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Scribe: J. Kyle Armstrong

Recall: If Y is a variety we a sheaf of regular functions O(U). If p ∈ Y
we had a local ring Op 3 (U 3 p, f) if Y is affine we have that O(Y ) ⊇
A(Y ) = k[x1, x2, . . . , xn]/I(Y ) and A(Y )mp

∼= Op.

1.1 Morphisms

1.1.1 Varieties

Suppose Y is a variety. Consider functions F which are regular on some
open subset (depending on f). These are pairs (U, f) such that U ⊆ Y is
open and nonempty and f is regular on U . We say that (U, f) ∼ (V, f) if
f = g on U ∩ V .

Definition 1.1.1. Denote the set of such equivalence classes byK(Y ). Since
the intersection of any two nonempty open subsets in Y is an open nonempty
subset we can make K(Y ) into a ring.

Example 1.1.2. (U, f) + (V, g) = (U ∩ V, f + g) and (U, f) · (V, g) = (U ∩
V, f · g) But now we can also invert. If f 6= 0 is regular on U then 1

f is
regular on V = U ∩ (Y \ {f 6= 0}) 6= ∅ and so (U, f)−1 = (V, 1

f ).

Definition 1.1.3. K(Y ) is a field, called the function field of Y .

Remark 1.1.4. If Y is a variety and p ∈ Y then there are natural inclusions.

O(Y )→ Op →KY

f 7→ (Y, f)
(U, f) 7→ (U, f)

These 3 objects depend only on the isomorphism class of Y , thus they are
invariants of Y

Theorem 1.1.5. Let Y ⊂ An be an affine variety then:

1. O(Y ) ∼= A(Y )



2

2. We have a one to one correspondence

{ points of Y } ↔ { maximal ideals of A(Y )}

p 7→ mp = {f ∈ A(Y )
∣∣∣∣f(p) = 0}

3. ∀p Op ∼= A(Y )mp

4. K(Y ) is the quotient field of A(Y ).

Proof. (3) is done by previous result.
(2) A point in An is a minimal irreducible algebraic set. So points in An ↔
maximal ideals of k[x1, x2, . . . , xn] (Under X 7→ I(X)). Irreducible sets go
to I(X). If Y ⊆ An is an algebraic set then points in Y ↔ maximal ideals
of k[x1, x2, . . . , xn] that contain T (Y ). (maximal ideals of A(Y ) )
(3) Any element f in the quotient field of A(Y ) is regular on some nonempty
open U ⊆ Y map this to (U, f) in K(Y ). Conversely, any element of K(Y ) is
regular at some point p ∈ Y so it is in Op, i.e. in A(Y )mp which is contained
in the quotient field of A(Y ).(

f

g
∈ A(Y ) with f ∈ A(Y ), g ∈ mp

)

(1) Notice A(Y ) ⊆ O(Y ) (showed previously)

O(Y ) =
⋂
p∈Y
Op =part c

⋂
p∈Y

A(Y )mp = A(Y )

By the exercise and below and part (2) above the proof will be complete.
�
Exercise If B is a domain then B is the intersection (contained in its
quotient field) of the localizations of B at all maximal ideals of B.

1.1.2 Projective Varieties

Proposition 1.1.6. ∀ i = 0, 1, . . . , n let ui = {xi 6= 0} ⊆ Rn. The map
ϕi : ui→An via [x0 : x1 : · · · : xn] 7→

(
x0
xi
, x1
xi
, . . . , xnxi

)
is an isomorphism of

varieties.

Proof. We checked that this is a homeomorphism. The regular functions
correspond by homogenization and de-homogenization. �
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Remark 1.1.7. Op

Theorem 1.1.8. Let Y be a projective variety in Pn then:
(a) O(Y ) = k
(c) K(Y ) = set of elements in the quotient field of k[x1, . . . , xn]/I(Y ) that
are ratios of homogeneous polynomials of some degree.

Proof. (c) follows from 1.1.6
(a) see [Hartshore] �

Remark 1.1.9. (a) in 1.1.8 is the analog of the only holomorphic functions
on C (bounded) on a compact Riemann surface are constants.

Remark 1.1.10. we have a map:

Affine varieties → Rings
Y ⊆ An 7→ A(Y ) = k[x1, . . . , xn]/I(Y )

k[x1, . . . , xn] is finitely generated over k. image ⊆ finitely generated
domain over k. Conversely, suppose B is a finitely generated domain over k.
Suppose there are n generators then ∃ϕ : k[x1, . . . , xn]→B then kerϕ = a

is a prime ideal. Take Y = Z(a) ⊆ A
n then I(Y ) = I(Z(a)) = a thus,

A(Y ) = k[x1, . . . , xn]/I(Y ) = k[x1, . . . , xn]/a = B

Now we have a 1-1 correspondence:

Affine varieties↔ finietly generated domains over k

Proposition 1.1.11. Let X,Y be Affine varieties, then ∃ 1-1 correspon-
dence

{morphisms X→Y } ↔ {homomorphisms of k algebras A(Y )→A(X)}
ϕ 7→ (f→fϕ)

Proof. See [Hartshore] �

Definition 1.1.12. If ϕ : X→Y is a morphism of affine varieties then define
ϕ∗ : A(Y )→A(X) as ϕ∗(f) = fϕ called pullbacks of ϕ

Example 1.1.13. Consider ϕ : A1→Y = {y = x2} ⊆ A2 via x 7→ (x, x2)
then
A(X) = k[x] and A(Y ) = k[x, y]/(y − x2) 3 X,Y
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Where X = x−coordinate on Y 7→ X on X and Y = y−coordinate on
Y 7→ x2 on X

What is ϕ∗ ? ϕ∗(x2 + 2y) = x2 + 2x2 = 3x2

How do we recover ϕ ? ϕ : A1→A2 via x 7→ x coordinate = x, y
coordinate = x2 i.e. (x, x2)

Corollary 1.1.14. We have an “arrow reversing” equivalence of categories:

{affine varieties over k} ↔ { finitely generated domains over k}
X 7→ A(X) ϕ 7→ ϕ∗



Chapter 2

Schemes

2.1 Schemes

2.1.1 Motivation

Motivation for going from varieties to schemes (for a different motivation
see [Danilov]).

In 1.1.14 we restricted to irreducible affine algebraic sets. Non irreducible
sets are also important however.

Example 2.1.1. The intersection of two irreducible sets need not be irre-
ducible. For k = C take Y1 := y = x2 and Y2 := y = 4 then Y1 ∩ Y2 =
{(−2, 4), (2, 4)} ⊆ A2 which is closed and is NOT reducible.

For a general affine algebraic setX ⊆ An we still haveA(X) = k[x1, x2, . . . , xn]/I(X)

Definition 2.1.2. An element r in a ring R is nilpotent if rn = 0 for some
n ∈ N.

Then A(X) has no non-zero nilpotent elements.
In fact if a is an ideal of a ring R then:

a is radical ⇐⇒ R/a has no non-zero nilpotents
⇐⇒ ∀ x ∈ R (x+ a)n = 0 + a then x+ a = 0 + a

⇐⇒ ∀ x ∈ R xn ∈ a

⇒ x ∈ a

Definition 2.1.3. A ring R is reduced if it has no non-zero nilpotent
elements

Remark 2.1.4. domain implies reduced

5
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So A(X) is a finitely generated reduced k−algebra. Conversely, if B is
a finitely generated reduced k−algebra then ∃ k[x1, . . . , xn] � B call it’s
kernel a then a is radical and Y = Z(a) satisfies I(Y ) = a so

{affine algebraic sets over k} ↔ {finitely generated reduced k − algebras}

But restricting to reduced rings is not enough.

Example 2.1.5. Consider the family {y2 = x , x = c} ⊆ A2
C

depending on
c ∈ C if c 6= 0 ∃ two solutions to y2 = c this corresponds to the coordinate
ring k[x, y]/(y2− x , x− c) ∼= k[y]/(y2− c). If c = 0 there is only one point.
This corresponds to the coordinate ring k[x, y]/(y2 − x , x) ∼= k[y]/(y2) In
the latter the image y of y satisfies (y)2 = 0

“As c→0 the two points get ‘closer’ in the limit, we get a double point
and the ring k[y]/(y2) remember this.”

This example shoes we want to include non-reduced rings as well.
Also why restrict to k being algebraically closed?

Example 2.1.6. We may be interested in integer solutions to y2 = x3 −
x. (1, 0) is an integral point on it which is needed in number theory.
Grothendieck: In 1-1 correspondence

{affine varieties } ↪→ { finitely generated domains over k}
Y 7→ A(Y )

Replace right hand side by any ring R and define a “geometric object”
on the left hand side ( called SpecR) and get an equivalence of categories.

2.1.2 First attempt

Recall that if Y is an affine variety then

{points of Y } ↔ {maximal ideals of A(Y )}

P 7→ {f ∈ A(Y )
∣∣∣∣ f(p) = 0}

Thus if R is a ring define geometric object associated to it as SpecmR = {
maximal ideals of R}
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What about a topology on SpecmR ? If Y = A
n and a ⊆ k[x1, . . . , xn]

then

Z(a) = {p ∈ An
∣∣∣∣ f(p) = 0 ∀ f ∈ a}

= {p ∈ An
∣∣∣∣ f ∈ mp ∀ f ∈ a}

= {p ∈ An
∣∣∣∣p ∈ a ⊆ mp}

So if R is a ring and a is an ideal define
Z(a) = {maximalidealsmsuchthata ⊆ m}
It is an easy check to verify that this forms a topology, taking closed sets as
Z(a) for some ideal a gives a topology.

If R = A(Y ) for some affine variety Y then SpecmR = Y with the Zariski
topology.

But still there is a problem. Let X and Y be affine varieties and ψ :
A(X)← A(Y ) be a homomorphism of rings, then ψ−1 :SpecmA(X)→SpecmA(Y )
via m 7→ ψ−1(m)
Fact: ψ−1(m) is a maximal ideal.
This is precisely the map X→Y that is induced by Y

If g ∈ A(Y ) is in mp then ψ(g) ∈ I(p) and I(p) = mp. Thus mϕ(p) ⊆
ψ−1(mp)

Lemma 2.1.7. If A and B are finitely generated domains over k, ϕ : A→B
is a homomorphism, and b is a maximal ideal in B then ϕ−1(b) is a maximal
ideal. Thus ψ−1(m) is a maximal in definition of ψ−1 and mϕ(p) = ψ−1(mp)

Remark 2.1.8. If R and S are rings and ϕ : R→S is a homomorphism we
want to define SpecmS → SpecmR via m 7→ ϕ−1(m) but ϕ−1(m) need not be
maximal!

Example 2.1.9. ϕ : Z→Q by ϕ−1(0) = (0) which is not maximal.
But observe pull backs of prime ideal are prime.

Proof. Indeed, if P ⊆ S is prime a, b ∈ R such that ab ∈ ϕ−1(P ) then
ϕ(ab) = ϕ(a)ϕ(b) ∈ P since P is prime we have either ϕ(a) ∈ P or ϕ(b) ∈ P
thus a ∈ ϕ−1(P ) or b ∈ ϕ−1(P ) �

Instead of SpecmR consider SpecR = { prime ideals of R}

Definition 2.1.10. For an ideal a define V (a) = Z(a) = { prime ideals that
contain a}
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