Rational torsion in elliptic curves and the cuspidal subgroup [∗]

Amod Agashe Florida State University

October 28, 2009

[∗]Slides available at: http://www.math.fsu.edu/˜agashe/math.html An elliptic curve E over Q is an equation of the form $y^2 = x^3 + ax + b$, where $a, b \in \mathbf{Q}$ and $\Delta(E) = -16(4a^3 + 27b^2) \neq 0$, along with a point O at infinity.

Example: The graph of $y^2 = x^3 - x$ over R:

The abelian group $E(Q)$ is finitely-generated. By Mazur, $E(\mathbf{Q})_{\text{tor}}$ is one of the following 15 groups: $\mathbf{Z}/m\mathbf{Z}$, with $1 \leq m \leq 10$ or $m = 12$;

 $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2m\mathbf{Z}$, with $1 \leq m \leq 4$.

 $E =$ an elliptic curve over Q.

Goal: To understand the torsion subgroup $E(\mathbf{Q})_{\text{tor}}$ in terms of its modular parametrization.

 $N =$ conductor of E. $X_0(N)$ = modular curve over Q; so $X_0(N)(C) = \Gamma_0(N) \backslash (\mathcal{H} \cup P^1(Q))$, where $\Gamma_0(N) = \begin{cases} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \end{cases}$ \in SL₂(Z) : N | c $\big)$. $J_0(N) =$ Jacobian of $X_0(N)$; so $J_0(N)(C)$ = degree zero divisors on $X_0(N)(C)$ modulo divisors associated to functions.

Up to isogeny, E is a quotient of $J_0(N)$; assume it is an optimal quotient. Using the dual map, E can be viewed as an abelian subvariety of $J_0(N)$ (i.e., E is the abelian subvariety of $J_0(N)$ associated to a newform).

Cusps of $X_0(N) = \Gamma_0(N) \backslash \mathbf{P}^1(\mathbf{Q})$ Cuspidal subgroup, C_N = degree zero divisors supported on cusps modulo divisors associated to functions; e.g., $(0) - (\infty) \in C_N$. C_N is a finite group, and if N is square free, then $C_N \subset J_0(N)(\mathbf{Q})$.

Theorem (Mazur): If N is prime, then $J_0(N)(\mathbf{Q})_{\text{tor}} = C_N$; so $E(\mathbf{Q})_{\text{tor}} \subseteq C_N$, i.e. the cuspidal subgroup "accounts for" all of $E(Q)_{tor}$.

Theorem (Lorenzini, Ling): If N is a power of a prime ≥ 5 , then $J_0(N)({\bf Q})^{(6N)}_{\rm tor} = C_N({\bf Q})^{(6N)}$; so $E(\mathbf{Q})_{\text{tor}}^{(\text{6}N)}\subseteq C_N.$

Based on data of Cremona and Stein: suspect that $E(\mathbf{Q})_{\text{tor}} \subset C_N$ always.

Theorem: Suppose N is square-free. Let r be a prime such that r $/6N$. If r divides $|E(\mathbf{Q})_{\text{tor}}|$, then r divides $|C_N|$.

By Mazur's theorem, since $r \log r = 5$ or 7, and $E(\mathbf{Q})_r$ is cyclic; so $E(\mathbf{Q})_{\text{tor}}^{(\mathbf{6}^{\prime}N)} \subseteq C_N.$

Applications:

1) Computation of $|E(\mathbf{Q})_{\text{tor}}|$ (?): the proof implies that if r divides $|E(\mathbf{Q})_{\text{tor}}|$, then r divides $6 \cdot N \cdot \prod_{p \mid N} (p^2-1)$.

2) "Should" generalize to abelian subvarieties of $J_0(N)$ associated to newforms.

3) Relevant to the second part of the Birch and Swinnerton-Dyer conjecture.

 $L(E, s)$ = the L-function of E Suppose for simplicity that $L(E, 1) \neq 0$. Then the second part of the Birch and Swinnerton-Dyer conjecture says

$$
\frac{L(E,1)}{\Omega_E} = \frac{|\mathsf{Sha}_E| \cdot \prod_{p|N} c_p(E)}{|E(\mathbf{Q})_{\text{tor}}|^2}, \text{where}
$$

 Ω_E = the real period (or two times it) Sha $_E$ = the Shafarevich-Tate group of E $c_p(E) = [E(\mathbf{Q}_p) : E_{ns}(\mathbf{Q}_p)]$ is the arithmetic component group of E.

Theorem (Emerton): If N is prime, then the natural map $E \cap C_N \to \Phi_N(E)$ is an isomorphism (where $\Phi_N(E)$ is the "geometric" component group; in our situation, $c_N(E) = |\Phi_N(E)|$). So if N is prime, then $|E(\mathbf{Q})_{\text{tor}}| = |E \cap C_N|$ $\Pi_{p|N}$ $c_p(E).$

Thus the cuspidal group provides a link between $|E(\mathbf{Q})_{\text{tor}}|$ and $\prod_{p|N} c_p(E)$.

Based on data of Cremona, suspect: $|E(\mathbf{Q})_{\text{tor}}^{(6)}|$ divides $\prod_{p|N} c_p(E)$ in general. Proof of Theorem (sketch):

Recall that N is square-free, r is a prime s. t. r /6N, and r divides $|E(\mathbf{Q})_{\text{tors}}|$. Need to show that r divides $|C_N|$. Let f be the cuspform corresponding to E.

Proposition: $r \nmid a_r(f)$ and there is an Eisenstein series E_f such that $f \equiv E_f$ mod r. Then by a result of Tang, r divides $|E \cap C_N|$.

Proof of Proposition involves:

Lemma 1: If ℓ /N, then $a_{\ell}(f) \equiv 1 + \ell \mod r$ and if $p|N$, then $a_p(f) = -w_p = \pm 1$. In particular, since r/N , $r \nmid a_r(f)$.

Lemma 2: There is an Eisenstein series E' such that for ℓ $/N$, $a_{\ell}(E') = \ell+1$, and for $p|N$, $a_p(E')$ can be chosen to be 1 or p provided at least one of them is 1.

Lemma 3: There is a $p|N$ such that $a_p(f) = 1$.

Lemma 4 (Dummigan): If $p|N$ is such that $a_p(f) = -1$, then $p \equiv -1$ mod r.