The modular degree, congruence number, and multiplicity one *

Amod Agashe Florida State University

joint work with K. Ribet and W. Stein

October 4, 2007

*Slides and paper available at: http://www.math.fsu.edu/~agashe/math.html

Elliptic curves

Let *E* be an elliptic curve over \mathbf{Q} , i.e., an equation of the form $y^2 = x^3 + ax + b$, where $a, b \in \mathbf{Q}$

Example: The graph of $y^2 = x^3 - x$ over **R**:

If p is a prime, then we can "think of" the equation for E modulo pLet $a_p(E) = 1 + p - \#$ solutions to $E \mod p$.

Modular curves and modular forms

Let
$$N = a$$
 positive integer.
 $\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : N \mid c \right\}.$
e.g., $\Gamma_0(1) = SL_2(\mathbf{Z})$
 $\mathcal{H} = \text{complex upper half plane}$
 $\Gamma_0(N) \text{ acts on } \mathcal{H} \cup \mathbf{P}^1(\mathbf{Q}) \text{ as } \begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}$
 $X_0(N) = \Gamma_0(N) \setminus (\mathcal{H} \cup \mathbf{P}^1(\mathbf{Q}))$

A modular form on $\Gamma_0(N)$ is a holomorphic function $f: \mathcal{H} \rightarrow \mathbb{C}$ such that $\forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N), f(\gamma z) = (cz + d)^2 f(z)$ and f is holomorphic at the cusps. In particular, f(z + 1) = f(z), so $f(z) = \sum_{n>0} a_n(f)q^n$, where $q = e^{2\pi i z}$. f is said to be a cuspform if $a_0(f) = 0$, i.e., fvanishes at the cusps.

Modular degree and congruence number

By work of Wiles and Breuil-Conrad-Diamond-Taylor, if E is an (optimal) elliptic curve, then there is an integer N (the conductor of E) such that

1) \exists a surjective morphism of curves

$$\phi_E: X_0(N) \rightarrow E$$
, and

2) \exists a cuspform f_E on $\Gamma_0(N)$ with integer Fourier coefficients such that $a_n(E) = a_n(f_E) \forall n$.

The modular degree of $E = \deg(\phi_E)$. The congruence number of E= the largest integer r such that \exists a cuspform g on $\Gamma_0(N)$ "orthogonal" to f_E with $a_n(f_E) \equiv a_n(g) \mod r \ \forall n$.

Both are important invariants:

Bounds on modular degree related to abc conjecture (Frey, Mai-Murty)

Congruence primes (the primes that divide the congruence number) figured in work of Ribet and Wiles on Fermat's last theorem.

Relations between modular degree and congruence number

Theorem (Ribet \sim 1985): The modular degree divides the congruence number. If N is prime, then the two are equal.

Frey and Müller asked: are they always equal?

Answer (Stein \sim 2000): NO. e.g., there is an elliptic curve *E* of conductor 54 with modular degree = 2 and congruence number = 6.

Theorem (A, Ribet, Stein): If a prime p divides the ratio of the congruence number to the modular degree, then $p^2 \mid N$.

In particular, if N is square-free, then the congruence primes divide the modular degree.

Note: In previous example, $3^2 | 54$.

Multiplicity one

 $J_0(N) =$ Jacobian of $X_0(N)$; thus $J_0(N)(\mathbf{C}) =$ degree zero divisors on $X_0(N)(\mathbf{C})$ modulo principal divisors Hecke algebra $\mathbf{T} =$ subring of $\text{End}(J_0(N))$ generated by the Hecke operators.

We say that a maximal ideal \mathbf{m} of \mathbf{T} satisifies *multiplicity one* if $\dim_{\mathbf{T/m}} J_0(N)[\mathbf{m}] = 2$.

The notion of multiplicity one was initiated by Mazur and played an important role in Wiles' proof of Fermat's last theorem.

Proposition (A, Stein, Ribet): If E is an elliptic curve of conductor N, and p is a prime such that p divides the congruence number of E but not the modular degree of E, Then $\mathbf{m} = \text{Ann}_{\mathbf{T}} E[p]$ does not satisfy multiplicity one.

So by the previous example, for N = 54, there is a maximal ideal of T with residue characteristic 3 which does not satisfy multiplicity one.