The Birch and Swinnerton-Dyer formula for modular abelian varieties *

Amod Agashe University of California, Berkeley

May 22, 2000

*These transperencies can be obtained from http://www.math.berkeley.edu/~amod/mymath.html

The Birch and Swinnerton-Dyer conjectural formula

$$\begin{array}{rcl} J_0(N) &=& \mbox{Jacobian of the modular curve } X_0(N) \\ T &=& \mbox{Hecke algebra} \\ f &=& \mbox{a newform s.t. } L(f,1) \neq 0 \\ I_f &=& \mbox{Ann}_{T}f, \mbox{ an ideal of } T \\ A = A_f &=& \mbox{J}_0(N)/I_f J_0(N), \\ & \mbox{the Shimura quotient associated to } f \end{array}$$

Conjecture 1 (Birch, Swinnerton-Dyer, Tate, Gross).

$$\frac{L(A,1)}{\Omega(A)} = \frac{\# \mathrm{III}(A) \cdot \prod_{p|N} c_p(A)}{\# A(\mathbf{Q}) \cdot \# A^{\vee}(\mathbf{Q})},$$

where

- $\Omega(A) = real volume of A w.r.t.$ Néron differentials
- III(A) = Shafarevich-Tate group of A
- $c_p(A) = order of the arithmetic component$ group of A at p

A formula for $L(A, 1)/\Omega(A)$

 $\begin{array}{rcl} f_1, f_2, \dots, f_d = \text{Galois conjugates of } f \\ \Phi : H_1(X_0(N), \mathbf{Q})^+ & \to & \mathbf{C}^d & \text{is given by} \\ \gamma & \mapsto & \{ \int_{\gamma} f_1, \dots, \int_{\gamma} f_d \} \end{array}$

Theorem 2 (Conjectured by Stein).

$$\frac{L_A(1)}{\Omega_A} = \frac{\left[\Phi(H_1(X_0(N), \mathbf{Z})^+) : \Phi(\mathbf{T}e)\right]}{c_A \cdot c_\infty(A)},$$

where

 $e \in H_1(X_0(N), \mathbf{Q})^+ \text{ is the winding element}$ $[\Phi(H_1(X_0(N), \mathbf{Z})^+) : \Phi(\mathbf{T}e)] = \text{ lattice index}$ $c_A = \text{ the (generalized) Manin constant}$ = index of the subgroup of $Néron \text{ differentials in } S_2(\Gamma_0(N), \mathbf{Z})[I_f]$ $c_\infty(A) = [A(\mathbf{R}) : A^0(\mathbf{R})]$

Remark 3. The right-hand side of the formula above is a rational number and can be computed up to the constant c_A using modular symbols; thus one can extend some of the BSD calculations of Cremona for elliptic curves to higher dimensional quotients.

The Manin constant

```
Theorem 4 (Mazur, Stein, Abbes, Ullmo, A.A.).
If p is a prime s.t. p | c_A, then
either p^2 | N,
or p = 2 and 2 divides the order of the kernel of
the composite A^{\vee} \hookrightarrow J_0(N) \twoheadrightarrow A.
```

- I = an ideal of T s.t. T/I is torsion-free
- $B = J_0(N)/IJ_0(N)$
- \mathcal{B} = Néron model of B over Z

Definition 5.

The (generalized) Manin constant is the order of the cokernel of the map $H^{0}(\mathcal{B}, \Omega_{\mathcal{B}/\mathbf{Z}}) \to S_{2}(\Gamma_{0}(N), \mathbf{Z})[I].$

Conjecture 6 (Stein, A.A.). If B is an optimal quotient of the new quotient of $J_0(N)$, then its generalized Manin constant is 1.

Remark 7. The hypothesis above is necessary: $c_{J_0(33)} = 3$ (Edixhoven).

Visible elements of the Shafarevich-Tate group

C = an abelian subvariety of $J_0(N)$

Definition 8 (Mazur).

The visible part of III(C) is the kernel of the map $III(C) \to III(J_0(N))$.

Theorem 9 (Mazur, Stein).

Let C be an abelian subvariety of $J_0(N)$ of rank 0. Suppose D is another abelian subvariety of $J_0(N)$ of rank > 0. Let p be a prime s.t. $D[p] \subseteq C$. Then, under certain mild conditions, p divides the order of the visible part of III(C).

Let B be a quotient of the new part of $J_0(N)$. Consider the composite $B^{\vee} \hookrightarrow J_0(N) \twoheadrightarrow B$, which is an isogeny; call it ϕ_B .

Lemma 10 (Mazur, A.A.).

Every visible element of $III(B^{\vee})$ is killed by multiplication by the exponent of ker ϕ_B .

Prime levels with $\#_{IIIan}(A_f) > 1$

(Calculated by William Stein)

Warning: only odd parts of the invariants are shown.

$\mathbf{A_{f}}$	$\# \amalg_{an}(A_f)$	$\sqrt{deg(\phi_{A_f})}$	B_{g}
389E	5 ²	5	389A
433D	7 ²	$3 \cdot 7 \cdot 37$	433A
563E	13 ²	13	563A
571D	3 ²	$3^2 \cdot 127$	571B
709C	11 ²	11	709A
997H	3 ⁴	3 ²	997B
1061D	151 ²	$61 \cdot 151 \cdot 179$	1061B
1091C	7 ²	1	NONE
1171D	11 ²	$3^4 \cdot 11$	1171A
1283C	5 ²	$5 \cdot 41 \cdot 59$	NONE
•••	_		
2111B	211^{2}	1	NONE
•••	-		
2333C	83341 ²	83341	2333A

 $\# III_{an}(A_f) =$ order of the Shafarevich-Tate group as predicted by the BSD formula.

- $B_g =$ an optimal quotient of $J_0(N)$ of positive analytic rank s.t. if an odd prime p divides $\# \coprod_{an}(A_f)$, then $B_g^{\vee}[p] \subseteq A_f^{\vee}$.
- **Example 11 (Stein).** $5^2 | \# III_{389E}$.

Congruence primes and the modular degree

$$\begin{split} E &= \text{strong modular elliptic curve of level } N \\ \phi_E : X_0(N) \to E \text{ is its modular parametrization.} \\ \text{Modular degree of } E &= \deg \phi_E \\ \text{Congruence number of } E &= \\ r_E &= \text{largest integer } r \text{ s.t. } \exists \text{ a modular form } g \\ & \text{with integral Fourier coefficients,} \\ & \text{orthogonal to } f \text{ w.r.t. Petersson inner product,} \\ & \text{and satisfying } g \equiv f \text{ mod } r. \end{split}$$

Theorem 12 (Ribet[Zagier]).

 $\deg \phi_E | r_E$; moreover, if N is prime, then $\deg \phi_E = r_E$. If p is a prime s.t. $p | \frac{r_E}{\deg \phi_E}$, then p | N.

Question 13 (Frey, Muller). Is $deg\phi_E = r_E$?

Answer: No. E.g. (Stein), when E = 54B1, deg $\phi_E = 2$ and $3|r_E$.

Question 14. If p is a prime such that $p^2 \nmid N$, then is it true that $p \nmid \frac{r_E}{\deg \phi_E}$?

Theorem 15. If p is a prime such that $p^2 \nmid N$, and $p \mid \frac{r_E}{\deg \phi_E}$, then $p \mid \deg \phi_E$.

Corollary 16. If $p^2 \nmid N$ and $p \mid r_E$, then $p \mid \deg \phi_E$.