Algebraic Geometry Notes #16, 17

Dan Li

November 5, 2008

Recall: If A is a ring, the spectrum of A, (SpecA, \mathcal{O}), is the pair consisting of the topological space SpecA = { prime ideals of A } together with the sheaf of rings \mathcal{O} (i.e. the structure sheaf). What should be the morphisms? If f is a continuous map $f : \text{Spec}B \to \text{Spec}A$, let V be an open subset of SpecA, we have an induced map

$$f^{\sharp}: \mathcal{O}_{SpecA}(V) \to \mathcal{O}_{SpecB}(f^{-1}(V)) = (f_*\mathcal{O}_{SpecB})(V),$$

i.e. $f^{\sharp}: \mathcal{O}_{SpecA} \to f_*\mathcal{O}_{SpecB}$.

1 Schemes

1.1 Schemes

It turns out that we need some restriction on f^{\sharp} . Suppose $\phi : R \to S$ is a homomorphism of rings, this induces

$$f: SpecS \to SpecR; \quad \mathfrak{p} \mapsto \phi^{-1}(\mathfrak{p})$$

and f^{\sharp} is induced by "pullback of regular functions".

Remark: By convention, a homomorphism of rings takes identity to identity. In particular $\phi^{-1}(\mathfrak{p}) \neq R$, because if it were, then $1_R \in \phi^{-1}(\mathfrak{p})$. So $\phi(1_R) = 1_S \in \mathfrak{p}$, a contradiction!

Observation: if $\mathfrak{p} \in \operatorname{Spec} S$, then for every open subset V of $\operatorname{Spec} R$ containing $f(\mathfrak{p})$. We have a map

$$f^{\sharp}: \mathcal{O}_{SpecR}(V) \to \mathcal{O}_{SpecS}(f^{-1}(V))$$

This induces a map on direct limit:

$$\mathcal{O}_{SpecR,f(\mathfrak{p})} = \underbrace{\lim}_{f(\mathfrak{p})\in V} \mathcal{O}_{SpecR}(V) \\ \rightarrow \underbrace{\lim}_{f(\mathfrak{p})\in V} \mathcal{O}_{SpecS}(f^{-1}(V)) \\ \rightarrow \underbrace{\lim}_{\mathfrak{p}\in U} \mathcal{O}_{SpecS}(U)) \\ = \mathcal{O}_{SpecS,\mathfrak{p}}$$

Suppose *P* corresponds to the prime ideal $\mathfrak{p} \in \operatorname{Spec} S$, then $f(\mathfrak{p}) = \phi^{-1}(P)$. Also $\mathcal{O}_{SpecR,f(\mathfrak{p})} = R_{\phi^{-1}(P)}$ and $\mathcal{O}_{SpecS,\mathfrak{p}} = S_P$. The map induced by f^{\sharp} is

$$R_{\phi^{-1}(P)} \to S_P; \quad (r,s) \mapsto (\phi(r),\phi(s))$$

Note that $f^{\sharp}(\phi^{-1}(P)) \subseteq P$.

Remark: For affine varieties, the analogous statement is: if $f: X \to Y$ is a morphism of affine varieties and $p \in X$, then we have a pullback map $\mathcal{O}_{Y,f(p)} \to \mathcal{O}_{X,p}$. If a regular function g vanishes at f(p) (i.e. g is in $\mathfrak{m}_{f(p)}$), then its pullback $g \circ f$ vanishes at p (i.e. $g \circ f$ is in \mathfrak{m}_p). We need to put this restriction on f^{\sharp}

Definition 1.1. If A, B are local rings with maximal ideals \mathfrak{m}_A and \mathfrak{m}_B , respectively, then a homomorphism $\psi : A \to B$ of rings is called a local homomorphism if $\psi(\mathfrak{m}_A) \subseteq \mathfrak{m}_B$.

Remark: $\psi(\mathfrak{m}_A) \subseteq \mathfrak{m}_B \Leftrightarrow \mathfrak{m}_A \subseteq \psi^{-1}(\mathfrak{m}_B) \subsetneqq A$ $\Leftrightarrow \mathfrak{m}_A = \psi^{-1}(\mathfrak{m}_B)$

Definition 1.2. If A, B are rings, then a morphism from SpecB to SpecA is a pair (f, f^{\sharp}) consisting of a continuous map $f : \text{Spec}B \to \text{Spec}A$ and a morphism of sheaves $f^{\sharp} : \mathcal{O}_{SpecA} \to f_*\mathcal{O}_{SpecB}$ such that for each prime ideal $\mathfrak{p} \in \text{Spec}B, f^{\sharp}(f(\mathfrak{p})) \subseteq \mathfrak{p}.$

Proposition 1.3. (see (a) in Harsthorne Proposition 2.3)

(b) If $\phi : A \to B$ is a homomorphism of rings, then pullback by ϕ induces a morphism (f, f^{\sharp}) from SpecB to SpecA.

(c) If A, B are local rings, then any morphism (f, f^{\sharp}) from SpecB to SpecA arises as a pullback by a homomorphism ϕ from A to B.

Upshot, we have an equivalence of categories:

 $\{rings + ring \ homs\} \leftrightarrow \{spectra \ of \ rings + morphisms \ of \ spectra\}$

Recall that we already have an equivalence of categories:

 $\{f. g. domains + ring homs\} \leftrightarrow \{affine varieties + morphisms of varieties\}$ which allows us to "transport commutative algebra into geometry" with "ease". *Proof.* (b) we proved everything but continuity of f. For $\phi : A \to B$,

 $f: SpecB \to SpecA; P \mapsto \phi^{-1}(P)$

A closed set in SpecA is $V(\mathfrak{a})$ for some ideal \mathfrak{a} of A.

$$f^{-1}(V(\mathfrak{a})) = f^{-1}(\{ prime \ ideals \ \mathfrak{q} \ of \ A \ that \ contain \ \mathfrak{a} \}) \\ = \{ prime \ ideals \ \mathfrak{p} \ of \ B \ such \ that \ \phi^{-1}(\mathfrak{p}) \ \supseteq \ \mathfrak{a} \} \\ = \{ prime \ ideals \ of \ B \ that \ contain \ \phi(\mathfrak{a}) \} \\ = V(\phi(\mathfrak{a})), \ which \ is \ closed \ in \ SpecB.$$

(c) Now for each open subset $U \subseteq \text{Spec}B$, we have

$$f^{\sharp}(U): \mathcal{O}_{SpecA}(U) \to (f_*\mathcal{O}_{SpecB})(U) = \mathcal{O}_{SpecB}(f^{-1}(U))$$

Take U = SpecB, we get a homomorphism

$$\phi: \mathcal{O}_{SpecA}(SpecA) \to \mathcal{O}_{SpecB}(SpecB).$$

Let $\mathfrak{p} \in \operatorname{Spec} B$, then $f(\mathfrak{p}) \in \operatorname{Spec} A$.

Consider the commutative diagrams

$$\begin{array}{ccc} A & \stackrel{\phi}{\longrightarrow} B & & f(\mathfrak{p}) = \phi^{-1}(\mathfrak{p}) & \stackrel{\longrightarrow}{\longrightarrow} \mathfrak{p} \\ & & & & \downarrow & & \downarrow \\ A_{f(\mathfrak{p})} & \stackrel{\longrightarrow}{_{f^{\sharp}}} B_{\mathfrak{p}} & & & f(\mathfrak{p})A_{f(\mathfrak{p})} & \stackrel{\longrightarrow}{\longrightarrow} \mathfrak{p}B_{\mathfrak{p}} \end{array}$$

Recall that if A is a ring and S is a multiplicatively closed subset, then the map $A \to S^{-1}A$ given by $a \mapsto a/1$ induces a map on ideals given by $I \mapsto S^{-1}I$. This gives a bijection

{ideals I of A such that
$$I \cap S = \emptyset$$
} \leftrightarrow {ideals of $S^{-1}A$ }

In particular, if \mathfrak{p} is a prime ideal and $S = A \setminus \mathfrak{p}$, then

{*ideals I of A contained in* \mathfrak{p} } \leftrightarrow {*ideals of A*_{\mathfrak{p}}}

So f is the pullback by ϕ .

Also f^{\sharp} is induced on stalks by ϕ and hence at the level of sheaves as well.

If A is a domain and S is a multiplicatively closed subset, then there exists a bijection

{*ideals I of A such that I* \cap *S* = \emptyset } \leftrightarrow {*ideals of S*⁻¹*A*}

Lemma 1.4. If A is a ring, \mathfrak{p} is a prime ideal and $\phi : A \to A_{\mathfrak{p}}$ is the map $a \mapsto a/1$, then $\phi^{-1}(\mathfrak{p}A_{\mathfrak{p}}) = \mathfrak{p}$.

Proof. Obviously, $\phi^{-1}(\mathfrak{p}A_{\mathfrak{p}}) \supseteq \mathfrak{p}$

Conversely, if $a \in A$ such that $\phi(a) = a/1 \in \mathfrak{p}A_{\mathfrak{p}}$, then a/1 = p/s for some $p \in \mathfrak{p}$ and $s \notin \mathfrak{p}$.

$$\mathfrak{p}A_{\mathfrak{p}} = \{\sum_{i} \frac{p_{i}}{1} \frac{a_{i}}{s_{i}} | p_{i} \in \mathfrak{p}, a_{i} \in \mathfrak{p}, s_{i} \notin \mathfrak{p}\}$$

so for some $t \notin \mathfrak{p}, t(as - p) = 0$ i.e. $tas = p \in \mathfrak{p}$. Since \mathfrak{p} is a prime ideal, $a \in \mathfrak{p}$

Recall: If A is a ring, $\text{Spec}A = \text{prime ideals of } A + \text{Zariski topology} + \text{structure sheaf. Morphisms: if } f \text{ is a continuous map } f : \text{Spec}B \to \text{Spec}A,$ let V be an open subset of SpecA, and an induced map

$$f^{\sharp}: \mathcal{O}_{SpecA}(V) \to \mathcal{O}_{SpecB}(f^{-1}(V)) = (f_*\mathcal{O}_{SpecB})(V),$$

i.e. $f^{\sharp}: \mathcal{O}_{SpecA} \to f_*\mathcal{O}_{SpecB}$. f^{\sharp} induces a map from $\mathcal{O}_{SpecA,f(\mathfrak{p})}$ to $\mathcal{O}_{SpecB,\mathfrak{p}}$. If we have the extra condition: $f^{-1}(\text{maximal ideal of } \mathcal{O}_{SpecA,f(\mathfrak{p})}) \subseteq \text{maximal ideal of } \mathcal{O}_{SpecB,\mathfrak{p}}$, the morphism is called local homomorphism.

Claim(Danilov): The above condition holds if and only if for each $\mathfrak{p} \in X$ and open set $V \subseteq Y$ with $f(\mathfrak{p}) \in V$ and $S \in \mathcal{O}_{SpecA}$, if $S(f(\mathfrak{p})) = 0$, then $(f^{\sharp}(S))(\mathfrak{p}) = 0$

Lemma 1.5. If X = SpecA for a ring $A, P \in X$ and $U \subseteq X$ is open such that $P \in U, S \in \mathcal{O}_X$, then $S \notin \{ \text{ maximal ideal of } \mathcal{O}_P \}$ if and only if $S(P) \neq 0$.

Proof. There exist $g, h \in A$ with h nowhere zero on some open set V such that $P \in V \subseteq U$ such that S = g/h on V.

(⇒) If $S(P) \neq 0$, then $g(P) \neq 0$ and so S is invertible in $V \bigcap D(g) = X - V(g) \ni P$ so S is invertible in $\mathcal{O}_P \cong A_p$, where $\mathfrak{p} \subseteq A$ is the prime ideal corresponding to P. So $S \notin \{$ maximal ideal of $\mathcal{O}_P \}$

(⇐) Suppose $S \notin \{ \text{maximal ideal } \}$, then it is invertible on some open $V \ni P$, which contradicts S(P) = 0.

 $\{rings+ring \ homs\} \leftrightarrow \{spectra \ of \ rings+morphisms \ satisfy extracondition\}$

Definition 1.6. A ringed space is a pair (X, \mathcal{O}_X) , where X is a topological space and \mathcal{O}_X is a sheaf of rings on X. A morphism of ringed spaces from (X, \mathcal{O}_X) to (Y, \mathcal{O}_Y) is a pair (f, f^{\sharp}) , where $f : X \to Y$ is a continuous map and $f^{\sharp} : \mathcal{O}_Y \to f_*\mathcal{O}_X$ is a map of sheaves on Y.

Remark: A manifold is a topological space which "locally looks like discs in \mathbb{R}^n , for some n", i.e. for each $P \in X$, there exists a neighborhood U of P that is homeomorphic to a disc in \mathbb{R}^n .

Definition 1.7. The ringed space (X, \mathcal{O}_X) is said to be a locally ringed space if for each $P \in X$, the stalk $\mathcal{O}_{X,P}$ is a local ring.

Example 1.8. If A is a ring, then $(SpecA, \mathcal{O}_{SpecA})$ is a locally ringed space. (Since if $\mathfrak{p} \in \operatorname{Spec}A$, then $\mathcal{O}_{SpecA,\mathfrak{p}} = A_{\mathfrak{p}}$)

Definition 1.9. A morphism of locally ringed spaces is a morphism (f, f^{\sharp}) of ringed spaces such that for each $P \in X$, the map of local rings $\mathcal{O}_{Y,f(P)} \to \mathcal{O}_{X,P}$ induced by f^{\sharp} is a local homomorphism of local rings. An isomorphism is a morphism with a two-sided inverse.

Example 1.10. Morphisms of spectra of rings are morphisms of locally ringed spaces.

Definition 1.11. A scheme is a locally ringed space (X, \mathcal{O}_X) in which every point has an open neighborhood U such that $(U, \mathcal{O}_X|_U)$, (where $\mathcal{O}_X|_U$ is the sheaf on U given by $\mathcal{O}_X|_U(V) = \mathcal{O}_X(V)$, for open $V \subseteq U$) is isomorphic as a locally ringed space to the spectrum of some ring. Sometimes we refer to (X, \mathcal{O}_X) by just $X = (SpX, \mathcal{O}_X)$. Here, X is called the underlying topological space of (X, \mathcal{O}_X) and sometimes denoted SpX, read "space of X" and \mathcal{O}_X is called the structure sheaf of (X, \mathcal{O}_X) . A morphism of schemes is a morphism as a locally ringed space.

Remark: Analog of an abstract algebraic set is a locally ringed space (X, \mathcal{O}_X) such that every point $P \in X$ has an open neighborhood U such that $(U, \mathcal{O}_X|_U)$ is isomorphic to (Y, \mathcal{O}_Y) for an affine variety Y.

Example 1.12. \mathbb{P}^n is an abstract algebraic set, we will have an anolog of \mathbb{P}^n for schemes.