⋅
x3

c−1

s
c
Γ(c)

e
−x3/s

L
xN

c−1

s
c
Γ(c)

e
−xN/s

=
1

s
c
Γ(c)





N

x1
c−1

x2
c−1

x3
c−1
LxN

c−1
e

−x1/s
⋅e

−x2/s
⋅e

−x3/s
Le

−xN/s

=s
−cN

{Γ(c)}
−N

x1x2x3LxN ()
c−1

e
−{x1+x2+x3+L+xN}/s

=x1x2x3LxN ()
c−1

{Γ(c)}
−N

s
−cN

e
−Nx/s

,

(31.33)

by (14).  So if q = ln(L) denotes the loglikelihood, then

    q(c,s)=lnL(c,s) ()=ln{x1x2x3LxN}
c−1

()+ln{Γ(c)}
−N

()+lns
−cN

()+lne
−Nx/s

()

    

=(c−1)ln(x1x2x3LxN)−Nln(Γ(c))−cNln(s)−N
x
s

=(c−1)ln(xk)
k=1

N

∑−Nln(Γ(c))−cNln(s)−N
x
s

.
(31.34)
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Again, suppose that c is temporarily fixed.  Then (33) yields     

  

∂q
∂s

=∂
∂s

(c−1)ln(xk)
k=1

N

∑−Nln(Γ(c))−cNln(s)−N
x
s









=−cN∂
∂s

ln(s) {}−Nx∂
∂s

s
−1

{}
=−cN

1
s

−Nx−s
−2

{}
=

N
s

2x−cs {}

(31.35)

because the first two terms of q are independent of s.  If we define

  
w(c)=

x
c

=
1

cN
xk

k=1

N

∑,(31.36)

then ∂q/∂s = 0 for s = w(c).  Moreover, s < w(c) implies ∂q/∂s > 0 and s > w(c) implies
∂q/∂s < 0.  Thus, for any given c, q has a maximum where s = w(c), and the value of the
maximum is q(c, s) = q(c, w(c)), which defines an ordinary function of c.  That is, on
substituting (35) back into (33), we have

       

  

q(c,w(c))=(c−1)ln(xk)
k=1

N

∑−Nln(Γ(c))−cNln(w(c))−N
x

w(c)

=(c−1)ln(xk)
k=1

N

∑−Nln(Γ(c))−cNln(x/c)−Nc.
(31.37)

The MLE   ̂c is now found as the value of c that maximizes q(c, w(c)), and   ̂s = w(  ̂c) by
(35).  For the rat pupil data, (33) and Table 2 imply that

         q(c,w(c))=220.510−1.510c−ln(Γ(c))−cln(0.693/c) {}(31.38)

(Exercise 3).  The corresponding graph, z = q(c, w(c)), is shown in Figure 5(b), where it
appears that   ̂c ≈ 3.6.  The precise MLEs (correct to 4 s.f.) are   ̂c = 3.639 and   ̂s = w(3.639) =
0.1905 (with Q(  ̂c,   ̂s) = –6.789).  The corresponding distribution, defined by (31) with c =
  ̂c and s =   ̂s or

  f(x)=107.3x
2.639

e
−5.249x

(31.39)
is shown dotted in Figure 6.

ln(RADIUS)FREQUENCYln(RADIUS)FREQUENCY

–1.3863203
–0.980840.23311
–0.693170.40551
–0.287730.55961

Table 31.3Logarithms of pupil radii from an experiment with laboratory rats

Comparing the c.d.f. of each fitted distribution with that of the sample, we find
on the whole that the dotted curve in Figure 6(b) is closer than the dashed curve to the
data points.  But an even  better model of rat pupil variation appears to be the solid
curve, which corresponds to a lognormal distribution.  Recall from Lecture 28 that X
has a lognormal distribution if U = ln(X) has a normal distribution.  To apply the
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method of maximum likelihood, therefore, we must transform the data in Table 2 by
taking logarithms.  The results are shown in Table 3.  Now, from Appendix 31, if U has
a normal distribution with mean µ and standard deviation σ, then the MLEs of the two
parameters from a sample {u1, u2, ..., uN] of size N with sample mean

  
u=

1
N

uk
k=1

N

∑(31.40)

and sample variance

  
S

2
=

1
N

(uk−u)
2

k=1

N

∑(31.41)

are   ̂µ =   u and   ̂σ = S, respectively.  With U = ln(X), we have

  
u=

1
22

uk
k=1

22

∑=
1

22
ln(xk)

k=1

22

∑(31.42)

= {2×(–1.3863) + 4×(–0.9808) +7×(–0.6931) + 3×(–0.2877) + 3×0 + 0.2331 + 0.4055 +
0.5596}/22 = –0.510 from Table 3 and (40), and a similar calculation yields

  
S=

1
22

(ln(xk)+0.510)
2

k=1

22

∑=0.527.(31.43)

(Exercise 4).  Thus, from (19.59), the maximum likelihood, or ML, distribution for U is
given by

  
g(u)=

1
S2π

e
−(u−u)

2
/2S

2

=0.757e
−1.80(u+0.510)

2

,(31.44)

and from Exercise 5 the p.d.f. for X itself is given by

  

f(x)=g(ln(x))
d

dx
{ln(x)}

=
1

Sx2π
e

−(ln(x)−u)
2

/2S
2

=
0.757

x
e

−1.80(ln(x)+0.510)
2

.
(31.45)

This equation defines the solid curve in Figure 6(a).  The solid curve in Figure 6(b)
then follows from F(x) = Int(f, [0, x]), for which Exercise 6 yields an explicit expression.

Figures 7 and 8 are diagrams analogous to Figure 6 for the leaf thickness data
and minnow size data in Tables 19.2 and 19.4, respectively; see Exercises 6-7.  In Figure
8, the Weibull distribution appears to be the best overall model, and the lognormal
appears to be the worst, so that their roles from Figure 6 are reversed.  In Figure 7, by
contrast, nothing suggests strongly that any of the three distributions yields a better
model than the other two.  Note, moreover, that even if one is clearly best, it remains
possible that all are inadequate, in the sense of being too unlikely to have yielded the
observed sample (or that all are adequate, in the sense of being sufficiently likely to
have yielded the sample).  Such matters  of "goodness of fit" belong more properly in a
course on statistics, however, and so we do not discuss them further here.
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Exercises 31

31.1Verify (4)-(6).  By substituting from (6) into (1), show that the MLE of p for Bufo 
bufo is   ̂p = 13/41, as intuition would suggest.

31.2Verify (13)-(17) and (19)-(23).

31.3Verify (28)-(30) and (33)-(38) .

31.4Verify Table 3 and (31.43).

31.5Verify (45).  Hint: Use the result you obtained in Exercise 21.1

31.6Write a Mathematica program to find the maximum likelihood Weibull, 
Gamma and lognormal distributions for the sample of D. linearifolia leaf 
thicknesses in Table 19.2.

31.7Write a Mathematica program to find the maximum likelihood Weibull, 
Gamma and lognormal distributions for the sample of minnow sizes (above 
base length) in Table 19.4.

31.8Show that the solid curve in Figure 6(b) has equation

  
y=

1
2

1+erf
ln(x)−u

S2












,

where   u, S and erf are defined by (42)-(43) and Appendix 28B.  Hint: Don't apply 
F(x) = Int(f, [0, x]).  The result can be deduced without integration from Appendix 28B.



M. Mesterton-Gibbons: Biocalculus, Lecture 31, Page 11

Appendix 31: Maximum likelihood mean and variance for a normal distribution

In this appendix we calculate the MLEs from a sample of size N for the mean and
variance of a normal distribution defined by

  
f(x)=

1
σ2π

e
−(x−µ)

2
/2σ

2

,−∞<x<∞.(31.A1)

On using (10), we have

  

Q(µ,σ)=ln(L)=lnf(xk)
k=1

N

∏




=lnf(xk) {} k=1

N

∑

=ln
1

σ2π
e

−(xk−µ)
2

/2σ
2 






 k=1

N

∑

=ln
1

σ2π



+lne
−(xk−µ)

2
/2σ

2

()






 k=1

N

∑

=ln
1

σ2π



+−
(xk−µ)

2

2σ
2







 k=1

N

∑ k=1

N

∑

=Nln
1

σ2π



−
1

2σ
2(xk−µ)

2

k=1

N

∑.

(31.A2)

So

  

∂Q
∂µ

=∂
∂µ

Nln
1

σ2π



−
1

2σ
2(xk−µ)

2

k=1

N

∑








=∂
∂µ

Nln
1

σ2π












−
1

2σ
2

∂
∂µ

(µ−xk)
2

k=1

N

∑








=0−
1

2σ
22(µ−xk)

k=1

N

∑=
1

σ
2(xk−µ)

k=1

N

∑

=
1

σ
2xk−µ

k=1

N

∑ k=1

N

∑








=
1

σ
2xk−Nµ

k=1

N

∑








=
N
σ

2x−µ {},

(31.A3)

where the sample mean   x is defined by (14).  So ∂Q/∂µ = 0 if µ =   x, with ∂Q/∂µ > 0 if µ
<   x and ∂Q/∂µ < 0 if µ >   x: For any given σ, Q has a maximum where µ =   x.  If we
defined the  by

  
s

2
=

1
N

(xk−x)
2

k=1

N

∑,(31.A4)

then value of the maximum is

  
Q(x,σ)=Nln

1
σ2π




−
s

2

2σ
2









,(31.A5)

which is an ordinary function of σ.  We have
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∂Q
∂σ

=N∂
∂σ

ln
1

σ2π



−
s

2

2σ
2









=N∂
∂σ

ln
1

σ2π












−
s

2

2
∂

∂σ
σ

−2
{}









=N−
1
σ

−
s

2

2
−2σ

−3
{}









=
N
σ

3s
2

−σ
2

{}.

,(31.A6)

So ∂Q/∂σ = 0 if σ = s, with ∂Q/∂σ > 0 if σ < s and ∂Q/∂σ < 0 if σ > s: For any given µ, Q
has a maximum where σ = s.  Thus   ̂µ =   x and   ̂σ = s.  In other words, the MLEs are

  
µ̂=

1
N

xk
k=1

N

∑(31.A7)

and

  
σ̂=

1
N

(xk−x)
2

k=1

N

∑.(31.A8)

Answers and Hints for Selected Exercises

31.6For the Weibull distribution,   ̂c =  5.79457 and   ̂s = 0.15344 imply 

  f(x)=302103.0x
4.79457

e
−52135.6x

5.79457

.
For the Gamma distribution,   ̂c = 28.0703 and   ̂s =  0.00509118 imply 

  f(x)=1.70632×10
36

x
27.0703

e
−196.418x

.
For the lognormal distribution,   u =  –1.96345 and S =  0.195476 imply 

  
f(x)=

2.04088
x

e
−13.0853(ln(x)+1.96345)

2

.


