Algebraic Geometry Notes $\sharp 16, 17$

Dan Li

November 5, 2008

Recall: If A is a ring, the spectrum of A, $(Spec A, O)$, is the pair consisting of the topological space $Spec A = \{$ prime ideals of A $\}$ together with the sheaf of rings $\mathcal O$ (i.e. the structure sheaf). What should be the morphisms? If f is a continuous map f : SpecB \rightarrow SpecA, let V be an open subset of SpecA, we have an induced map

$$
f^{\sharp}: \mathcal{O}_{SpecA}(V) \to \mathcal{O}_{SpecB}(f^{-1}(V)) = (f_{*}\mathcal{O}_{SpecB})(V),
$$

i.e. $f^{\sharp}: \mathcal{O}_{Spec A} \rightarrow f_* \mathcal{O}_{Spec B}$.

1 Schemes

1.1 Schemes

It turns out that we need some restriction on f^{\sharp} . Suppose $\phi: R \to S$ is a homomorphism of rings, this induces

$$
f: \text{Spec} S \to \text{Spec} R; \quad \mathfrak{p} \mapsto \phi^{-1}(\mathfrak{p})
$$

and f^{\sharp} is induced by "pullback of regular functions".

Remark: By convention, a homomorphism of rings takes identity to identity. In particular $\phi^{-1}(\mathfrak{p}) \neq R$, because if it were, then $1_R \in \phi^{-1}(\mathfrak{p})$. So $\phi(1_R) = 1_S \in \mathfrak{p}$, a contradiction!

Observation: if $\mathfrak{p} \in \text{Spec} S$, then for every open subset V of SpecR containing $f(\mathfrak{p})$. We have a map

$$
f^{\sharp}: \mathcal{O}_{SpecR}(V) \to \mathcal{O}_{SpecS}(f^{-1}(V))
$$

This induces a map on direct limit:

$$
\mathcal{O}_{SpecR,f(\mathfrak{p})} = \underbrace{\lim_{f(\mathfrak{p}) \in V} \mathcal{O}_{SpecR}(V)}_{\supset \lim_{f(\mathfrak{p}) \in V} \mathcal{O}_{SpecS}(f^{-1}(V))} \\ \to \underbrace{\lim_{f(\mathfrak{p}) \in U} \mathcal{O}_{SpecS}(U)}_{\sup_{c \in S, \mathfrak{p}}})
$$

Suppose P corresponds to the prime ideal $\mathfrak{p} \in \text{Spec} S$, then $f(\mathfrak{p}) = \phi^{-1}(P)$. Also $\mathcal{O}_{SpecR,f(\mathfrak{p})} = R_{\phi^{-1}(P)}$ and $\mathcal{O}_{SpecS,\mathfrak{p}} = Sp$. The map induced by f^{\sharp} is

$$
R_{\phi^{-1}(P)} \to Sp; \quad (r, s) \mapsto (\phi(r), \phi(s))
$$

Note that $f^{\sharp}(\phi^{-1}(P)) \subseteq P$.

Remark: For affine varieties, the analogous statement is: if $f : X \to Y$ is a morphism of affine varieties and $p \in X$, then we have a pullback map $\mathcal{O}_{Y,f(p)} \to \mathcal{O}_{X,p}.$ If a regular function g vanishes at $f(p)$ (i.e. g is in $\mathfrak{m}_{f(p)}$), then its pullback $g \circ f$ vanishes at p (i.e. $g \circ f$ is in \mathfrak{m}_p). We need to put this restriction on f^{\sharp}

Definition 1.1. If A, B are local rings with maximal ideals m_A and m_B , respectively, then a homomorphism $\psi : A \to B$ of rings is called a local homomorphism if $\psi(\mathfrak{m}_A) \subseteq \mathfrak{m}_B$.

Remark: $\psi(\mathfrak{m}_A) \subseteq \mathfrak{m}_B \Leftrightarrow \mathfrak{m}_A \subseteq \psi^{-1}(\mathfrak{m}_B) \subsetneqq A$ $\Leftrightarrow \mathfrak{m}_A = \psi^{-1}(\mathfrak{m}_B)$

Definition 1.2. If A , B are rings, then a morphism from $\text{Spec}B$ to $\text{Spec}A$ is a pair (f, f^{\sharp}) consisting of a continuous map $f : \text{Spec} B \to \text{Spec} A$ and a morphism of sheaves $f^{\sharp}: \mathcal{O}_{Spec A} \to f_* \mathcal{O}_{Spec B}$ such that for each prime ideal $\mathfrak{p} \in \mathrm{Spec}B, f^{\sharp}(f(\mathfrak{p})) \subseteq \mathfrak{p}.$

Proposition 1.3. (see (a) in Harsthorne Proposition 2.3)

(b) If $\phi: A \to B$ is a homomorphism of rings, then pullback by ϕ induces a morphism (f, f^{\sharp}) from SpecB to SpecA.

(c) If A, B are local rings, then any morphism (f, f^{\sharp}) from SpecB to SpecA arises as a pullback by a homomorphism ϕ from A to B.

Upshot, we have an equivalence of categories:

 ${rings + ring \, homs} \leftrightarrow {spectra \, of \, rings + morphisms \, of \, spectra}$

Recall that we already have an equivalence of categories:

 ${f.g. domains + ring homs} \leftrightarrow {affine \ varieties + morphisms of \ varieties}$ which allows us to "transport commutative algebra into geometry" with "ease".

Proof. (b) we proved everything but continuity of f. For $\phi : A \to B$,

 $f : SpecB \rightarrow SpecA; P \mapsto \phi^{-1}(P)$

A closed set in SpecA is $V(\mathfrak{a})$ for some ideal \mathfrak{a} of A.

$$
f^{-1}(V(\mathfrak{a})) = f^{-1}(\{prime \otimes \mathfrak{a} \mid \mathfrak{a} \text{ is a } \mathfrak{a} \text{ is a } \mathfrak{a} \text{ that contain } \mathfrak{a} \})
$$

= {prime ideals \mathfrak{p} of B such that $\phi^{-1}(\mathfrak{p}) \supseteq \mathfrak{a} \}$
= {prime ideals of B that contain $\phi(\mathfrak{a})$ }
= $V(\phi(\mathfrak{a}))$, which is closed in SpecB.

(c) Now for each open subset $U \subseteq \text{Spec}B$, we have

$$
f^{\sharp}(U) : \mathcal{O}_{SpecA}(U) \to (f_*\mathcal{O}_{SpecB})(U) = \mathcal{O}_{SpecB}(f^{-1}(U))
$$

Take $U = \text{Spec} B$, we get a homomorphism

$$
\phi: \mathcal{O}_{SpecA}(Spec A) \to \mathcal{O}_{SpecB}(Spec B).
$$

Let $\mathfrak{p} \in \text{Spec} B$, then $f(\mathfrak{p}) \in \text{Spec} A$.

Consider the commutative diagrams

$$
A \xrightarrow{\phi} B
$$

\n
$$
\downarrow^{f(\mathfrak{p})} \xrightarrow{\phi^{-1}(\mathfrak{p})} \mathfrak{p}
$$

\n
$$
A_{f(\mathfrak{p})} \xrightarrow{f^{\sharp}} B_{\mathfrak{p}}
$$

\n
$$
f(\mathfrak{p}) A_{f(\mathfrak{p})} \xrightarrow{\phi} \mathfrak{p} B_{\mathfrak{p}}
$$

Recall that if A is a ring and S is a multiplicatively closed subset, then the map $A \to S^{-1}A$ given by $a \mapsto a/1$ induces a map on ideals given by $I \mapsto S^{-1}I$. This gives a bijection

{ideals I of A such that $I \cap S = \emptyset$ } \leftrightarrow {ideals of $S^{-1}A$ }

In particular, if $\mathfrak p$ is a prime ideal and $S = A \backslash \mathfrak p$, then

{*ideals I of A contained in* \mathfrak{p} \leftrightarrow {*ideals of A*_p}

So f is the pullback by ϕ .

Also f^{\sharp} is induced on stalks by ϕ and hence at the level of sheaves as well. \Box

If A is a domain and S is a multiplicatively closed subset, then there exists a bijection

{ideals I of A such that $I \cap S = \emptyset$ } \leftrightarrow {ideals of $S^{-1}A$ }

Lemma 1.4. If A is a ring, \mathfrak{p} is a prime ideal and $\phi : A \to A_{\mathfrak{p}}$ is the map $a \mapsto a/1$, then $\phi^{-1}(\mathfrak{p} A_{\mathfrak{p}}) = \mathfrak{p}$.

Proof. Obviously, $\phi^{-1}(\mathfrak{p}_A) \supseteq \mathfrak{p}$

Conversely, if $a \in A$ such that $\phi(a) = a/1 \in \mathfrak{p}A_{\mathfrak{p}}$, then $a/1 = p/s$ for some $p \in \mathfrak{p}$ and $s \notin \mathfrak{p}$.

$$
\mathfrak{p} A_{\mathfrak{p}} = \{ \sum_{i} \frac{p_i}{1} \frac{a_i}{s_i} | p_i \in \mathfrak{p}, a_i \in \mathfrak{p}, s_i \notin \mathfrak{p} \}
$$

so for some $t \notin \mathfrak{p}$, $t(as - p) = 0$ i.e. $tas = p \in \mathfrak{p}$. Since $\mathfrak p$ is a prime ideal, $a \in \mathfrak p$

Recall: If A is a ring, $Spec A = prime$ ideals of $A + Zariski$ topology + structure sheaf. Morphisms: if f is a continuous map $f : \text{Spec} B \to \text{Spec} A$, let V be an open subset of Spec A , and an induced map

$$
f^{\sharp}: \mathcal{O}_{SpecA}(V) \to \mathcal{O}_{SpecB}(f^{-1}(V)) = (f_{*}\mathcal{O}_{SpecB})(V),
$$

i.e. $f^{\sharp}: \mathcal{O}_{Spec A} \to f_* \mathcal{O}_{Spec B}$. f^{\sharp} induces a map from $\mathcal{O}_{Spec A, f(\mathfrak{p})}$ to $\mathcal{O}_{Spec B, \mathfrak{p}}$. If we have the extra condition: f^{-1} (maximal ideal of $\mathcal{O}_{SpecA,f(p)}) \subseteq$ maximal ideal of $\mathcal{O}_{SpecB, \mathfrak{p}}$, the morphism is called local homomorphism.

Claim(Danilov): The above condition holds if and only if for each $\mathfrak{p} \in X$ and open set $V \subseteq Y$ with $f(\mathfrak{p}) \in V$ and $S \in \mathcal{O}_{SpecA}$, if $S(f(\mathfrak{p})) = 0$, then $(f^{\sharp}(S))(\mathfrak{p})=0$

Lemma 1.5. If $X = \text{Spec}A$ for a ring $A, P \in X$ and $U \subseteq X$ is open such that $P \in U$, $S \in \mathcal{O}_X$, then $S \notin \{$ maximal ideal of \mathcal{O}_P if and only if $S(P) \neq 0.$

Proof. There exist $g, h \in A$ with h nowhere zero on some open set V such that $P \in V \subseteq U$ such that $S = g/h$ on V. \overline{a}

 (\Rightarrow) If $S(P) \neq 0$, then $g(P) \neq 0$ and so S is invertible in V $D(g) =$ $X - V(g) \ni P$ so S is invertible in $\mathcal{O}_P \cong A_p$, where $\mathfrak{p} \subseteq A$ is the prime ideal corresponding to P. So $S \notin \{$ maximal ideal of $\mathcal{O}_P\}$

(←) Suppose $S \notin \{$ maximal ideal $\}$, then it is invertible on some open $V \ni P$, which contradicts $S(P) = 0$. \Box

 ${frings + ring \, homs} \leftrightarrow {spectra \, of \, rings + morphisms \, satisfying \, structure of \, functions}$

 \Box

Definition 1.6. A ringed space is a pair (X, \mathcal{O}_X) , where X is a topological space and \mathcal{O}_X is a sheaf of rings on X. A morphism of ringed spaces from (X, \mathcal{O}_X) to (Y, \mathcal{O}_Y) is a pair (f, f^{\sharp}) , where $f : X \to Y$ is a continuous map and $f^{\sharp}: \mathcal{O}_Y \to f_* \mathcal{O}_X$ is a map of sheaves on Y.

Remark: A manifold is a topological space which "locally looks like discs in \mathbb{R}^n , for some n", i.e. for each $P \in X$, there exists a neighborhood U of P that is homeomorphic to a disc in \mathbb{R}^n .

Definition 1.7. The ringed space (X, \mathcal{O}_X) is said to be a locally ringed space if for each $P \in X$, the stalk $\mathcal{O}_{X,P}$ is a local ring.

Example 1.8. If A is a ring, then $(SpecA, O_{SpecA})$ is a locally ringed space. (Since if $\mathfrak{p} \in \text{Spec} A$, then $\mathcal{O}_{Spec A, \mathfrak{p}} = A_{\mathfrak{p}}$)

Definition 1.9. A morphism of locally ringed spaces is a morphism (f, f^{\sharp}) of ringed spaces such that for each $P \in X$, the map of local rings $\mathcal{O}_{Y, f(P)} \to$ $\mathcal{O}_{X,P}$ induced by f^\sharp is a local homomorphism of local rings. An isomorphism is a morphism with a two-sided inverse.

Example 1.10. Morphisms of spectra of rings are morphisms of locally ringed spaces.

Definition 1.11. A scheme is a locally ringed space (X, \mathcal{O}_X) in which every point has an open neighborhood U such that $(U, \mathcal{O}_X|_U)$, where $\mathcal{O}_X|_U$ is the sheaf on U given by $\mathcal{O}_X|_U(V) = \mathcal{O}_X(V)$, for open $V \subseteq U$) is isomorphic as a locally ringed space to the spectrum of some ring. Sometimes we refer to (X, \mathcal{O}_X) by just $X = (SpX, \mathcal{O}_X)$. Here, X is called the underlying topological space of (X, \mathcal{O}_X) and sometimes denoted SpX, read "space of X" and \mathcal{O}_X is called the structure sheaf of (X, \mathcal{O}_X) . A morphism of schemes is a morphism as a locally ringed space.

Remark: Analog of an abstract algebraic set is a locally ringed space (X, \mathcal{O}_X) such that every point $P \in X$ has an open neighborhood U such that $(U, \mathcal{O}_X|_U)$ is isomorphic to (Y, \mathcal{O}_Y) for an affine variety Y.

Example 1.12. \mathbb{P}^n is an abstract algebraic set, we will have an anolog of \mathbb{P}^n for schemes.