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Torsion and component groups

Let E be an elliptic curve over the rationals that is optimal.

Thus E : y 2 = x3 + ax + b, with a, b ∈ Q
LE (s) = the L-function of E = CE (s − 1)r+ higher order terms

ΩE = period integral of E

RE = regulator of E

Conjecture (Birch and Swinnerton-Dyer)

CE
ΩE ·RE

?
=
|XE |·

∏
p cp(E)

|E(Q)tor|2 , where

E (Q)tor = the torsion subgroup of E (Q)

cp(E ) = Tamagawa number

= order of the arithmetic component group = [E (Qp) : E 0(Qp)].

may be thought of as the number of components in “E mod p”

is 1 for almost all p

XE = Shafarevich-Tate group of E
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Cancellations

Recall BSD formula CE
ΩE ·RE

?
=
|XE |·

∏
p cp(E)

|E(Q)tor|2 .

Theorem (Emerton): If the conductor of E is prime,

then
∏

p cp(E ) = |E (Q)tor|,
so there is quite a bit of cancellation on the right side.

What happens more generally when the conductor is not prime?

Expect some cancellation based on theory and numerical data,

which was first obtained from Cremona’s tables,

and then using SAGE (with W. Stein’s help).
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Conjectures

Recall BSD formula CE
ΩE ·RE

?
=
|XE |·

∏
p cp(E)

|E(Q)tor|2 .

Conjecture

Let ` ≥ 5 be a prime. Then the order of the `-primary part of E (Q)tor
divides

∏
p cp(E ).

Was proved by D. Lorenzini,

so part of
∏

p cp(E ) gets cancelled.

But there is a part that remains in general in numerical examples.

What can one say about this part that remains?
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Conjectures

There is a modular form f =
∑∞

n=1 an exp(2πiτn)

such that for all primes p, ap = 1 + p − |E (Fp)|.

Recall BSD formula CE
ΩE ·RE

?
=
|XE |·

∏
p cp(E)

|E(Q)tor|2 .

Conjecture

If an odd prime ` divides cp(E ) for some prime p, then either ` divides
|E (Q)tor| or the coefficients of f are congruent to those of another
modular form of lower level “modulo `”.

Some of the numerical evidence was given by Randy Heaton.

Can prove some partial results towards this conjecture, using Ribet’s
level lowering theorem.

5 / 1



Conjectures

There is a modular form f =
∑∞

n=1 an exp(2πiτn)

such that for all primes p, ap = 1 + p − |E (Fp)|.

Recall BSD formula CE
ΩE ·RE

?
=
|XE |·

∏
p cp(E)

|E(Q)tor|2 .

Conjecture

If an odd prime ` divides cp(E ) for some prime p, then either ` divides
|E (Q)tor| or the coefficients of f are congruent to those of another
modular form of lower level “modulo `”.

Some of the numerical evidence was given by Randy Heaton.

Can prove some partial results towards this conjecture, using Ribet’s
level lowering theorem.

5 / 1



Conjectures

There is a modular form f =
∑∞

n=1 an exp(2πiτn)

such that for all primes p, ap = 1 + p − |E (Fp)|.

Recall BSD formula CE
ΩE ·RE

?
=
|XE |·

∏
p cp(E)

|E(Q)tor|2 .

Conjecture

If an odd prime ` divides cp(E ) for some prime p, then either ` divides
|E (Q)tor| or the coefficients of f are congruent to those of another
modular form of lower level “modulo `”.

Some of the numerical evidence was given by Randy Heaton.

Can prove some partial results towards this conjecture, using Ribet’s
level lowering theorem.

5 / 1



Conjectures

There is a modular form f =
∑∞

n=1 an exp(2πiτn)

such that for all primes p, ap = 1 + p − |E (Fp)|.

Recall BSD formula CE
ΩE ·RE

?
=
|XE |·

∏
p cp(E)

|E(Q)tor|2 .

Conjecture

If an odd prime ` divides cp(E ) for some prime p,

then either ` divides
|E (Q)tor| or the coefficients of f are congruent to those of another
modular form of lower level “modulo `”.

Some of the numerical evidence was given by Randy Heaton.

Can prove some partial results towards this conjecture, using Ribet’s
level lowering theorem.

5 / 1



Conjectures

There is a modular form f =
∑∞

n=1 an exp(2πiτn)

such that for all primes p, ap = 1 + p − |E (Fp)|.

Recall BSD formula CE
ΩE ·RE

?
=
|XE |·

∏
p cp(E)

|E(Q)tor|2 .

Conjecture

If an odd prime ` divides cp(E ) for some prime p, then either ` divides
|E (Q)tor|

or the coefficients of f are congruent to those of another
modular form of lower level “modulo `”.

Some of the numerical evidence was given by Randy Heaton.

Can prove some partial results towards this conjecture, using Ribet’s
level lowering theorem.

5 / 1



Conjectures

There is a modular form f =
∑∞

n=1 an exp(2πiτn)

such that for all primes p, ap = 1 + p − |E (Fp)|.

Recall BSD formula CE
ΩE ·RE

?
=
|XE |·

∏
p cp(E)

|E(Q)tor|2 .

Conjecture

If an odd prime ` divides cp(E ) for some prime p, then either ` divides
|E (Q)tor| or the coefficients of f are congruent to those of another
modular form of lower level “modulo `”.

Some of the numerical evidence was given by Randy Heaton.

Can prove some partial results towards this conjecture, using Ribet’s
level lowering theorem.

5 / 1



Conjectures

There is a modular form f =
∑∞

n=1 an exp(2πiτn)

such that for all primes p, ap = 1 + p − |E (Fp)|.

Recall BSD formula CE
ΩE ·RE

?
=
|XE |·

∏
p cp(E)

|E(Q)tor|2 .

Conjecture

If an odd prime ` divides cp(E ) for some prime p, then either ` divides
|E (Q)tor| or the coefficients of f are congruent to those of another
modular form of lower level “modulo `”.

Some of the numerical evidence was given by Randy Heaton.

Can prove some partial results towards this conjecture, using Ribet’s
level lowering theorem.

5 / 1



Conjectures

There is a modular form f =
∑∞

n=1 an exp(2πiτn)

such that for all primes p, ap = 1 + p − |E (Fp)|.

Recall BSD formula CE
ΩE ·RE

?
=
|XE |·

∏
p cp(E)

|E(Q)tor|2 .

Conjecture

If an odd prime ` divides cp(E ) for some prime p, then either ` divides
|E (Q)tor| or the coefficients of f are congruent to those of another
modular form of lower level “modulo `”.

Some of the numerical evidence was given by Randy Heaton.

Can prove some partial results towards this conjecture, using Ribet’s
level lowering theorem.

5 / 1



Cuspidal subgroup

N = conductor of E = level of f
X0(N) = modular curve; so X0(N)(C) = H/Γ0(N)
J0(N) = Jacobian of X0(N); so
J0(N)(C) = degree zero divisors on X0(N) modulo principal divisors
Then E ↪→ J0(N)
C = subgroup of J0(N)(C) generated by divisors supported on the
cusps of X0(N), and is called the cuspidal subgroup.

Conjecture

If N is square-free, then E (Q)tor ⊆ C .

Theorem

If N is square-free and r is a prime that does not divide 6N, but divides
|E (Q)tor|, then r divides |C |.

Question: Do the conjectures above generalize to arbitrary abelian
subvarieties of J0(N) associated to modular forms?

6 / 1



Cuspidal subgroup

N = conductor of E

= level of f
X0(N) = modular curve; so X0(N)(C) = H/Γ0(N)
J0(N) = Jacobian of X0(N); so
J0(N)(C) = degree zero divisors on X0(N) modulo principal divisors
Then E ↪→ J0(N)
C = subgroup of J0(N)(C) generated by divisors supported on the
cusps of X0(N), and is called the cuspidal subgroup.

Conjecture

If N is square-free, then E (Q)tor ⊆ C .

Theorem

If N is square-free and r is a prime that does not divide 6N, but divides
|E (Q)tor|, then r divides |C |.

Question: Do the conjectures above generalize to arbitrary abelian
subvarieties of J0(N) associated to modular forms?

6 / 1



Cuspidal subgroup

N = conductor of E = level of f

X0(N) = modular curve; so X0(N)(C) = H/Γ0(N)
J0(N) = Jacobian of X0(N); so
J0(N)(C) = degree zero divisors on X0(N) modulo principal divisors
Then E ↪→ J0(N)
C = subgroup of J0(N)(C) generated by divisors supported on the
cusps of X0(N), and is called the cuspidal subgroup.

Conjecture

If N is square-free, then E (Q)tor ⊆ C .

Theorem

If N is square-free and r is a prime that does not divide 6N, but divides
|E (Q)tor|, then r divides |C |.

Question: Do the conjectures above generalize to arbitrary abelian
subvarieties of J0(N) associated to modular forms?

6 / 1



Cuspidal subgroup

N = conductor of E = level of f
X0(N) = modular curve;

so X0(N)(C) = H/Γ0(N)
J0(N) = Jacobian of X0(N); so
J0(N)(C) = degree zero divisors on X0(N) modulo principal divisors
Then E ↪→ J0(N)
C = subgroup of J0(N)(C) generated by divisors supported on the
cusps of X0(N), and is called the cuspidal subgroup.

Conjecture

If N is square-free, then E (Q)tor ⊆ C .

Theorem

If N is square-free and r is a prime that does not divide 6N, but divides
|E (Q)tor|, then r divides |C |.

Question: Do the conjectures above generalize to arbitrary abelian
subvarieties of J0(N) associated to modular forms?

6 / 1



Cuspidal subgroup

N = conductor of E = level of f
X0(N) = modular curve; so X0(N)(C) = H/Γ0(N)

J0(N) = Jacobian of X0(N); so
J0(N)(C) = degree zero divisors on X0(N) modulo principal divisors
Then E ↪→ J0(N)
C = subgroup of J0(N)(C) generated by divisors supported on the
cusps of X0(N), and is called the cuspidal subgroup.

Conjecture

If N is square-free, then E (Q)tor ⊆ C .

Theorem

If N is square-free and r is a prime that does not divide 6N, but divides
|E (Q)tor|, then r divides |C |.

Question: Do the conjectures above generalize to arbitrary abelian
subvarieties of J0(N) associated to modular forms?

6 / 1



Cuspidal subgroup

N = conductor of E = level of f
X0(N) = modular curve; so X0(N)(C) = H/Γ0(N)
J0(N) = Jacobian of X0(N);

so
J0(N)(C) = degree zero divisors on X0(N) modulo principal divisors
Then E ↪→ J0(N)
C = subgroup of J0(N)(C) generated by divisors supported on the
cusps of X0(N), and is called the cuspidal subgroup.

Conjecture

If N is square-free, then E (Q)tor ⊆ C .

Theorem

If N is square-free and r is a prime that does not divide 6N, but divides
|E (Q)tor|, then r divides |C |.

Question: Do the conjectures above generalize to arbitrary abelian
subvarieties of J0(N) associated to modular forms?

6 / 1



Cuspidal subgroup

N = conductor of E = level of f
X0(N) = modular curve; so X0(N)(C) = H/Γ0(N)
J0(N) = Jacobian of X0(N); so
J0(N)(C) = degree zero divisors on X0(N) modulo principal divisors

Then E ↪→ J0(N)
C = subgroup of J0(N)(C) generated by divisors supported on the
cusps of X0(N), and is called the cuspidal subgroup.

Conjecture

If N is square-free, then E (Q)tor ⊆ C .

Theorem

If N is square-free and r is a prime that does not divide 6N, but divides
|E (Q)tor|, then r divides |C |.

Question: Do the conjectures above generalize to arbitrary abelian
subvarieties of J0(N) associated to modular forms?

6 / 1



Cuspidal subgroup

N = conductor of E = level of f
X0(N) = modular curve; so X0(N)(C) = H/Γ0(N)
J0(N) = Jacobian of X0(N); so
J0(N)(C) = degree zero divisors on X0(N) modulo principal divisors
Then E ↪→ J0(N)

C = subgroup of J0(N)(C) generated by divisors supported on the
cusps of X0(N), and is called the cuspidal subgroup.

Conjecture

If N is square-free, then E (Q)tor ⊆ C .

Theorem

If N is square-free and r is a prime that does not divide 6N, but divides
|E (Q)tor|, then r divides |C |.

Question: Do the conjectures above generalize to arbitrary abelian
subvarieties of J0(N) associated to modular forms?

6 / 1



Cuspidal subgroup

N = conductor of E = level of f
X0(N) = modular curve; so X0(N)(C) = H/Γ0(N)
J0(N) = Jacobian of X0(N); so
J0(N)(C) = degree zero divisors on X0(N) modulo principal divisors
Then E ↪→ J0(N)
C = subgroup of J0(N)(C) generated by divisors supported on the
cusps of X0(N),

and is called the cuspidal subgroup.

Conjecture

If N is square-free, then E (Q)tor ⊆ C .

Theorem

If N is square-free and r is a prime that does not divide 6N, but divides
|E (Q)tor|, then r divides |C |.

Question: Do the conjectures above generalize to arbitrary abelian
subvarieties of J0(N) associated to modular forms?

6 / 1



Cuspidal subgroup

N = conductor of E = level of f
X0(N) = modular curve; so X0(N)(C) = H/Γ0(N)
J0(N) = Jacobian of X0(N); so
J0(N)(C) = degree zero divisors on X0(N) modulo principal divisors
Then E ↪→ J0(N)
C = subgroup of J0(N)(C) generated by divisors supported on the
cusps of X0(N), and is called the cuspidal subgroup.

Conjecture

If N is square-free, then E (Q)tor ⊆ C .

Theorem

If N is square-free and r is a prime that does not divide 6N, but divides
|E (Q)tor|, then r divides |C |.

Question: Do the conjectures above generalize to arbitrary abelian
subvarieties of J0(N) associated to modular forms?

6 / 1



Cuspidal subgroup

N = conductor of E = level of f
X0(N) = modular curve; so X0(N)(C) = H/Γ0(N)
J0(N) = Jacobian of X0(N); so
J0(N)(C) = degree zero divisors on X0(N) modulo principal divisors
Then E ↪→ J0(N)
C = subgroup of J0(N)(C) generated by divisors supported on the
cusps of X0(N), and is called the cuspidal subgroup.

Conjecture

If N is square-free, then E (Q)tor ⊆ C .

Theorem

If N is square-free and r is a prime that does not divide 6N, but divides
|E (Q)tor|, then r divides |C |.

Question: Do the conjectures above generalize to arbitrary abelian
subvarieties of J0(N) associated to modular forms?

6 / 1



Cuspidal subgroup

N = conductor of E = level of f
X0(N) = modular curve; so X0(N)(C) = H/Γ0(N)
J0(N) = Jacobian of X0(N); so
J0(N)(C) = degree zero divisors on X0(N) modulo principal divisors
Then E ↪→ J0(N)
C = subgroup of J0(N)(C) generated by divisors supported on the
cusps of X0(N), and is called the cuspidal subgroup.

Conjecture

If N is square-free, then E (Q)tor ⊆ C .

Theorem

If N is square-free and r is a prime that does not divide 6N, but divides
|E (Q)tor|, then r divides |C |.

Question: Do the conjectures above generalize to arbitrary abelian
subvarieties of J0(N) associated to modular forms?

6 / 1



Cuspidal subgroup

N = conductor of E = level of f
X0(N) = modular curve; so X0(N)(C) = H/Γ0(N)
J0(N) = Jacobian of X0(N); so
J0(N)(C) = degree zero divisors on X0(N) modulo principal divisors
Then E ↪→ J0(N)
C = subgroup of J0(N)(C) generated by divisors supported on the
cusps of X0(N), and is called the cuspidal subgroup.

Conjecture

If N is square-free, then E (Q)tor ⊆ C .

Theorem

If N is square-free and r is a prime that does not divide 6N, but divides
|E (Q)tor|, then r divides |C |.

Question: Do the conjectures above generalize to arbitrary abelian
subvarieties of J0(N) associated to modular forms?

6 / 1


