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1 Projective Space

In Euclidean geometry, two distinct lines in the plane intersect in exactly in
one point except if they are parallel; this exception is a bit of a nuisance.
So we add one extra point to the Euclidean plane for each direction (these
are called points at infinity) and declare that parallel lines meet at the point
at infinity corresponding to their common direction. The corresponding
geometry is called projective geometry. Just like Euclidean geometry has
an axiomatic definition, so does projective geometry. The former has an
analytic description in terms of the ”usual” coordinate geometry (Descarte).
An analytic description of projective geomerty was introduced by Plücker,
Mobius, and others.

1.1 General Idea

Put the xy-plane in 3-dimensions and shift it up by 1. Each point on the
xy-plane is in correspondence with a line in through the originwhich is not
in the xy-plane. Each line in the xy-plane corresponds to a direction. So
we can think of the projective plane as the set of lines through the origin;
classical points and points at infinity. Now a line through the origin is an
[equivalence class] of points under scaling and can be specified by a point in
3-dimensions, except for zero.

1.2 Definition of Pn Projective n-space

Assume the field k is algebraically closed.
Let (x0, y0, z0) be a triple of elements in k. Let ∼ be the equivalence

relation given by
(x0, y0, z0) ∼ (x1, y1, z1)
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if and only if ∃λ ∈ k \ {0} such that x0 = λx1, y0 = λy1, and z0 = λz1.

Definition 1.1. Projective n-space over k is

P
n := {(a0, . . . , an) ∈ kn+1 \ {0}}/ ∼ .

Definition 1.2. An element of Pn is called a point. Note that points in Pn

are (n+1)-tuples. If P ∈ Pn, then (a0, . . . , an) any (n+1)-tuple in the equiv-
alence class of P is called a set of homogeneous coordinates. The equivalence
class of (a0, . . . , an) is denoted [a0 : . . . : an].

We can classify points as follows: P = [a0 : . . . : an] with an 6= 0. Note
that this condition is independent of the representative. One can easily see
this in affine space by

[a0 : . . . : an] = [
a0

an
: . . . :

an−1

an
: 1] (

a0

an
, . . . ,

an−1

an
) ∈ An.

Remember, in An every coordinate may take value of 0 simultaneously.
Conversely, a tuple (b0, . . . , bn) ∈ An gives a point [b0 : . . . : bn−1 : h],

h 6= 0. This corresponds to ”lifting” the n-plane up by h.

Remark 1.3. The set of points [a0 : . . . : an] ∈ Pn with an 6= 0 is a copy of
A
n inside Pn.

Remark 1.4. Points [a0 : . . . : an] with an = 0 correspond up to scalars to
points in An− (0) which are called points at infinity. The collection of such
points is called a hyperplane at infinity.

Example 1.5. Take n=2. Then points in P2 correspond to lines in the
xy-plane through the origin. Points that are further from the origin in
the ”lifted” plane  lines in the actual xy-plane; eventually the points at
infinity.

Remark 1.6. In the classification above we chose the (n+1)th coordinate,
but any index would do. The former leads itself to the intuitively seeing the
first n points as a cpoy of An together with points added at infinity.

2 How to do geometry in Pn

The equations of lines, conics, etc. are defined as the zeros of certian
polynomials. However, it does not make sense to evaluate an arbitrary
f ∈ k[xo. . . . , xn] at a point P because it may have different values depend-
ing upon the representaions used.
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Example 2.1. f(x, y, z) = x+ y2 and P = [1: 1 : 1 : 1]. Then f(1, 1, 1) = 2
but f(2, 2, 2) = 6 and f(−1,−1,−1) = 0.

If f satisfies f(λx0, . . . , λxn) = λdf(x0, . . . , xn) for d the degree of f
and all λ ∈ k \ {0}, then it makes sense to ask whether f is zero at a point
P or not.

Example 2.2. f(x, y, z) = x2 + y2 satisfies this condition.

Definition 2.3. A polynomial f ∈ k[x0, . . . , xn] is homogeneous of degree d
if each of its terms has degree d. This allows one to think about zero sets
of homogeneous polynomials since in this case

f(λx0, . . . , λxn) = λdf(x0, . . . , xn).

Definition 2.4. If T is a set of homogeneous polynomials in k[x0, . . . , xn],
the zero set of T in Pn is Z(T ) = {P ∈ Pn|f(P ) = 0,∀f ∈ T}. Y ⊆ Pn is
algebraic if there exists a subset T ⊂ k[x0, . . . , xn] of homogeneous elements
such that Z(T ) = Y .

Consider y2 = x3 − x ∈ A2. What is its analogue in P2? Multiply
through by a monomial to make f = y2−x3+x homogeneous; y2z = x3−xz2

in Pn. This technique is used in the general case as well:

Definition 2.5. To any polynomial f ∈ k[x1, . . . , xn] of degree d we may
associate a homogeneous polynomial

f(x1, . . . , xn) xd0· f(x1/x0, . . . , xn/x0).

This process is called homogenization.

Let f ∈ k[x0, . . . , xn−1] and F ∈ k[x0, . . . , xn] be obtained by ho-
mogenozing f . Now points in Z(F ) ⊂ Pn with an 6= 0 are in one-to-one
correspondence with Z(f) ⊂ An.

Example 2.6.
Consider Z(y2z−x3+xz2) ⊂ P2 and let P = [x0 : y0 : z0] ∈ Z(y2z−x3+xz2).
We have the following cases:

case 1: z0 6= 0. Then y2
0z0 − x3

0 + x0z
2
0 = 0 and

(
y0

z0

)2
−
(
x0
z0

)3
+
(
x0
z0

)
= 0.

So
(
y0

z0
, x0
z0

)
∈ Z(y2 − x3 + x2) ⊂ A2.

If (a0, b0) ∈ Z(y2 − x3 + x2) ⊂ A2, then [a0 : b0 : 1] ∈ Z(y2z − x3 + xz2)
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because F (x, y, 1) = f(x, y) = y2 − x3 + x2.
case 2: z0 = 0. Then y2

0· 0 − x3
0 − x0· 02 = 0 =⇒ x0 = 0. Therefore y0 is,

up to nonzero scaling, arbitrary. These points are all in the class [0 : 1 : 0],
so there is only one such point.

Find the points at infinity of the tangent line to E : y2z = x3 − xz2 at
[−1: 0 : 1] ∈ P2 corresponding to (−1, 0) ∈ A2.

Solution: The tangent line to a homogeneous polynomial ,F , at a point
P = [x0 : y0 : z0] is given by

∂F

∂x
|P (x− x0) +

∂F

∂y
|P (y − y0) +

∂F

∂z
|P (z − z0) = 0.

This gives −3x2 + z2|P (x− (−1)) + 2xz|P (z − 1) = 0. That is x = −z. The
points on this line with z 6= 0 correspond to x = −1 ∈ A2. Put this into the
initial equation to get y2z = −z3 + z3 = 0 =⇒ y = 0 or z = 0 but not both
since [0 : 0 : 0] /∈ P2.
subcase 1: y = 0. Then z is arbitrary (but nonzero) and the solutions are
[−z : 0 : z] ∼ [−1: 0 : 1].
subcase 2: z = 0. Now y is arbitrary (but nonzero) and the solutions are
[0 : y : 0] ∼ [0 : 1 : 0].

Remark 2.7. Counting multiplicities we get three points of intersection, as
Bezout’s Theorem predicts. In P2, the group law on an elliptc curve can be
specified by saying that the points of intersection of any line with the curve
E add up to zero, taking multiplicities into account. The identity element,
O, should satisfy 2O+O = O. That is O should be an inflection point on E.

3 More on Algebraic Sets in Pn

Proposition 3.1. The union of two algebraic sets is algebraic. The inter-
section of any family of algebraic sets is an algebraic set. The empty set and
the whole space are algebraic sets.

Definition 3.2. We define the Zariski topology on Pn by taking the open
sets to be the complements of algebraic sets.

Let Hn be the hyperplane given by xn = 0. Let Un = P
n \Hn. Define

ϕn : Un → A
n
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as follows: if P = (a0, . . . , an) ∈ Un then ϕ(P ) = Q where Q is the point
with affine coordinates

(
a0
an
, · · · , an−1

an

)
with

(
an
an

)
omitted.

Proposition 3.3. The map ϕn defined above is a homeomorphism of Un
with its topology to An with its Zariski topology.

Corollary 3.4. If y is a projective (respectively, quasi-projective) variety,
then Y is covered by the open sets Y ∩Ui which are homeomorphic to affine
(respectively, quasi-affine) varieties via the mapping varphii defined above.

Remark 3.5. If T ⊂ k[x0, . . . , xn] consists of homogeneous elements and
P ∈ Z(T ), then for all g ∈ (T ) ⊂ k[x0, . . . , xn], g(a0, . . . , an) = 0 for any
representative, (a0, . . . , an), of P .
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