Algebraic Geometry I Lectures 3, 4, and 5

Amod Agashe

October 13, 2008

1 Varieties

Proposition 1.1. (a) If X and Y are algebraic sets in \mathbb{A}^n , then so is $X \cup Y$

- (b) If I is a set and $\forall i \in I$, X_i is an algebraic set in \mathbb{A}^n , then $\bigcap_{i \in I} X_i$ is an algebraic set.
- (c) ϕ and \mathbb{A}^n are algebraic sets.
- *Proof.* (a) Let $X = Z(T_1)$ and $Y = Z(T_2)$, where T_1 and T_2 are subsets in $k[x_1, \ldots, x_n]$. Then $X \cup Y = Z(T_1T_2) = \{f_1f_2 | f_1 \in T_1, f_2 \in T_2\}$ whence $X \cup Y$ is an algebraic set.
	- (b) Let $X_i = Z(T_i)$ $\forall i \in I$. Then $\bigcap_{i \in I} X_i = Z(\bigcup_{i \in I} T_i)$.
	- (c) Note that $\phi = Z(1)$ and $\mathbb{A}^n = Z(0)$.

So the algebraic sets are the closed sets of a topology, called the Zariski topology. In other words, in the Zariski topology on \mathbb{A}^n , the closed sets are precisely the algebraic subsets.

 \Box

Example 1.2. The complement of $y = x^2$ in \mathbb{A}^n is open. Thus we see that open sets are big!

Example 1.3. Consider the Zariski topology on \mathbb{A}^1 . Note that $k[x_1] = k[x]$ is a PID. So the algebraic sets are of the form $Z(f)$ for some $f(x) \in k[x]$. If $f(x) = c(x - a_1) \cdots (x - a_n)$, then $Z(f) = \{(a_1, \dots, (a_n)\}\)$ which is a finite set of points unless $n = 0$. If $n = 0$, then

$$
Z(f) = \begin{cases} \phi & \text{if } c \neq 0\\ \mathbb{A}^n & \text{if } c = 0 \end{cases}
$$

Conversely, if $a_1, \ldots, a_n \in k$ with $n \geq 1$ then $\{(a_1), \ldots, (a_n)\} = Z((x$ $a_1), \ldots, (x - a_n)$. Also, as shown earlier, $\phi = Z(1)$ and $\mathbb{A}^n = Z(0)$. Thus the closed sets of \mathbb{A}^1 are either ϕ , \mathbb{A}^n or a finite se of points. In particular, the topology is not Hausdorff.

Now let $Y \subseteq \mathbb{A}^n$ be a subset (not necessarily algebraic). If $f(\vec{x}) \in k[\vec{x}]$ such that $f(\vec{a}) = 0 \ \forall \ \vec{a} \in Y$ then $fg = 0$ on Y for any $g \in k[\vec{x}]$. Also if $f = 0$ and $g = 0$ on Y then $f + g = 0$ on Y. Thus $\{f \in k[\vec{x} || f = 0 \text{ on } Y\}$ is an ideal of $k[\vec{x}]$. It is denoted by $I(Y)$ and is called the ideal of Y.

Proposition 1.4. (a) If $T_1 \subseteq T_2$ are subsets of $k[\vec{x}]$ then $Z(T_1) \supseteq Z(T_2)$.

(b) If $Y_1 \subseteq Y_2$ are subsets of \mathbb{A}^n then $I(Y_1) \supseteq I(Y_2)$.

Proof. Homework.

Now if **a** is an ideal of $k[\vec{x}]$, then a natural question to ask is : how is $I(Z(\mathfrak{a}))$ related to \mathfrak{a} ? Certainly $\mathfrak{a} \subseteq I(Z(\mathfrak{a}))$. Does the reverse inclusion hold as well?

Example 1.5. Let $\mathfrak{a} = (x^n) \subseteq k[x]$ for some $n > 1$. Then $Z(\mathfrak{a}) = \{(0)\}.$ Now observe that $x \in I(Z(\mathfrak{a})$ but $x \notin \mathfrak{a}$.

Thus $I(Z(\mathfrak{a})) \nsubseteq \Omega$.

Definition 1.6. If $\boldsymbol{\alpha}$ is an ideal in a ring A then the radical of $\boldsymbol{\alpha}$ is defined as √

$$
\sqrt{\mathfrak{a}}=\{a\in A|a^n\in \mathfrak{a}; n\geq 1\}
$$

An ideal $\mathfrak a$ is said to be a radical ideal if $\mathfrak a = \sqrt{\mathfrak a}$.

(HW): Show that for any ideal α , $\sqrt{\alpha}$ is an ideal and is a radical ideal. √

 \Box

Remark 1.7. \forall ideals $\mathfrak{a}, \mathfrak{a} \subseteq$ √ a. **Remark 1.7.** \forall ideals $\mathfrak{a}, \mathfrak{a} \subseteq \sqrt{\mathfrak{a}}$.
If \mathfrak{a} is an ideal in $k[\vec{x}]$, then $\sqrt{\mathfrak{a}} \subseteq I(Z(\mathfrak{a}))$.

Theorem 1.8. (Hilbert's Nullstellensatz) Assume k is algebraically closed. Let $\mathfrak a$ be an ideal of $k[\vec{x}]$ and let $f \in k[\vec{x}]$ such that $f = 0$ on $Z(\mathfrak a)$. Then $f^r \in \mathfrak{a}$ for some r.

Proof. See textbook.

Corollary 1.9. If **a** is an ideal of $k[\vec{x}]$ then $I(Z(\mathfrak{a})) = \sqrt{\mathfrak{a}}$

Remark 1.10. The conclusion of Theorem 1.8 need not hold if k is not algebraically closed.

Example 1.11. Consider $k = \mathbb{R}$, $n = 2$ and $\mathfrak{a} = (x^2 + y^2 + 1) \subseteq k[x, y]$. Then

 $Z(\mathfrak{a}) = \phi$

and

$$
I(Z(\mathfrak{a})) = I(\phi) = k[x, y] \not\supseteq \mathfrak{a}
$$

Example 1.12. Consider $k = \mathbb{R}$, $n = 1$, $\mathfrak{a} = (x^3 - 1) \subseteq k[x]$. Then

$$
Z(\mathfrak{a}) = \{(1)\} \subseteq \mathbb{A}^1_{\mathbb{R}}
$$

and

$$
I(Z(\mathfrak{a})) = (x - 1) \not\supseteq \sqrt{(x^3 - 1)} = \sqrt{\mathfrak{a}}
$$

Proposition 1.13. If Y is any subset of \mathbb{A}^n then $Z(I(Y)) = \overline{Y}$, where \overline{Y} is the closure of Y in the Zariski topology.

Corollary 1.14. There is a one-to-one inclusion reversing correspondence:

{radical ideals of
$$
k[x_1, \ldots, x_n]\}\longleftrightarrow
$$
 {closed subsets of \mathbb{A}^n }

given by

 $a \longmapsto Z(a)$

and

$$
Y \longmapsto I(Y)
$$

We now introduce the concept of irreducible sets in \mathbb{A}^n .

 \Box

Consider $f(x, y) = x^2 - y^2 \in k[x, y]$ and $Z(f) \subseteq \mathbb{A}^2$. We see that

$$
Z(f) = Z(x + y) \cup Z(x - y)
$$

so that $Z(f)$ is the union two proper algebraic (i.e closed) subsets.

Definition 1.15. A non-empty subset Y of the topological space X is said to be irreducible if it cannot be expressed as a union of two proper closed subsets (they need not be disjoint).

Note that the empty set is considered to be *not irreducible*.

Example 1.16. $Z(x^2 - y^2) \subseteq \mathbb{A}^2$ is not irreducible.

Recall that a topological space X is said to be *connected* if it cannot be written as a union of disjoint non-empty open subsets.

Remark 1.17. Consider $Y = Z(x^2 - y^2)$. We claim that Y is connected in the Zariski topology.

Lemma 1.18. Irreducible \implies connected

Proof. Suppose Y is not connected i.e ∃ non-empty open subsets U_1, U_2 such that $U_1 \cup U_2 = Y$ and $U_1 \cap U_2 = \phi$. We can then write

$$
Y = (Y \backslash U_1) \cup (Y \backslash U_2)
$$

 \Box

Irreducibility is not as relevant in the "usual topology" as it is in algebraic geometry.

Corollary 1.19. Every algebraic set in \mathbb{A}^n can be expressed uniquely as a union of irreducible subsets with not one containing any other.

Proof. See textbook.

Definition 1.20. An *affine algebraic variety* is an irreducible closed subset of \mathbb{A}^n with the induced (Zariski) topology.

Proposition 1.21. If Y_1, Y_2 are subsets of \mathbb{A}^n , then

$$
I(Y_1 \cup Y_2) = I(Y_1) \cap I(Y_2)
$$

 \Box

Corollary 1.22. An algebraic set Y in \mathbb{A}^n is irreducible $\Longleftrightarrow I(Y)$ is a prime ideal.

Proof. (\implies) Let Y be irreducible and suppose that $f, g \in I(Y)$. Then $Y \subseteq Z(fg) = Z(f) \cup Z(g)$. Thus $Y = (Y \cap Z(f)) \cup (Y \cap Z(g))$, both being closed subsets of Y . However, Y is irreducible so that we must have either $Y = Y \cap Z(f)$ whence $Y \subseteq Z(f)$, or $Y = Y \cap Z(g)$ whence $Y \subseteq Z(g)$. Thus either $f \in I(Y)$ or $q \in I(Y)$.

 (\Leftarrow) Suppose $\mathfrak{p} = I(Y)$ is prime. Then $Y = Z(\mathfrak{p}) = Z(I(Y))$. Suppose $Z(\mathfrak{p}) = Y_1 \cup Y_2$ with Y_1, Y_2 closed subsets. Then $\mathfrak{p} = I(Z(\mathfrak{p})) = I(Y_1 \cup Y_2) =$ $I(Y_1) \cap I(Y_2)$ whence $\mathfrak{p} = I(Y_1)$ or $\mathfrak{p} = I(Y_2)$. Thus $Z(\mathfrak{p}) = Y_1$ or Y_2 , hence it is irreducible. \Box

Example 1.23. \mathbb{A}^n is irreducible since $I(\mathbb{A}^n) = (0)$ which is prime

Example 1.24. If $f \in k[x_1, \ldots, x_n]$ is irreducible then (f) is a prime ideal and so $Z(f)$ is irreducible. For $n = 2$, $Z(f)$ is called a *curve*. For $n = 3$, $Z(f)$ is called a surface. For $n > 3$, $Z(f)$ is called a hypersurface.

HW[∗] A non-empty open subset of an irreducible space is irreducible and dense.

Non-empty open subsets of an irreducible space carry a lot of information about the topology.

Definition 1.25. A non-empty open subset of an affine variety is called a quasi-affine variety .

Lemma 1.26. If $Y = Y_1 \cup Y_2$ with Y_1, Y_2 connected and $Y_1 \cap Y_2 \neq \emptyset$, then Y is connected.

Proof. Suppose Y is not connected so that \exists open subsets U_1, U_2 with $Y =$ $U_1 \cup U_2$ and $U_1 \cap U_2 = \phi$. Consider a point $P \in (Y_1 \cap Y_2)$. Then either $P \in Y_1$ or $P \in Y_2$. WLOG, suppose that $P \in Y_1$. Now note that

$$
Y_1 = (Y_1 \cap U_1) \cup (Y_1 \cap U_2)
$$

Since Y_1 is connected, one of $Y_1 \cap U_1$ and $Y_1 \cap U_2$ must be empty. But we know that $P \in Y_1 \cap U_1$ and so $Y_1 \cap U_2$ is empty. Thus $Y_1 \subseteq U_1$. Similarly, $Y_2 \subseteq U_1$ and thus $Y \subseteq U_1$ whence $U_2 = \phi$. ($\Rightarrow \Leftarrow$) \Box

Example 1.27. It immediately follows from the above lemma that $Z(x^2-y^2)$ is connected in \mathbb{A}^2 since both $Z(x-y)$ and $Z(x+y)$ are connected (they are both irreducible).