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Chapter 1

Lecture 1: August 25, 2008

Scribe: Jay Stryker

1.1 General class information

[Material on the syllabus was discussed.]

Instructor: Amod Agashe

Email: agashe@math.fsu.edu

Office: 216 LOV

Phone: 644-8704

Webpage: http://www.math.fsu.edu/∼agashe/ag.html

Recommended text: Algebraic Geometry by Robin Hartshorne [3]

Parts of Chapters I,II,III and IV will be covered (see syllabus for
specifics.)

Class time: 3:35 Mondays and Wednesdays

Prerequisites: The syllabus states that you should have a year long sequence
in graduate algebra, but the real requirement is “Algebraic maturity.”

You should be comfortable with groups, rings ideals and preferably
modules. (Field theory/Galois theory is not necessary.)
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6 CHAPTER 1. LECTURE 1

Statements such as “I is maximal ⇔ R/I is a field” should not look
strange to you.

Course Description: Classical algebraic geometry (the theory of varieties)
will be developed alongside the more modern approach and language
of schemes. (More details exist in the syllabus.)

Grading: There will be some homework and class attendance is expected.
A scribe system in which notes will be written up in LATEXwill be
implemented and may count toward a homework assignment.

1.2 Motivation for studying algebraic geom-

etry

1.2.1 Finding all pythagorean triples

We wish to find x, y, z ∈ Z such that x2 + y2 = z2.
[Dr. Agashe will use the abbreviation s.t. to stand for “such that” when

writing on the board.]
By scaling it suffices to consider the case when gcd(x, y, z) = 1. (x, y and

z should be coprime. Some refer to the set of coprime Pythagorean triples
as primitive Pythagorean triples. Parenthesis notation will often be used for
gcd as (m,n) is defined to be gcd(m,n) in appropriate contexts. )

If z = 0 then x = y = 0 which gives us the solution (0, 0, 0)
If z 6= 0 then (x

z

)2

+
(y
z

)2

= 1

Since x/z and y/z are we can rephrase the question as “we want to look
for rational solutions to X2 + Y 2 = 1.” (Where X = x/z and Y = y/z.)

If the point (xt, yt) is rational then the slope of the line is rational. How-
ever, the converse is also true.

The slope of the line is

t =
y − 0

x− (−1)
.

From this we see that y = t(x + 1). Substituting back into x2 + y2 = 1
we get x2 + t2(x+ 1)2 = 1
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Figure 1.1: [Diagram of circle radius 1 with center at (0,0)and line going
from (−1, 0) to a point (xt, yt) on the circle.]

Through arithmetic manipulations we get

(t2 + 1)x2 + 2t2x+ (t2 − 1) = 0.

Using the sum of the roots1 we find that

−2t2

t2 + 1
= −1 + xt

And by simple manipulations and substituting back into our equation we get

xt =
1− t2

1 + t2

and

yt =
2t

1 + t2
.

If we choose t = m/n with (m,n) = 1 we find that the pythagorean triples
are

x = m2 − n2,

y = 2mn,

1Note that ax2 + bx+ c = a
(
x2 + b

ax+ c
a

)
= a(x−α)(y− β) and equating coefficients

we see that −(sum of roots) = b
a
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and
z = m2 + n2.

for m,n ∈ Z and multiples of such.

Moral: We solved an algebra/arithmetic problem using the geometry of
some loci of polynomials, but the proof involved algebra.

Something of interest that we will probably see more of later is that we
have parameterized the circle by choosing a point on the circle and looking
at the slope of the line that passes through this point and every other point
on the circle giving us a map t 7→ circle minus the point (-1,0). [By looking
at values of t as they go from −∞ to +∞, we get all points on the circle
except (-1,0) which is a limit point. There may be interesting behavior for
points as t goes to infinity in such parameterizations.]2

1.2.2 Elliptic curves

An elliptic curve over a field (of characteristic 6= 2 or 3) is the set of so-
lutions to y2 = x3 + ax + b with a, b ∈ k (and? some extra information...
nonsingularity property)

For example, k = R, y2 = x3 − x

Fact: There is a group law on the set of solutions. (In fact, it is an abelian
variety.)

The coordinates of P + Q are rational functions of the coordinates of
P&Q and the coefficents of the equation.

This works for any k including finite fields ( Fp = Z/pZ.)
For example, y2 = x3 − x over P5 = {0, 1, 2, 3, 4}
These are used in cryptography and one of the important results that is

used is Hasse’s theorem (of elliptic curves) which states that

|(number of solutions)− (p+ 1)| ≤ 2
√
p

The proof uses the number of solutions over Fp = number of fixed points
of φ(x, y) 7→ (xp, yp) over F̄p (The algebraic closure of Fp=number of points
in the kernel of (id− φ)

2It was commented in class that this is essentially a stereographic projection in this
case of P1\p 7→ R.
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Figure 1.2: [Graph of y2 = x3−x with a two lines illustrating the group law.
P and Q on the left component the line passing through them intersects the
right component at R and the vertical line down from from R is P +Q.]

Moral: We want to consider maps between solutions of polynomials and
analogs of geometric properties of such maps. (e.g.3 coverings, degrees,
etc.)

Also, we want to construct invariants of such objects (solutions of poly-
nomials) which come from sheaf cohomology.

More motivation next time...

3e.g. means “for example” from the Latin exempli gratia, in case you were curious.
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Chapter 2

Lecture 2: August 27, 2008

Scribe: Jay Stryker

2.1 Questions from last time

A question was raised about where −Q would have been on the elliptic curve
example.

Back to the elliptic curve example:

(Parallel) vertical lines pass through 0. (Which can be thought of as
being a point at infinity. So negative of a point can be found in this curve
by looking at the point which is symmetric about the x-axis from a given
point.)

Some comments were made about the fact that although the course has
a title which includes the word Geometry in the name, there in fact will be
few actual pictures. If you wish to see a book that has nice pictures, Dr.
Agashe recommends William Fulton’s book Algebraic Curves [2]. The older
version is available in the library, but it has been recently (in January 2008)
been made available online through William Fulton’s website.
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12 CHAPTER 2. LECTURE 2

2.2 Motivation continued

2.2.1 Algebraic sets, ideals and schemes

Last time we talked about the study of the solution of algebraic sets, which we
will informally refer to as algebraic sets1, maps between them and properties
of such things.

Fact: If f(x, y) is a polynomial with coefficients in an algebrically closed
field k,

{(x, y) ∈ k2|f(x, y) = 0} ↔ Maximal ideals of Rf = k[x, y]/f(x, y).

Where ↔ means “is in 1-1 correspondence with.”
The correspondence can be seen with the following

(a, b) 7→ (x− a, y − b)
and

(am, bm)←[ m

where Rf/m ∼= k x→ am y → bm.
“Geometric properties of algebraic sets and maps between them are re-

flected algebraically in rings like Rf .”
Eventually we want to consider polynomials over rings (like Z which need

not be fields) and more general rings because before 1900 or so the types
of Algebraic Geometry that were done primarily utilized this relationship
between maximal ideals and algebraic sets. About 1950 or so a different
approach arose. Things were turned around:

To any (commutative) ring R we associate a geometric object.

SpecR = set of prime ideals of R.

(Remember that maximal implies prime, but prime does not imply max-
imal, so we are working with a larger set of objects here.)

We also want to “patch” them together to get analogs of manifolds called
schemes.

(This is not the end of the story of generalization/abstraction as there
are mathematical constructions known as stacks and algebraic spaces which
take this further, but will probably not be mentioned much in this course.)

1A more formal definition of algebraic sets will be given later.
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[2 minute break in lecture]

2.2.2 Back to the motivation

Goal of this course: Survey the theory of varieties (certain algebraic sets)
and schemes in parallel.

To this end we will:

• focus on generality (with motivation and examples,)

• learn the language and important results,

• skip the proofs mostly.

Topics Sections of Hartshorne
Varieties I §1-3
Schemes II §1-8
Sheaf Cohomology III §1-7
Riemann Roch Theorem (using Serre duality) IV §1

Alot of commutative algebra will be used in this course. As a nice gen-
eral reference you can use Atiyah-Macdonald’s Introduction to Commutative
Algebra.[1]

2.3 The course proper

2.3.1 Chapter I §1: Affine Varieties

Remark: We want to view solutions of polynomials as a “geometric” ob-
ject, but for example x2 + y2 = −1 in R2 has no solutions.

So when we are working over a field k we consider solutions over an
algebraic closure k̄ of k.

Definition: The set of all n-tuples of elements of k̄ (i.e. k̄n) is called affine
n space over k̄ and is denoted An

k̄
or An if k̄ is implicit.

An element p = (a1, . . . , an) in An
k̄

is called a point in An
k̄

and a1, . . . , an

are called the coordinates of p.
If L is an algebraic extension of k (so k ⊆ L ⊆ k̄) and if a1, . . . , an ∈ L,

then we say that (a1, . . . , an) ∈ An
k̄

is defined over L or is a L-rational point.
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Example: (−1, 0) on x2 + y2 = 1 is defined over Q.

For simplicity, assume from now on that k is algebraically closed. (i.e.
k = k̄.)

Let x1, . . . , xn be “free variables.”
Then any f ∈ k[x1, . . . , xn] can be evaluated at a point p in An.
(E.g. if n = 1 and f(x) = anx

n + . . . + a0 and p = b then f(b) =
anb

n + . . .+ a0.)
And thus we can define the zero set of f as

Z(f) = {p ∈ An|f(p) = 0}.

More generally the zero set of T is

Z(T ) = {p ∈ An|f(p) = 0∀f ∈ T}

e.g.

T = {x+ y, x− y} ⊆ k[x, y]

The zero set would just be (0, 0) (if not in a field of characteristic 2.)

2.4 One more comment (office hours)

Office hours will tentatively be MW 2:30-3:30.
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