Constructing elliptic curves with known number of points over a prime field *

Amod Agashe Max Planck Institut, Bonn and University of Texas, Austin

October 2, 2002

*These slides can be obtained from http://www.ma.utexas.edu/users/amod/mymath.html

Abstract: In applications of elliptic curves to cryptography, one often needs to construct elliptic curves with known number of points over a prime field \mathbf{F}_n , where n is a prime. Atkin suggested the use of complex multiplication to construct such curves. One of the steps in this method is the calculation of a certain Hilbert class polynomial $H_D(X)$ modulo n for a certain fundamental discriminant D. The usual way of doing this is to compute $H_D(X)$ over the integers and then reduce modulo n. We suggest the use of a modified version of the Chinese remainder theorem to compute $H_D(X)$ modulo enough small primes. This is joint work with K. Lauter and R. Venkatesan.

Complex multiplication method

Given a prime n, we want an elliptic curve over \mathbf{F}_n with known number of points (over \mathbf{F}_n).

Step 1: Find a negative fundamental discriminant D such that there are integers x and y such that $4n = x^2 - Dy^2$.

Def: The Hilbert class polynomial $H_D(X)$ is

$$H_D(X) = \prod \left(X - j \left(\frac{-b + \sqrt{D}}{2a} \right) \right),$$

where the product ranges over the set of $(a, b) \in$ $\mathbf{Z} \times \mathbf{Z}$ such that $ax^2 + bxy + cy^2$ is a primitive, reduced, positive definite binary quadratic form of discriminant D for some $c \in \mathbf{Z}$, and j denotes the modular invariant. It is known that $H_D(X)$ has integer coefficients.

Step 2: Find a root j of $H_D(X) \mod n$, and write down an elliptic curve E with j-invariant j. Then $\#E(\mathbf{F}_n) = 1 + n + x$ or $\#E(\mathbf{F}_n) = 1 + n - x$.

Computing $H_D(X)$

An upper bound for the size of the coefficients of $H_D(X)$ is

$$B = \begin{pmatrix} h \\ \lfloor h/2 \rfloor \end{pmatrix} \exp\left(\pi\sqrt{-D}\sum \frac{1}{a}\right),$$

where h is the class number of $Q(\sqrt{D})$.

Atkin-Morain method:

Compute $H_D(X)$ with complex coefficients with sufficient accuracy, and round it to the nearest integer polynomial.

Chinese remainder theorem (CRT) method (Chao-Nakamura-Sobotaka-Tsujii): Compute $H_D(X)$ modulo sufficiently many "small" primes and lift it to $H_D(X)$ using CRT.

Computing $H_D(X)$ mod a small prime

Let \mathcal{O} be the ring of integers of $\mathbf{Q}(\sqrt{D})$ and let $\mathsf{EII}(D)$ denote the set of isomorphism classes of elliptic curves over \mathbf{C} with complex multiplication by \mathcal{O} . Then

$$H_D(X) = \prod_{[E] \in \mathsf{EII}(D)} (X - j(E)).$$

Let p be a prime such that $4p = t^2 - D$ for some integer t. Let Ell'(D) denote the set of isomorphism classes (over $\overline{\mathbf{F}}_p$) of elliptic curves over \mathbf{F}_p with endomorphism ring (over $\overline{\mathbf{F}}_p$) isomorphic to \mathcal{O} .

Proposition 1.

$$H_D(X) \bmod p = \prod_{[E'] \in \mathsf{Ell}'(D)} (X - j(E')).$$

Proposition 2. Let E' be an elliptic curve over \mathbf{F}_p . Then $\operatorname{End}_{\overline{\mathbf{F}}_p} E' \cong \mathcal{O}$ if and only if $\#E'(\mathbf{F}_p)$ is either p + 1 - t or p + 1 + t.

CRT method

Suppose $D \not\equiv 1 \mod 8$.

Step 1: Start with the prime 2 and consider successive primes; if a prime p satisfies $4p = t^2 - D$ for some integer t, then we put it in the collection S (which is empty to begin with) and keep doing this till $\prod_{p \in S} p > B$ (assume this is possible).

Step 2: Compute $H_D(X) \mod p$ for each $p \in S$ (this can be done using point counting).

Step 3: Lift using CRT to $H_D(X)$.

Find a root of $H_D(X) \mod n \dots$

Our idea: With the knowledge of $H_D(X) \mod p$ for each $p \in S$ compute $H_D(X) \mod n$ directly using a modified version of CRT.

Modified CRT

Following Couveignes, Montgomery-Silverman.

GIVEN: A collection of pairwise coprime positive integers m_i for $i = 1, 2, ..., \ell$. For each i, an integer x_i with $0 \le x_i < m_i$. A small positive real number ϵ . There is an integer x s.t. $|x| < (1/2 - \epsilon) \prod_i m_i$, and $x \equiv x_i \mod m_i$ for each i.

TASK: Compute $x \mod n$, for a given positive integer n.

Let $M = \prod_i m_i$, $M_i = M/m_i$, $a_i = 1/M_i \mod m_i$. Then $z = \sum_i a_i M_i x_i \equiv x \mod M$.

If $r = \left\lfloor \frac{z}{M} + \frac{1}{2} \right\rfloor$, then x = z - rM. So $x \mod n = z \mod n - (r \mod n)(M \mod n)$.

Easy check: $\frac{z}{M} + \frac{1}{2}$ is not within ϵ of an integer. So, compute $\frac{z}{M} + \frac{1}{2}$ to precision ϵ , and round off to get r.

Complexity analysis

This part should be taken with a grain of salt!

Let d = |D|. Then $B = O(\sqrt{d}(\log d)^2)$. Atkin-Morain method for computing $H_D(X)$ takes time $O(d^2(\log d)^4)$.

Statement 3. If $d \not\equiv 7 \mod 8$, then the set *S* is finite, the size of the set is $O(\frac{\log B}{\log \log B})$, and each $p \in S$ is $O((\log B)^2)$.

Statement 3 is true with high probability; for what follows, assume Statement 3.

Computing $H_D(X) \mod p$ for $p \in S$ takes time $O(d^{3/2}(\log d)^{10})$.

The CRT method to lift to $H_D(X)$ takes time $O(d(\log d)^2 \log n + d^{3/2}(\log d)^4)$.

Our method to compute $H_D(X) \mod n$ takes time $O(d(\log d)^2 \log n + \sqrt{d}(\log n)^2 + d(\log d)^4)$.

So our method would be an improvement only when d is "very large" (say $d > (\log n)^2$).