Lecture 27

Vivek Pal

December 23, 2008

1 Proj S

Definition 1.1. If (a) is a homogeneous ideal of S then we define $V((a))$ $= \{ P \in Proj(S) | (a) \supseteq P \}$

Lemma 1.2. (a) If (a) and (b) are homogeneous ideals of S , then $V((a) \cdot (b)) = V((a)) \cup V((b))$ (b) If ${a_i}_{i\in I}$ is a family of homogeneous ideals of S then $V(\sum a_i) = \bigcap V(a_i)$

Proof. Same as for spectra, using the fact that a homogeneous ideal P is prime iff whenever $a, s \in S$ are homogeneous elements such that $ab \in P$ then $a \in P$ or $b \in P$. \Box

Remark 1.3. $Proj(S) = V(0)$ and $\phi = V(S)$

Definition 1.4. The Zariski topology on $Proj(S)$ is the one with closed subsets being $V((a))$ for homogeneous ideals (a) .

Example 1.5. If $S = k[x_1, ..., x_n]$ with k algebraically closed, then the set of closed points of $Proj(S)$ (with the induced topology) is homeomorphic to P_k^n

Example 1.6. n=2 $(x - z, y - 2z)$ is a homogeneous prime ideal and corresponds to [1:2:1] in P_k^2 . Also $k[x, y, z]/(x - y, y - 2z) \cong k[z]$ with points in P_k^2 are lines through the origin in A_k^3 .

Next: Define a sheaf of rings on $Proj(S)$ If $P \in Proj(S)$; let T_P be the set of all homogeneous elements $S \backslash P$ and let $S(P)$ denote the degree zero element in $T_P^ P_P^{-1}$ S and $S_{(P)}$ will be the local ring at P.

Example 1.7. $S = k[x, z]$, the point $P=(0,1) \longleftrightarrow P=(\text{homogeneous poly-}$ nomials that do not vanish at [0:1]) then $x^2 + y^2 \in T_P$ $x^2 + xz = x(x+z) \in P$ and $\frac{xz}{x^2+y^2} \in S(P)$

Definition 1.8. If $v \in Proj(S)$ is open, then

 $O(U) = \{\text{functions}: U \to \coprod S_{(P)} | \forall p \in U, \exists \text{ a nbhd. V of P and homogeneous}\}$ elements $a, f \in S$ of the same degree such that $\forall a \in V, f \notin (a)$ and $S((a)) = \frac{a}{f}$ in $S_{(y)}$.

Example 1.9. This defines a sheaf, $O((a), O_{Proj(S)})$

Proposition 1.10. Let S be a graded ring. (a) $\forall p \in Proj(S), O_p \cong S_{(P)}$ (stalk), a local ring (b) \forall homogeneous $f \in S_t$ let $D_t(f) = \{p \in Proj(S)| f \notin P\} = Proj(S) \setminus V((f)).$

Proof. See book.

 \Box

[e.g. If $S = k[x, y, z]$ and $f = z$, then the closed points of $D_t(z)$ correspond to points [x,y,z] in P_k^2 with $z \neq 0$

i.e. these are the points of the type [x:y:1], a copy of A^2] Then $D_t(f)$ is open in $Proj(S)$ and the $D_t(f)$'s cover $Proj(S)$, and there is an isomorphism of locally ringed spaces $(D_t(f), O|_{D_t(f)}) \cong Spec(S_{(f)})$ where $S_{(f)}$ is the subring of degree zero elements in S_f .

Example 1.11. Again if $S = k[x, y, z]$ and $f = z$ then $\frac{x^2 + yz}{\lambda^k}$ $\frac{y+yz}{z^k} \in S_{(z)}$; think about putting $z = 1$ to get the function $x^2 + y \in A^2$

So $Proj(S)$ is a scheme and is not Affine. This is an example of a scheme "created intrinscally"' i.e. not by gluing. Same as with the sphere. Motivates: If A is a ring, we define projective n-space over A to be the scheme $P_A^n := Proj(A[x_0, \dots, x_n])$

Remark 1.12. If k is algebraically closed field, then P_k^n may denote the corresponding scheme of variety.

For pictures of P_k^n see Mumford or Eisenbud-Harris.

Remark 1.13. The scheme P_k^n is the right place to do intersection theory and there is a Bezout's theorem(See E-H).

Remark 1.14. Varieties first defined A_k^n and P_k^n and we considered closed subsets $Z(a)$

but for Affine Schemes: $Spec(k[x_1, \dots, x_n])$ and $Spec(k[x_1, \dots, x_n])/(a)$ for Projective Schemes: $Proj(k[x_1, \dots, x_n]) \longleftrightarrow P_k^n$ and $Proj(k[x_1, \dots, x_n]/(a)) \longleftrightarrow Z((a))$