
17. Four different ways to find the area of a circle
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Figure 1: Using concentric annuli for the area of a circular disk. The transverse coordinate, de-
noted by t, increases in the radial direction.

Suppose you didn’t already know that the area enclosed by a circle of radius r is πr2. How
would you find out? One way would be to chop up the region inside the circle into lots
and lots of concentric annuli, find the area of each annulus and sum these areas to find
the total. In Figure 1a I have drawn only twenty such annuli, but I want you to imagine
that there are infinitely many of them; and because there are infinitely many of them, the
thickness of each annulus must be vanishingly small—otherwise, you couldn’t possibly
pack them all into the region enclosed by the circle.

Let A denote the total area, i.e., the area of the circle; and let δA denote the infinites-
imal element of area—shown shaded in Figure 1b—that is added to a circle of radius t

when its radius increases infinitesimally to t + δt (for 0 < t < r). Observe that the direc-
tion in which t increases is perpendicular to the direction in which you would have to be
headed if you were a tiny creature travelling along the infinitesimal area element, and for
that reason we refer to t as the transverse coordinate (to the element of area).

Also observe that the inner circumference of the element is 2πt, the outer circumfer-
ence of the element is 2π(t+δt) and the thickness of the element is δt. Therefore, whatever
the magnitude of δA, it must exceed the area of a rectangle with length 2πt and thickness
δt, but it cannot exceed the area of a rectangle with length 2π(t + δt) and thickness δt; i.e.,
2πtδt < δA < 2π(t + δt)δt or

2πtδt < δA < 2πtδt + 2πδt2. (1)

In other words, it must be true that

δA = 2πtδt + o(δt). (2)

Hence we can compute the area as

A = lim
δA→0

∑

δA = lim
δt→0

∑

t∈[0,r]

{2πt δt + o(δt)}

= lim
δt→0

∑

t∈[0,r]

2πt δt + lim
δt→0

∑

t∈[0,r]

δt lim
δt→0

o(δt)

δt

=

∫ t=r

t=0

2πt dt +

∫ t=r

t=0

1 dt · 0



or

A =

∫ r

0

2πt dt = π

∫ r

0

2t dt = πt2|r0 = π{r2 − 02} = πr2. (3)

Now here comes a very important point. Once you know that the area enclosed by a
circle of radius r is πr2, you know that the area enclosed by a circle of radius t is πt2 and
that the area enclosed by a circle of radius t + δt is π(t + δt)2, and hence you also know
that the area of the infinitesimal element shaded in Figure 1b is precisely

δA = π(t + δt)2 − πt2 = 2πtδt + πδt2, (4)

which clearly satisfies (1). However—and this is the very important point—you did not
need to know (4) in order to calculate the area of the disk: all you needed was δA =
2πtδt + o(δt). More generally, to use integration to calculate areas, you do not need to
know the element of area precisely: all you need is an approximation with error o(δt).

Whenever we use integration to calculate areas, there is always a transverse coordi-
nate t satisfying

a ≤ t ≤ b (5)

for suitable a and b, there is always an element of area of infinitesimal thickness δt whose
(infinitesimal) area is given with sufficient accuracy by an equation of the form

δA = f(t)δt + o(δt) (6)

for suitable f , and A is always calculated as

A = lim
δA→0

∑

δA = lim
δt→0

∑

t∈[a,b]

{f(t) δt + o(δt)} =

∫ b

a

f(t) dt. (7)

Nevertheless, there still exists choice over what to use for a transverse coordinate and,
correspondingly, how to chop up the area A into suitable infinitesimal elements.
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Figure 2: Using vertical strips for the area of a circular disk. The transverse coordinate is t = x.

For example, we can instead calculate the area enclosed by a circle of radius r using
vertical slices, in which case the transverse coordinate is horizontal: t = x, and so δt = δx.
Let the circle have its center at the origin, so that its equation is

x2 + y2 = r2. (8)
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The first quadrant of the disk is shown in Figure 2. It will simplify matters if we calculate
only the area A of this quadrant (and multiply by 4 for the area of the circle itself).

It is clear from Figure 2 that δA < y δt or δA > y δt according to whether the point
(x, y) is at upper left-hand corner or the upper right-hand corner of the shaded elementary
area. But it does not matter which: in either case we have

δA = y δt + o(δt) = y δx + o(δx) (9)

because t = x is the transverse coordinate. Thus

A =

∫ t=r

t=0

y dt =

∫ r

0

y dx. (10)

Of course, we cannot integrate y with respect to x without rewriting y in terms of x. From
(8), we have y =

√
r2 − x2. So

A =

∫ r

0

√
r2 − x2 dx =

∫ r

0

d

dx

{

r2 arctan
(

x√
r2−x2

)

+ x
√

r2 − x2
}

dx

=
{

r2 arctan
(

x√
r2−x2

)

+ x
√

r2 − x2
}

∣

∣

∣

r

0

= r2 arctan(1) + r · 0 − r2 arctan(0) − 0

= r2 · π
4

= 1
4
πr2

(11)

as expected.∗
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Figure 3: Using horizontal strips for the area of a circular disk. The transverse coordinate is t = x.

Needless to say, we can calculate the same area just as easily by using horizontal
slices, in which case the transverse coordinate is vertical: t = y, and so δt = δy. From
Figure 3 we see that δA < x δt or δA > x δt according to whether the point (x, y) is at
lower right-hand corner or the upper right-hand corner of the shaded elementary area;
but again it does not matter which, because in either case we have

δA = x δt + o(δt) = x δy + o(δy). (12)

Thus

A =

∫ t=r

t=0

x dt =

∫ r

0

x dy. (13)

∗A in (11) is also readily evaluated by using the substitution x = r sin(u).
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Of course, we cannot integrate x with respect to y without rewriting x in terms of y, for

which we use (8): x =
√

r2 − y2. Thus, recycling (11), we obtain

A =

∫ r

0

√

r2 − y2 dy =

∫ r

0

√
r2 − x2 dx = 1

4
πr2. (14)
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Figure 4: Using sectors for the area of a circular disk. The transverse coordinate is t = θ.

There is even another way in which to chop up a disk into elements of area: use sec-
tors. In Figure 4a I have drawn only twenty such sectors, but as usual there are really
infinitely many of them, so that the thickness of each must be vanishingly small (yet still
greater at the circumference than at the center). Because motion along such an infinites-
imal sector is radial, the transverse direction must be azimuthal, i.e., in the direction of
increase of the polar angle θ. The generic such sector is represented by the shading in
Figure 4a and corresponds to an increase of azimuth from θ to θ + δθ, so that the angle
at the center is δθ. Comparing with Figure 4b, we see that the area of the sector is ap-
proximated with negligible error by the sum of the areas of two congruent right-angled
triangles, each with hypotenuse r, altitude r cos

(

1
2
δθ

)

and base r sin
(

1
2
δθ

)

, so that

δA = 2 · 1
2
r cos

(

1
2
δθ

)

· r sin
(

1
2
δθ

)

+ o(δθ)

= 1
2
r2 · sin (δθ) + o(δθ)

(15)

on using the trigonometric identity sin(2A) = 2 cos(A) sin(A). But from Exercise 1 of
Lecture 20 we have sin (δθ) = δθ + o(δθ). Hence for 0 ≤ θ < 2π we have†

δA = 1
2
r2 δθ + o(δθ) =⇒ A =

∫ 2π

0

1
2
r2 dθ = 1

2
r2

∫ 2π

0

1 dθ = 1
2
r2 · 2π = πr2. (16)

All four methods generalize to other planar regions, although in practice the second
and third are most commonly used. In each of these cases, we slice the region into (in-
finitely) many strips, identify a transverse coordinate t (either t = x or t = y) such that the
region is covered for suitable a ≤ t ≤ b, find the area of an elementary strip in the form

δA = h(t)δt + o(δt) (17)

†In fact δA = 1

2
r2 δθ precisely—but as before, that information is more accurate than is necessary.
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where h stands for the “height” of the strip (regardless of whether it is vertical or hori-
zontal) and thus obtain

A =

∫ b

a

h(t) dt. (18)

In the case of a circular disk, it makes no difference whether t = x or t = y: as we have
seen, both approaches yield the very same integral. In other cases, however, one approach
may require significantly less calculation than the other.
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Figure 5: Using vertical strips for the area of a planar region. The transverse coordinate is t = x.

For example, to find the area of the region shaded in Figure 5a with top boundary

y = T (x) =

{

6 +
√

x − 2 if 2 ≤ x < 6

3 +
√

31 − x if 6 ≤ x ≤ 31
(19)

rising from (2, 6) to (6, 8) before falling from (6, 8) to (31, 3) and bottom boundary

y = B(x) =

{

6 −
√

x − 2 if 2 ≤ x < 27

3 −
√

31 − x if 27 ≤ x ≤ 31
(20)

falling from (2, 6) to (27, 1) before rising from (27, 1) to (31, 3), we slice the region into
vertical strips (Figure 5b) and observe that there are three generic types (Figure 5c). The
transverse coordinate is t = x, and the height of a strip is given by h(t) =

h(x) = T (x) − B(x) =











2
√

x − 2 if 2 ≤ x < 6√
31 − x +

√
x − 2 − 3 if 6 ≤ x < 27

2
√

31 − x if 27 ≤ x ≤ 31

(21)

so that h is a join of three components. Hence, from (18), we obtain

A =

∫ 31

2

h(x) dx =

∫ 6

2

h(x) dx +

∫ 27

6

h(x) dx +

∫ 31

27

h(x) dx

= 2

∫ 6

2

(x − 2)
1

2 dx +

∫ 27

6

{

(31 − x)
1

2 + (x − 2)
1

2 − 3
}

dx + 2

∫ 31

27

(31 − x)
1

2 dx

= 4
3
(x − 2)

3

2

∣

∣

∣

6

2
+

{

−2
3
(31 − x)

3

2 + 2
3
(x − 2)

3

2 − 3x
}∣

∣

∣

27

6
− 4

3
(31 − x)

3

2

∣

∣

∣

31

27

= 4
3
{8 − 0} +

{

−16
3

+ 250
3

− 81
}

−
{

−250
3

+ 16
3
− 18

}

− 4
3
{0 − 8} = 343

3
.

(22)
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But it would have been easier to use horizontal strips instead, because then there is only
a single generic type stretching from the left-hand boundary

x = L(y) = 38 − 12y + y2 (23)

to the right-hand boundary

x = R(y) = 22 + 6y − y2 (24)

for 1 ≤ y ≤ 8 (Figure 6c).
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Figure 6: Using vertical strips for the area of a planar region. The transverse coordinate is t = y.

So the elementary area is given by

δA = h(y) δy + o(δy) (25)

where h denotes the “height” of the generic strip; i.e., from (23)-(24),

h(y) = R(y) − L(y) = 2{9y − y2 − 8}. (26)

The limits of integration are determined by L(y) = R(y) or h(y) = 0, which implies y = 1
or y = 8. Hence

A =

∫ 8

1

h(y) dy = 2

∫ 8

1

{9y − y2 − 8} dy = 2 ·
{

9
2
y2 − 1

3
y3 − 8y

}

∣

∣

∣

8

1

= 2 ·
{

160
3

−
(

−23
6

)}

= 343
3

(27)

as before.

Suitable problems from standard calculus texts

Stewart (2003): pp. 442-443, ## 1-30, 38 and 44-49.
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