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Recall: functor of points.
If K is a field and a ⊂ k[x1, ..., xn] is an ideal then if k ⊂ L, L a field. Given
f1, ..., fn ∈ k[x1, ..., xn] we can ask for the zero in Ln. the solutions to a
over L are in bijection with the k-algebra homomorphisms k[x1, ..., xn]→ L,
xi → ai.

k-algebra homomorphisms are morphisms of schemes.

Spec k[x1, . . . , xn]/a← SpecL

In particular, take L = k̄ and letting X = Z(a) ⊆ An
k̄

we get X =
homsch(k)(k̄,SpecA(X)). So we can recover X from it’s “associated scheme”
SpecA(x). This is a better way of thinking of a variety as a scheme. Also,
SpecA(x) carries more information than X. We can also recover solutions
over any field extension of k. This might explain the terminology “scheme”.
It motivates the following definition:

If X is a scheme over some field k, and L is an extension field, then
define:

X(L) := homSch(k)(L,X)

called the set of L valued points of X.
More generally, if X,Y are schemes on a scheme S(base).
Remark: We should distinguish this (even when L = k̄) from the points

of the scheme.
Remark: If R is a ring then there exists a unique ring homomorphism

Z⇒ R. SpecZ ⇐ SpecR. More generally one can show that any scheme has
a unique map to SpecZ. So SpecZ is a kind of universal base. Hartshorne
2.2.*?

If X,Y are schemes over a scheme S (base) then we define X(y) :=
homsch(s)(Y,X). These are called the set of Y-valued points. of X.
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Example: If E is y2 = x3 − x the elliptic curve defined over Q then
E(Q) = {(x, y) ∈ Q2|(x, y) ∈ E}. Rational solutions.

Vista: This gives a functor associated to X denoted hx : Sch(s)→Sets.
x 7→ homSch s(Y,X). So there is a functor from Sch(s)→Functors from
Sch(s) to sets. x 7→ homSch(s)(., x).

Remark: A functor of the form hx is called a representable functor.
This gives an equivalence of Sch(s) with a full subcategory of the caret-

gory of functors from Sch(s) to sets.
Point: Many geometrical constructions, i.e. tangent space, can be car-

ried out using functors. See “Geometry of Schemes”.
Fibered product:
Section 2.3
Recall : If C is a category and X,Y ∈ Obj(C) then the product X ×Y

in C is an object that satisfies a certain universal property.
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i.e. C is sets, X × Y is the cartesian product. We want to consider
products of algebraic sets/schemes and the same over a fixed base.

Definition 0.1. The fibered product.

If S ∈ Obj(C) the fibered products in C/S := Category of objects over
S.

if x, y is an S-object X×Y with maps φ1 : X×sY → X,φ2 : X×S Y →
Y .
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Remark: If C has a terminal object S then the fibered product over S
is the product.

A (fibered) product is unique up to unique isomorphism.
What should be products of algebraic sets? 1st idea: If X,Y are affine

varieties, X ⊆ An, Y ⊆ Am then X × Y ⊆ Am+n

We need to check that the Zariski topology is respected.
The same does not work for projective space because the number of

coordinates don’t match up: Pn × Pm � Pm+n

What does work: Serge embedding.
Suppose X,Y are affine varieties over a field k and X ×k Y exists, then

There is a correspondence with varieties and finitely generated domains over
k.
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Is there a universal object in the category of finitely generated domains
over k which has this unversal property satisfied by A(X ×k Y ). Answer:
Yes. A(X) ⊗ A(Y ). In general in the category of modules over a fing R
there is a fibered product, the tensor product denoted M ⊗R N

First: Tensor products of modules.
Let M,N be modules over a ring R.
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Definition 0.2. A map φ : M ×N → L where L is an R-module, is said to
be R-billinear if: φ(a+ b, c) = φ(a, c) + φ(b, c)
φ(a, b+ c) = φ(a, b) + φ(a, c)
φ(ra, b) = φ(a, rb)

We want a universal object for such maps, i.e. an object M�RN with
a map ψ : M × N → M�RN which fits into the following commutative
diagram:

M ×N //

φ
##GGGGGGGGG M�RN

∃!θ
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L

So {R-bilinear maps M × N → L } ↔ { R-module homomorphisms
M�RN → L

Idea to construct M�N :
Consider all pairs (m,n) and force the conditions.

Definition 0.3. We will call M�RNM ⊗R N , or the tensor product of M
and N over R. If the ring R is clear from context we may omit R. The
tensor product M ⊗N is the quotient of the free abelian group M ×N by
the subgroup generated by

(a+ b, c) = (a, c) + (b, c)
(a, b+ c) = (a, b) + (a, c)

The image of (m,n) is denoted m ⊗ n. M ⊗ N is an R-module via
r(m⊗ n) = (rm)⊗ n = m⊗ (rn).

Let R be a subring of a ring S. (Then S is an R-module in a natural
way.) S ⊗R R is an S-module via

s

(
k∑
i=1

si ⊗ ri

)
=

k∑
i=1

ssi ⊗ ri

Lemma 0.4. The map S ⊗R R→ S is well defined and is an isomorphism
of S-modules.
s⊗ r → rs

Proof. Consider the map Θ : S × R → S, (s, r) 7→ sr . This is R-billinear.
This gives the map S ⊗R R→ S above.

Consider the map φ : S → S ⊗R R, s 7→ s⊗ 1.
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Then:

(φ ◦Θ)(
k∑
i=1

si ⊗ ri) = φ(
k∑
i=1

siri) =

(
k∑
i=1

siri

)
⊗ 1 =

k∑
i=1

si ⊗ ri

(Θ ◦ φ)(s) = Θ(s⊗ 1) = s. So this completes the lemma.

Corollary of HW: If R is a subring of a ring S then Rn ⊗R S ∼= (R ⊗R
S)n ∼= Sn via (r1, . . . , rn)⊗ s 7→ (r1 ⊗ s, . . . , rn ⊗ s) 7→ (r1s, . . . , rns)

Eg. If d is a field and V is a vector space over k and L is a field
containing k then V ∼= kn, V ⊗k L ∼= Ln. The n dimentional vectorspace
over L. If v1, . . . , vn is a basis for V over k then v1 ⊗ 1, . . . , vn ⊗ 1 is a basis
for V ⊗k L over L. This operation is called changing the base of V from k
to L.

Definition 0.5. If A,B are algebras over R (a ring) then in particular they
are modules over R. Then A ⊗R B is an R-module and can be made into
an R-algebra via (a⊗ b)(a′⊗ b′) = (aa′)⊗ (bb′) and extending this definition
R-linearly.

Claim: This is well defined:

Proof. (sketch): We want a map A ⊗ B × A × B → A ⊗ B. Consider
A × B × A × B → A ⊗ B, a, b, a′, b′) 7→ (aa′) ⊗ (bb′). Check: This is R-
billinear. Therefore we get a map: (A⊗B)⊗ (A⊗B)→ A⊗B. We know
that this comes from:

M ×N //

##GGGGGGGGG M ⊗R N

zzuuuuuuuuuu

L

(A⊗B)× (A⊗B)→ A⊗B which takes (a⊗ b, a′⊗ b′) 7→ aa′⊗ bb′

Fact: A ⊗R B with maps A → A ⊗ B, a 7→ a ⊗ 1 and B → A ⊗ B,
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b 7→ 1⊗ b satisfies the universal property:

C
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Also the fibered product exists for affine schemes. SpecA ⊗ SpecB =
Spec(A⊗R B) eg.

We know that Ank ↔ Spec k[x1, . . . , xn]. What is Ank ×Amk as a scheme.
A
n
k × Amk ↔ Spec[x1, . . . , xn, y1, . . . , ym]↔ A

m+n
k

Warning: The Zariski topology on A
n+m is not the product topol-

ogy. For general schemes we glue the constructions above. Thm 3.3 in
Hartshorne. For any two schemes x, y over a base S the fibered product
X ×S Y exists.
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