Algebraic Geometry Lectures 11 and 12 October 6th and October 8th 2008 Scribe: J. Kyle Armstrong

Recall: If Y is a variety we a sheaf of regular functions $\mathcal{O}(U)$. If $p \in Y$ we had a local ring $\mathcal{O}_p \ni (U \ni p, f)$ if Y is affine we have that $\mathcal{O}(Y) \supseteq A(Y) = k[x_1, x_2, \ldots, x_n]/I(Y)$ and $A(Y)_{\mathfrak{m}_p} \cong \mathcal{O}_p$.

1.1 Morphisms

1.1.1 Varieties

Suppose Y is a variety. Consider functions F which are regular on some open subset (depending on f). These are pairs (U, f) such that $U \subseteq Y$ is open and nonempty and f is regular on U. We say that $(U, f) \sim (V, f)$ if f = g on $U \cap V$.

Definition 1.1.1. Denote the set of such equivalence classes by K(Y). Since the intersection of any two nonempty open subsets in Y is an open nonempty subset we can make K(Y) into a ring.

Example 1.1.2. $(U, f) + (V, g) = (U \cap V, f + g)$ and $(U, f) \cdot (V, g) = (U \cap V, f \cdot g)$ But now we can also invert. If $f \neq 0$ is regular on U then $\frac{1}{f}$ is regular on $V = U \cap (Y \setminus \{f \neq 0\}) \neq \emptyset$ and so $(U, f)^{-1} = (V, \frac{1}{f})$.

Definition 1.1.3. K(Y) is a field, called the function field of Y.

Remark 1.1.4. If Y is a variety and $p \in Y$ then there are natural inclusions.

$$\begin{array}{ccc} \mathcal{O}(Y) \to & \mathcal{O}_p & \to K_Y \\ f \mapsto & (Y, f) \\ & (U, f) & \mapsto (U, f) \end{array}$$

These 3 objects depend only on the isomorphism class of Y, thus they are invariants of Y

Theorem 1.1.5. Let $Y \subset \mathbb{A}^n$ be an affine variety then:

1. $\mathcal{O}(Y) \cong A(Y)$

2. We have a one to one correspondence

$$\{ \text{ points of } Y \} \iff \{ \text{ maximal ideals of } A(Y) \}$$

$$p \implies \mathfrak{m}_p = \{ f \in \mathbb{A}(Y) \middle| f(p) = 0 \}$$

3. $\forall p \ \mathcal{O}_p \cong A(Y)_{\mathfrak{m}_p}$

4. K(Y) is the quotient field of A(Y).

Proof. (3) is done by previous result.

(2) A point in \mathbb{A}^n is a minimal irreducible algebraic set. So points in $\mathbb{A}^n \leftrightarrow$ maximal ideals of $k[x_1, x_2, \ldots, x_n]$ (Under $X \mapsto I(X)$). Irreducible sets go to I(X). If $Y \subseteq \mathbb{A}^n$ is an algebraic set then points in $Y \leftrightarrow$ maximal ideals of $k[x_1, x_2, \ldots, x_n]$ that contain T(Y). (maximal ideals of A(Y))

(3) Any element f in the quotient field of A(Y) is regular on some nonempty open $U \subseteq Y$ map this to (U, f) in K(Y). Conversely, any element of K(Y) is regular at some point $p \in Y$ so it is in \mathcal{O}_p , i.e. in $A(Y)_{\mathfrak{m}_p}$ which is contained in the quotient field of A(Y).

$$\left(\begin{array}{cc} \frac{f}{g} \in A(Y) & \text{with} \quad f \in A(Y), \quad g \in \mathfrak{m}_p \end{array}\right)$$

(1) Notice $A(Y) \subseteq \mathcal{O}(Y)$ (showed previously)

$$\mathcal{O}(Y) = \bigcap_{p \in Y} \mathcal{O}_p =_{\text{part c}} \bigcap_{p \in Y} A(Y)_{\mathfrak{m}_p} = A(Y)$$

By the exercise and below and part (2) above the proof will be complete. \blacksquare

Exercise If B is a domain then B is the intersection (contained in its quotient field) of the localizations of B at all maximal ideals of B.

1.1.2 **Projective Varieties**

Proposition 1.1.6. $\forall i = 0, 1, ..., n \text{ let } u_i = \{x_i \neq 0\} \subseteq \mathbb{R}^n$. The map $\varphi_i : u_i \to \mathbb{A}^n \text{ via } [x_0 : x_1 : \cdots : x_n] \mapsto \left(\frac{x_0}{x_i}, \frac{x_1}{x_i}, \ldots, \frac{x_n}{x_i}\right)$ is an isomorphism of varieties.

Proof. We checked that this is a homeomorphism. The regular functions correspond by homogenization and de-homogenization. \blacksquare

Remark 1.1.7. \mathcal{O}_p

Theorem 1.1.8. Let Y be a projective variety in \mathbb{P}^n then: (a) $\mathcal{O}(Y) = k$ (c) K(Y) = set of elements in the quotient field of $k[x_1, \ldots, x_n]/I(Y)$ that are ratios of homogeneous polynomials of some degree.

Proof. (c) follows from 1.1.6 (a) see [Hartshore] \blacksquare

Remark 1.1.9. (a) in 1.1.8 is the analog of the only holomorphic functions on \mathbb{C} (bounded) on a compact Riemann surface are constants.

Remark 1.1.10. we have a map:

Affine varieties \rightarrow Rings $Y \subseteq \mathbb{A}^n \mapsto A(Y) = k[x_1, \dots, x_n]/I(Y)$

 $k[x_1, \ldots, x_n]$ is finitely generated over k. image \subseteq finitely generated domain over k. Conversely, suppose B is a finitely generated domain over k. Suppose there are n generators then $\exists \varphi : k[x_1, \ldots, x_n] \rightarrow B$ then ker $\varphi = \mathfrak{a}$ is a prime ideal. Take $Y = Z(\mathfrak{a}) \subseteq \mathbb{A}^n$ then $I(Y) = I(Z(\mathfrak{a})) = \mathfrak{a}$ thus, $A(Y) = k[x_1, \ldots, x_n]/I(Y) = k[x_1, \ldots, x_n]/\mathfrak{a} = B$

Now we have a 1-1 correspondence:

Affine varieties \leftrightarrow finitely generated domains over k

Proposition 1.1.11. Let X, Y be Affine varieties, then \exists 1-1 correspondence

 $\{ morphisms \ X \to Y \} \quad \leftrightarrow \quad \{ homomorphisms \ of \ k \ algebras \ A(Y) \to A(X) \}$ $\varphi \quad \mapsto \quad (f \to f \varphi)$

Proof. See [Hartshore] \blacksquare

Definition 1.1.12. If $\varphi : X \to Y$ is a morphism of affine varieties then define $\varphi^* : A(Y) \to A(X)$ as $\varphi^*(f) = f\varphi$ called pullbacks of φ

Example 1.1.13. Consider $\varphi : \mathbb{A}^1 \to Y = \{y = x^2\} \subseteq \mathbb{A}^2$ via $x \mapsto (x, x^2)$ then A(X) = k[x] and $A(Y) = k[x, y]/(y - x^2) \ni \overline{X}, \overline{Y}$

Where $\overline{X} = x$ -coordinate on $Y \mapsto X$ on X and $\overline{Y} = y$ -coordinate on $Y \mapsto x^2$ on X

What is φ^* ? $\varphi^*(\overline{x}^2 + 2\overline{y}) = x^2 + 2x^2 = 3x^2$ How do we recover φ ? φ : $\mathbb{A}^1 \to \mathbb{A}^2$ via $x \mapsto x$ coordinate = x, y coordinate = x^2 i.e. (x, x^2)

Corollary 1.1.14. We have an "arrow reversing" equivalence of categories:

 $\{affine \ varieties \ over \ k\} \ \leftrightarrow \ \{ \ finitely \ generated \ domains \ over \ k \}$ $X \mapsto A(X) \qquad \varphi \mapsto \varphi^*$

Chapter 2

Schemes

2.1 Schemes

2.1.1 Motivation

Motivation for going from varieties to schemes (for a different motivation see [Danilov]).

In 1.1.14 we restricted to irreducible affine algebraic sets. Non irreducible sets are also important however.

Example 2.1.1. The intersection of two irreducible sets need not be irreducible. For $k = \mathbb{C}$ take $Y_1 := y = x^2$ and $Y_2 := y = 4$ then $Y_1 \cap Y_2 = \{(-2,4), (2,4)\} \subseteq \mathbb{A}^2$ which is closed and is NOT reducible.

For a general affine algebraic set $X \subseteq \mathbb{A}^n$ we still have $A(X) = k[x_1, x_2, \dots, x_n]/I(X)$

Definition 2.1.2. An element r in a ring R is **nilpotent** if $r^n = 0$ for some $n \in \mathbb{N}$.

Then A(X) has no non-zero nilpotent elements. In fact if \mathfrak{a} is an ideal of a ring R then:

Definition 2.1.3. A ring R is **reduced** if it has no non-zero nilpotent elements

Remark 2.1.4. domain implies reduced

So A(X) is a finitely generated reduced k-algebra. Conversely, if B is a finitely generated reduced k-algebra then $\exists k[x_1, \ldots, x_n] \twoheadrightarrow B$ call it's kernel \mathfrak{a} then \mathfrak{a} is radical and $Y = Z(\mathfrak{a})$ satisfies $I(Y) = \mathfrak{a}$ so

{affine algebraic sets over k} \leftrightarrow {finitely generated reduced k – algebras}

But restricting to reduced rings is not enough.

Example 2.1.5. Consider the family $\{y^2 = x , x = c\} \subseteq \mathbb{A}^2_{\mathbb{C}}$ depending on $c \in \mathbb{C}$ if $c \neq 0 \exists$ two solutions to $y^2 = c$ this corresponds to the coordinate ring $k[x,y]/(y^2 - x , x - c) \cong k[y]/(y^2 - c)$. If c = 0 there is only one point. This corresponds to the coordinate ring $k[x,y]/(y^2 - x , x) \cong k[y]/(y^2)$ In the latter the image \overline{y} of y satisfies $(\overline{y})^2 = 0$

"As $c \rightarrow 0$ the two points get 'closer' in the limit, we get a double point and the ring $k[y]/(y^2)$ remember this."

This example shoes we want to include non-reduced rings as well.

Also why restrict to k being algebraically closed?

Example 2.1.6. We may be interested in integer solutions to $y^2 = x^3 - x$. (1,0) is an integral point on it which is needed in number theory. Grothendieck: In 1-1 correspondence

 $\{ \text{affine varieties} \} \ \hookrightarrow \ \{ \text{ finitely generated domains over } k \}$ $Y \ \mapsto \ A(Y)$

Replace right hand side by any ring R and define a "geometric object" on the left hand side (called SpecR) and get an equivalence of categories.

2.1.2 First attempt

Recall that if Y is an affine variety then

{points of Y}
$$\leftrightarrow$$
 {maximal ideals of $A(Y)$ }
 $P \mapsto \{f \in A(Y) \mid f(p) = 0\}$

Thus if R is a ring define geometric object associated to it as $\operatorname{Spec}_{\mathfrak{m}} R = \{ \max \text{ maximal ideals of } R \}$

What about a topology on $\operatorname{Spec}_{\mathfrak{m}} R$? If $Y = \mathbb{A}^n$ and $\mathfrak{a} \subseteq k[x_1, \ldots, x_n]$ then

$$Z(\mathfrak{a}) = \left\{ p \in \mathbb{A}^n \mid f(p) = 0 \ \forall \ f \in \mathfrak{a} \right\}$$
$$= \left\{ p \in \mathbb{A}^n \mid f \in \mathfrak{m}_p \ \forall \ f \in \mathfrak{a} \right\}$$
$$= \left\{ p \in \mathbb{A}^n \mid p \in \mathfrak{a} \subseteq \mathfrak{m}_p \right\}$$

So if R is a ring and \mathfrak{a} is an ideal define $Z(\mathfrak{a}) = \{ \text{maximalidealsmsuchthat} \mathfrak{a} \subseteq \mathfrak{m} \}$ It is an easy check to verify that this forms a topology, taking closed sets as

 $Z(\mathfrak{a})$ for some ideal \mathfrak{a} gives a topology.

If R = A(Y) for some affine variety Y then $\operatorname{Spec}_{\mathfrak{m}} R = Y$ with the Zariski topology.

But still there is a problem. Let X and Y be affine varieties and ψ : $A(X) \leftarrow A(Y)$ be a homomorphism of rings, then ψ^{-1} : Spec_m $A(X) \rightarrow$ Spec_mA(Y)via $\mathfrak{m} \mapsto \psi^{-1}(\mathfrak{m})$

Fact: $\psi^{-1}(\mathfrak{m})$ is a maximal ideal.

This is precisely the map $X \rightarrow Y$ that is induced by Y

If $g \in A(Y)$ is in \mathfrak{m}_p then $\psi(g) \in I(p)$ and $I(p) = \mathfrak{m}_p$. Thus $\mathfrak{m}_{\varphi(p)} \subseteq \psi^{-1}(\mathfrak{m}_p)$

Lemma 2.1.7. If A and B are finitely generated domains over $k, \varphi : A \to B$ is a homomorphism, and \mathfrak{b} is a maximal ideal in B then $\varphi^{-1}(\mathfrak{b})$ is a maximal ideal. Thus $\psi^{-1}(\mathfrak{m})$ is a maximal in definition of ψ^{-1} and $\mathfrak{m}_{\varphi(p)} = \psi^{-1}(\mathfrak{m}_p)$

Remark 2.1.8. If R and S are rings and $\varphi : R \to S$ is a homomorphism we want to define $\operatorname{Spec}_{\mathfrak{m}} S \to \operatorname{Spec}_{\mathfrak{m}} R$ via $\mathfrak{m} \mapsto \varphi^{-1}(\mathfrak{m})$ but $\varphi^{-1}(\mathfrak{m})$ need not be maximal!

Example 2.1.9. $\varphi : \mathbb{Z} \to \mathbb{Q}$ by $\varphi^{-1}(0) = (0)$ which is not maximal. But observe pull backs of prime ideal are prime.

Proof. Indeed, if $P \subseteq S$ is prime $a, b \in R$ such that $ab \in \varphi^{-1}(P)$ then $\varphi(ab) = \varphi(a)\varphi(b) \in P$ since P is prime we have either $\varphi(a) \in P$ or $\varphi(b) \in P$ thus $a \in \varphi^{-1}(P)$ or $b \in \varphi^{-1}(P) \blacksquare$

Instead of $\operatorname{Spec}_{\mathfrak{m}}R$ consider $\operatorname{Spec}R = \{ \text{ prime ideals of } R \}$

Definition 2.1.10. For an ideal \mathfrak{a} define $V(\mathfrak{a}) = Z(\mathfrak{a}) = \{$ prime ideals that contain $\mathfrak{a}\}$

Bibliography

[Hartshore] Robin Hartshorne. *Algebraic Geometry*. Graduate Texts in Mathematics. Springer-Verlag, 1977. The standard text in English in this field.

[Danilov] Danilov. Unknown Title. Unknown details.