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1 Covering Projective Space by Affine Spaces

In this section, we will develop a natural covering of Pnk by n-dimensional
affine spaces over k. As we will see, this yields homeomorphisms between
projective algebraic sets in Pn and affine algebraic sets in An.

Notation 1.1. We use the abbreviation {[some condition]} to denote the
set of all points that satisfy [some condition]. For example, {x0 6= 0} is an
abbreviation for {[x0 : . . . : xn] ∈ P

n | x0 6= 0}, and if f : X −→ Y and
c ∈ Y , then {f = c} is an abbreviation for {x ∈ X | f(x) = c}.

We now define our covering. For i = 0, 1 . . . , n, let Ui = {xi 6= 0} ⊆ P
n,

and define φi : Ui −→ A
n as

φi([a0 : . . . : an]) =
(
a0
ai
, . . . ,

ai−1

ai
,
ai+1

ai
, . . . ,

an
ai

)
Also define φ−1

i : An −→ P
n as

φ−1
i (a1, . . . , an) = [a1 : . . . : ai : 1 : ai+1 : . . . : an]

Note φi is well defined, since if (a0, . . . , an) and (b0, . . . , bn) are two sets of
homogeneous coordinates for a point in Ui, then (b0, . . . , bn) = λ(a0, . . . , an)
for some λ 6= 0 ∈ k, and we have

φi([b0 : . . . : bn]) = φi([λa0 : . . . : λan])

=
(
λa0

λai
, . . . ,

λai−1

λai
,
λai+1

λai
, . . . ,

λan
λai

)
=
(
a0

ai
, . . . ,

ai−1

ai
,
ai+1

ai
, . . . ,

an
ai

)
= φi([a0 : . . . : an])
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It is easily verified that φ−1
i (An) ⊆ Ui, and that φi and φ−1

i are
(two-sided) inverses; hence, φi is a bijection.

Example 1.2. Recall that when discussing P2, we considered points [x0 : y0 : z0]
with z0 6= 0, and mapped them to A2 as [x0 : y0 : z0] 7→ (x0

z0
, y0

z0
). This

is φ2 : U2 −→ A
2.

We now state two results from [?], Section I.2.

Proposition 1.3. ([?], Proposition I.2.2) The map φi is a homeomorphism
of Ui with its induced topology to An with the Zariski topology.

Corollary 1.4. ([?], Corollary I.2.3) If Y is a projective (respectively,
quasi-projective) algebraic set, then Y is covered by the open sets Y ∩ Ui
for i = 0, 1, . . . , n, and these sets are homeomorphic to affine (respectively,
quasi-affine) algebraic sets via φi.

Remark 1.5. “So we can do local geometry using an affine cover.”

Example 1.6. Find the tangent to y2z = x3−xz2 at the point p = [ 0 : 1 : 0 ].
Solution: Note that p ∈ {y 6= 0} = U1. Set y = 1. Then we have the
affine algebraic set

{f(x, z) := z − x3 − xz2 = 0} ⊆ A
2

p becomes (0, 0), and the tangent to the curve at p is given by

δf

δx
|(0,0) (x− 0) +

δf

δz
|(0,0) (z − 0) = 0

(−3 · 02 − 02)x+ (1− 2 · 0 · 0)z = 0

z = 0

2 The Category of Algebraic Varieties

Definition 2.1. An algebraic set is an algebraic subset of affine or pro-
jective space. A variety is an irreducible algebraic set or an open subset
thereof.

These are the objects that we want to study. We would like to define a
category of varieties. In order to do so, we must decide what the morphisms
in this category are to be.
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2.1 Regular Functions

As a first guess, we might try continuous maps (with respect to the Zariski
topology). The problem with this approach is that there are too many con-
tinuous maps. As an example, consider maps A1 −→ A

1. Since the closed
sets in A1 are ∅, A1, and finite sets, any bijection on A1 is a homeomor-
phism. Since this would include maps that have nothing to do with the
structure of varieties, we need more restrictions on the types of maps we
take as morphisms in our category.

Remark 2.2. Here are two considerations:

1. If φ : An −→ A
m, and πi is the ith coordinate function on Am, then

the composite map πi ◦ φ is just a function An −→ k. What functions
A
n −→ k should we allow? Certainly, we want to allow the coordinate

functions and functions built from them using pointwise addition and
multiplication.

2. Recall the parameterization for the Pythagorean triples:

t 7−→
(

1− t2

1 + t2
,

2t
1 + t2

)
where our base field k is C. This suggests that we should allow rational
functions of coordinates. The only problem is that, if the denominator
vanishes at some point, then the function is not well-defined there.

Example 2.3. Let Y = Z(xy − zw) − Z(wy) ⊆ A
4. The function

(x, y, z, w) 7→ x
w is well-defined provided w 6= 0. Similarly, the function

(x, y, z, w) 7→ z
y is well-defined when y 6= 0. If w, y 6= 0, then x

w = z
y on

Z(xy − zw). Hence, the map φ : Y −→ k defined as

φ(x, y, z, w) =

{
x
w if w 6= 0
z
y if y 6= 0

is well-defined by different rational functions at different points.

This motivates the following definition.

Definition 2.4. Let Y ⊆ An be a quasi-affine algebraic set. A function
f : Y −→ k is regular at p ∈ Y if there exists an open neighborhood
U of p with U ⊆ Y and polynomials g, h ∈ k[x1, . . . , xn] such that h is
nowhere zero on U and f = g

h on U . f is regular on Y if f is regular at
every point in Y .
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Remark 2.5. We will use the same definition for quasi-projective algebraic
sets. However, for that case, we will insist that g and h be homogeneous of
the same degree, so that g

h is well-defined at p.

We now state a result from [?], Section I.3; a proof is provided in the
text.

Lemma 2.6. ([?], Lemma I.3.1) A regular function An −→ k is continuous
when k is identified with A1 under the Zariski topology.

Remark 2.7. If Y ⊆ A
n is irreducible and f , g : Y −→ k are continuous

functions (with respect to the Zariski topology) such that f = g on some
non-empty open subset U ⊆ Y , then f = g on Y .

Proof. Recall that when k is identified with A1 under the Zariski topology,
any finite subset of k is closed.

Now, note that the set { f = g } is closed, since it is the preimage
of the closed set {0} under the continuous map f − g. By assumption,
U ⊆ { f = g }, so { f = g } is non-empty. If f and g are not equal on
all of Y , then { f = g } and Y − U are non-empty proper closed subsets
of Y , with

Y = U ∪ ( Y − U ) ⊆ { f = g } ∪ ( Y − U ) ⊆ Y

so
Y = { f = g } ∪ ( Y − U )

contradicting our assumption that Y is irreducible. Thus f = g on all of
Y .

2.2 Morphisms

We can now define morphisms of algebraic sets. In the theory of differ-
entiable manifolds, there are two ways of defining morphisms between two
manifolds M and N :

1. Cover M and N by charts, and insist that the induced maps from
subsets of Rn to subsets of Rm are differentiable. The problem with
this approach is that this definition depends on the choice of charts,
and is not intrinsic.

2. Locally, a pullback of differentiable functions is differentiable.
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Our definition of morphisms of algebraic sets will mirror the second
approach.

Definition 2.8. Let X and Y be algebraic sets. A morphism φ : X −→ Y
is a continuous map (with respect to the Zariski topology) such that for all
open subsets V ⊆ Y and all regular functions f : V −→ k, the function
f ◦ φ : φ−1 ( V ) −→ k is regular. φ is an isomorphism if there exists a
morphism ψ : Y −→ X such that φ ◦ ψ = idY and ψ ◦ φ = idX .

Lemma 2.9. ([?], Lemma I.3.6)
Let X be an algebraic set, let Y ⊆ A

n be a quasi-affine algebraic set,
and let x1, x2, . . . , xn denote the coordinate functions on An. Then a map
ψ : X −→ Y is a morphism if and only if xi ◦ ψ is regular on X for
i = 1, 2, . . . , n.

Proof. See the text.

Example 2.10. The function φ : A1
C − { i, − i } −→ A

2
C defined as

φ(t) =
(

1− t2

1 + t2
,

2t
1 + t2

)
is a morphism.

Homework 2.11. ([?], Ex. I.3.2(a))
Define φ : A1 −→ { y2 = x3 } ⊆ A

2 as φ ( t ) = ( t2, t3 ). Show that

1. φ is a morphism

2. φ is a bijection

3. (*) φ−1 is continuous (with respect to the Zariski topology)

4. (*) φ−1 is not a morphism

2.3 Rings of Regular Functions

Let’s go back to regular functions on an algebraic set X.

Definition 2.12. For an open subset U ⊆ X, we define O ( U ) as the
ring of functions that are regular on U .

Remark 2.13. If f is regular on U , then it is regular on any subset of U .
Consequently, if V ⊆ U are open subsets of X, then O ( U ) ⊆ O ( V ).
However, if a function is regular on V , it may not be regular on all of U .
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Definition 2.14. Let X be a topological space. A presheaf F consists of
the following data:

1. for every open subset U ⊆ X, a set F(U)

2. for every inclusion V ⊆ U of open subsets ofX, a map ρUV : F(U) −→ F(V )

subject to the following constraints:

1. F(∅) = ∅

2. for all open subsets U ⊆ X, ρUU = idU

3. if W ⊆ V ⊆ U are open subsets of X, then ρUW = ρVW ◦ ρUV .

Example 2.15. Let X be an algebraic set, let F = O, and for all open
subsets U ⊆ V of X, define ρUV as

ρUV (s) = s |V , ∀ s ∈ O ( U )

This is an example of a presheaf.
We can place extra structure on the sets F(U) in the presheaf. For

example, they may be groups or rings. In this case, we insist that the
maps ρUV be morphisms of the corresponding structures (e.g., group or ring
homomorphisms).

For example, O is actually a presheaf of rings, and is denoted OX .

Remark 2.16. 1. The notion of presheaves is related to that of covering
spaces (see exercise II.1.13 in [?])

2. We call the set F(U) a section of F over U . F(U) is sometimes
denoted by Γ(U,F). We also call the maps ρUV restriction maps, and
if s ∈ F(U), then we denote ρUV (s) by s |V . Elements of F(X) are
called global sections.

Example 2.17. OX(X) is the set of functions that are regular on all of X.

2.4 Affine Coordinate Rings and Local Rings

Consider an affine set Y ⊆ A
n. Any polynomial in k[x1, · · · , xn] is clearly

regular on An. If f, g ∈ k[x1, · · · , xn] then f and g give the same function
on Y if and only if f−g ∈ I(Y ). Therefore, if we want to identify functions
that agree on an affine algebraic set, we can mod out the ideal of that set and
work in the resulting quotient ring. This motivates the following definition.
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Definition 2.18. The affine coordinate ring of Y ⊆ A
n, denoted A(Y ), is

defined as A(Y ) = k[x1, · · · , xn] / I(Y ).

Remark 2.19. A(Y ) ⊆ O(Y ). Is there anything else in O(Y )? This
question will be answered soon.

Next, we turn to the question of which functions are regular at a point
p ∈ Y . We can (and will) assume Y is irreducible. Any function f that
is regular at p is defined in a neighborhood U of p. If g is another function
regular on a neighborhood V of p such that f = g on U ∩ V , then we will
identify f and g. The objects we consider are thus pairs < U, f >, where
U ⊆ Y is open, p ∈ U , and f is regular on U , under the equivalence
relation

< U, f >∼< V, g > ⇐⇒ f = g on U ∩ V

Homework 2.20. (*) Prove that ∼ is an equivalence relation. (Hint: if X
is irreducible, U ⊆ X is open, and f and g are continuous functions on X
such that f = g on U , then f = g on all of X since U is dense in X).

Fact 2.21. The equivalence classes of the pairs < U, f > under ∼, with the
operations

< U, f > + < V, g > = < U ∩ V, f + g >

and
< U, f > · < V, g > = < U ∩ V, f · g >

form a ring, called the local ring of p on Y , and denoted Op,Y (or Op for
simplicity). Elements of Op,Y are called germs of functions regular near p.

Example 2.22. Consider the affine algebraic set Y : y = x2 ⊆ A
2,

and let p = (1, 1) ∈ A
2. The function f(x, y) = x2+y

x+1 is regular on
U = Y − {x+ 1 = 0}, so < U, f > ∈ Op.

Example 2.23. On Y = {xy = zw} − {z = y = 0} ⊆ A
4,

< Y − {z = 0}, x
z >, < Y − {y = 0}, w

y > ∈ O(1,1,1,1), with
< Y − {z = 0}, x

z > ∼ < Y − {y = 0}, w
y >

Remark 2.24. 1. A ring is said to be local if it has only one maximal
ideal. The ring Op is local, since the equivalence classes < U, f > with
f(p) = 0 form a maximal ideal that contains all other proper ideals.

Proof. (Sketch) Suppose I is an ideal of Op that properly includes the
ideal in question. That is, suppose I contains some element < V, g >,
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where g(p) 6= 0. Then 1
g is regular on some neighborhood W of p.

Hence, < V, g >< W, 1
g >=< V ∩ W, 1 > is a unit in I, so

I = Op.

2. Suppose Y ⊆ A
n. If f, g ∈ A(Y ) such that g(p) 6= 0, then f

g is
regular in some neighborhood of p. Let mp = {g ∈ A(Y ) | g(p) = 0},
and note that mp is a maximal ideal of A(Y ), so that we may invert
elements outside of mp.

If A is an integral domain and S is a multiplicative subset of A (i.e.,
0 /∈ S, and ∀x, y ∈ S, xy ∈ S), define the relation ∼ on A× S as

(f, g) ∼ (f ′, g′)⇐⇒ fg′ = gf ′

(i.e., (f, g) ∼ (f ′, g′) ⇐⇒ f
g = f ′

g′ ). It is easy to check that ∼ is an
equivalence relation, and that the set of equivalence classes under the
operations

(f, g) + (f ′, g′) = (fg′ + gf ′, gg′)

and
(f, g) · (f ′, g′) = (ff ′, gg′)

forms a ring. This ring is called the localization of A at S, and is
denoted S−1A.

If A is an integral domain and p is a prime ideal of A, then S = A−p is a
multiplicative set, and S−1A is denoted Ap, and called the localization
of A at p. So A(Y )mp ⊆ Op. Conversely, if < U, f ′ >∈ Op, then for
some open V ⊆ U , f ′|V = f

g , with g(p) 6= 0, so < U, f ′ >=< V, fg >∈
A(Y )mp . Thus, A(Y )mp = Op.

3. For readers familiar with direct limits,

Op = lim−→
p∈U O(U)

We may take this as the definition of lim−→
p∈U O(U), or we may characterize

it by its universal property. It is a ringR with a map rU : O(U) −→ R
for every U , such that the “usual compatibility” condition is satisfied.
That is, for open sets V ⊆ U , rU = rV ◦ ρUV .

Now, if R′ is another ring with maps r′U : O(U) −→ R′ satisfying
compatibility as above, there exists a unique ψR′ : R −→ R′ such
that for all U , the following diagram commutes:
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O(U)
rU //

r′U ""EEEEEEEE R

ψR′

��
R′

Mimicking the above construction, we have the following.

Definition 2.25. If F is a presheaf on a topological space X and
p ∈ X, then the stalk of F at p, denoted Fp, is defined as

Fp = lim−→
p∈U F(U)
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