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Abstract

We prove a new upper bound on the vertical heat transport in Rayleigh-Bénard
convection of the form c Ra

1

3 (lnRa)
2

3 under the assumption that the ratio of Prandtl
number over Rayleigh number satisfies Pr

Ra
≥ c0 where the non-dimensional constant c0

depends on the aspect ratio of the domain only. This new rigorous bound agrees with
the (optimal) Ra

1

3 bound (modulo logarithmic correction) on vertical heat transport
for the infinite Prandtl number model for convection due to Constantin and Doering [6]
and Doering, Otto and Reznikoff [10]. It also improves a uniform (in Prandtl number)

Ra
1

2 bound for the Nusselt number [5] in the case of large Prandtl number.

keywords: Rayleigh-Bénard convection, Boussinesq equations, Prandtl number, Rayleigh
number, Nusselt number

1 Introduction

We investigate the heat transport in the vertical direction in Rayleigh-Bénard convection at
large Prandtl number. The governing system is the following classical
Boussinesq system for Rayleigh-Bénard convection (non-dimensional):

1

Pr
(
∂u

∂t
+ (u · ∇)u) + ∇p = ∆u + RakT, ∇ · u = 0, (1)

∂T

∂t
+ u · ∇T = ∆T, (2)

u|z=0,1 = 0, (3)

T |z=0 = 1, T |z=1 = 0, (4)

u|t=0 = u0, T |t=0 = T0, (5)

where u = (u1, u2, u3) is the fluid velocity field, p is the kinetic pressure, T is the temper-
ature field, k is the unit upward vector, Ra is the Rayleigh number measuring the ratio of
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differential heating over overall dissipations, Pr is the Prandtl number which is the ratio of
kinematic viscosity over thermal diffusivity, and the fluids occupy the (non-dimensionalized)
region

Ω = [0, Lx] × [0, Ly] × [0, 1] (6)

with periodicity in the horizontal directions assumed for simplicity.
At very large Prandtl number, we may formally set the Prandtl number to infinity and

arrive at the following
infinite Prandtl number model (non-dimensional)

∇p0 = ∆u0 + RakT 0, ∇ · u0 = 0, (7)

∂T 0

∂t
+ u0 · ∇T 0 = ∆T 0, (8)

u0|z=0,1 = 0, (9)

T |z=0 = 1, T |z=1 = 0, (10)

which is relevant for fluids such as silicone oil and the earth’s mantle as well as many
gases under high pressure [3, 12, 2]. One observes that the Navier-Stokes equations in the
Boussinesq system has been replaced by the Stokes system in the infinite Prandtl number
model.

The fact that the velocity field is linearly slaved by the temperature field has been ex-
ploited in several recent very interesting works on rigorous estimates on the rate of heat
transport in the vertical direction in this infinite Prandtl number setting (see [8, 6, 10] and
the references therein, as well as the work of [3, 15]). Recall that the Nusselt number is
defined as the enhancement of heat transport in the vertical direction due to convection over
conduction (see (32) below for a mathematical definition). In particular, a bound on the

Nusselt number which scales like Ra
1

3 (modulo logarithmic correction) was first rigorously
obtained in [6] with the help of a maximum principle in the temperature field, and then also
in [10] with an explicit prefactor and reduced logarithmic correction term. In the case of
large Prandtl number, we can formally view the Boussinesq system as a small perturbation
of the infinite Prandtl number model and hence the velocity field is almost linearly slaved by
the temperature field. This near linear slavery was exploited in [29] in studying statistical
properties of the Boussinesq system at large Prandtl number.

On the other hand, the best known bound on Nusselt number with arbitrary Prandtl
number scales like Ra

1

2 uniformly in Pr ∈ (0,∞] [5] while the bound calculated via marginal

stability [14] and some direct numerical simulations [1] suggest the same Ra
1

3 scaling as the

true behavior. We naturally ask if the Ra
1

3 upper bound on the Nusselt number can be
derived for at least the case of large but finite Prandtl number. As we shall demonstrate
below, there exists a non-dimensional constant c0 defined in (28) which depends on the aspect

ratio of the domain only, such that Nu ≤ cRa
1

3 (Ra)
2

3 provided that the Prandtl number
is relatively large compared to the Rayleigh number, i.e., Pr

Ra
≥ c0. This is a qualitative

improvement over our previous result where a bound of the form of Ra
1

3 (ln Ra)
1

3 + Ra
7

2

Pr2 was
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derived [29]. The large Prandtl number condition (28) can be viewed as a small Reynolds
number condition since the ratio of inertial over viscous term is proportional to Ra/Pr.

Throughout this manuscript, we assume the physically important case of high Rayleigh
number Ra ≫ 1 so that we may have non-trivial dynamics.

We also follow the mathematical tradition of denoting our small parameter as ε, i.e.

ε =
1

Pr
. (11)

Also c will denote a generic non-dimensional constant independent of the Rayleigh number
and Prandtl number throughout the manuscript.

The rest of the manuscript is organized as follows. In section 2 we recall a few a priori
estimates on the solutions to the Boussinesq system at large Prandtl number. In section 3,
we derive the Ra

1

3 upper bound for the Nusselt numbers at large Prandtl number. In section
4, we offer concluding remarks.

2 A priori estimates

In this section we derive a few a priori estimates on solutions of the Boussinesq system
at large Prandtl number. These estimates are essentially contained in [28] and [5] and we
reproduce some of them here for the sake of completeness.

Throughout this manuscript, we will assume that the range of initial temperature T0 is
contained in the unit interval [0, 1]. Hence we deduce by maximum principle that the range
of T in contained in [0, 1] for all time, i.e.,

‖T‖L∞ ≤ 1. (12)

We will also assume that the background temperature profile τ(z) under consideration is
always contained in the unit interval [0, 1] (see 41). Therefore, the perturbative temperature
field θ = T − τ satisfies the same estimate

‖θ‖L∞ ≤ 1. (13)

We also recall [5] that the following estimates hold

< ‖∇u‖2 > ≤ cRa
3

2 , (14)

< ‖∇T‖2 > ≤ cRa
1

2 , (15)

for all suitable weak solutions of the Boussinesq system with arbitrary Prandtl number where
< · > represents long time average, i.e.

< f(·) >= lim sup
t→∞

1

t

∫ t

0
f(s) ds.
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We first multiply the velocity equation (1) by u and integrate over the domain and we
have

ε

2

d

dt
‖u(t)‖2

L2 + ‖∇u(t)‖2 ≤ Ra‖T (t)‖‖u3(t)‖

≤
1

2π2
Ra2|Ω| +

π2

2
‖u(t)‖2,

and hence

ε

2

d

dt
‖u(t)‖2

L2 +
π2

2
‖u(t)‖2 ≤

1

2π2
Ra2|Ω|, (16)

where we have utilized the maximum principle on T , Poincaré inequality and Cauchy-Schwarz
inequality. We then apply Gronwall inequality to deduce

lim sup
t→∞

‖u(t)‖ ≤ Ra|Ω|
1

2 /π2. (17)

Next we multiply the velocity equation (1) by Au (where A denotes the Stokes operator
with viscosity one and the associated boundary conditions), integrate over the domain and
we have

ε

2

d

dt
‖∇u‖2 + ‖Au‖2 ≤ Ra‖T‖‖Au‖ + ε‖∇u‖‖Au‖‖u‖L∞

≤ Ra|Ω|
1

2‖Au‖ + cAε‖∇u‖
3

2‖Au‖
3

2

≤
1

2
‖Au‖2 + Ra2|Ω| + 64c4

Aε4‖∇u‖6 (18)

where cA is the constant in the Agmon inequality ‖u‖L∞ ≤ cA‖∇u‖
1

2‖Au‖
1

2 . This implies,
together with Poincaré inequality,

ε
d

dt
‖∇u‖2 + π2‖∇u‖2 ≤ 2|Ω|Ra2 + 128c4

Aε4‖∇u‖6. (19)

It is then easy to verify that the ball of radius 2|Ω|
1

2 Ra/π is invariant under the dynamics if
the following relative large Prandtl number condition holds

Pr

Ra
≥ 8cA|Ω|

1

2 /π
3

2 . (20)

On the other hand, estimate (14) implies that any orbit should enter this ball of radius

2|Ω|
1

2 Ra/π. Hence this is an absorbing ball and we have the estimate

lim sup
t→∞

‖∇u(t)‖ ≤ 2Ra|Ω|
1

2 /π. (21)

Inserting this into (18) and taking the long time average, we have the following estimate

< ‖Au‖2 >≤ cRa2|Ω|. (22)

4



Next, we estimate the time derivative of the velocity. For this purpose we differentiate
the velocity equation (1) in time 1 and deduce

ε(
∂2u

∂t2
+ (

∂u

∂t
· ∇)u + (u · ∇)

∂u

∂t
) + ∇

∂p

∂t
= ∆

∂u

∂t
+ Rak

∂T

∂t
. (23)

Multiplying this equation by ∂u

∂t
and integrating over Ω, we deduce, for large t,

ε

2

d

dt
‖
∂u

∂t
‖2 + ‖∇

∂u

∂t
‖2 ≤ Ra‖

∂T

∂t
‖H−1‖∇

∂u

∂t
‖ + ε‖u‖L3‖∇

∂u

∂t
‖‖

∂u

∂t
‖L6

≤ Ra‖
∂T

∂t
‖H−1‖∇

∂u

∂t
‖ + cSε‖∇u‖

1

2‖u‖
1

2‖∇
∂u

∂t
‖2

≤
1

4
‖∇

∂u

∂t
‖2 + Ra2‖

∂T

∂t
‖2

H−1 +
2

π
3

2

Ra|Ω|
1

2 cSε‖∇
∂u

∂t
‖2 (24)

where cS = cS1cS2 is the product of two Sobolev constants in ‖u‖L3 ≤ cS1‖∇u‖
1

2‖u‖
1

2 and
‖∂u

∂t
‖L6 ≤ cS2‖∇

∂u

∂t
‖2.

This implies that we have

< ‖∇
∂u

∂t
‖2 >≤ 2Ra2 < ‖

∂T

∂t
‖2

H−1 > (25)

provided the following second relative large Prandtl number condition is satisfied

Pr

Ra
≥ 8cS|Ω|

1

2 /π
3

2 . (26)

Setting

c0 =
8

π
3

2

max{cA, cS}|Ω|
1

2 (27)

we can combine the two relative large Prandtl number conditions (20) and (26) into the
following one relative large Prandtl number condition

Pr

Ra
≥ c0. (28)

Next, we utilize the temperature equation (2) to deduce

‖
∂T

∂t
‖H−1 ≤ ‖Tu‖ + ‖∇T‖

≤
1

π
‖∇u‖ + ‖∇T‖ (29)

where we have used the maximum principle on the temperature field T and the Poincaré
inequality. This further implies, thanks to (14) and (15),

< ‖
∂T

∂t
‖2

H−1 >≤ 2 <
1

π2
‖∇u‖2 + ‖∇T‖2 >≤ cRa

3

2 . (30)

1We do not need H
1 norm of the time derivative. However, we do not know of good estimates on the L

2

or H
−1 norm of the time derivative.
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Therefore, inserting this into (25) we have

< ‖∇
∂u

∂t
‖2 >≤ cRa

7

2 . (31)

3 Bound on Nusselt number

We first recall the definition of the long time averaged Nusselt number measuring the heat
transport in the vertical direction

(Nu)ε = sup
(u0,θ0)∈X

lim sup
t→∞

1

tLxLy

∫ t

0

∫

Ω
|∇T (x, s)|2 dxds,

= 1 + sup
(u0,θ0)∈X

lim sup
t→∞

1

tLxLy

∫ t

0

∫

Ω
u3(x, s)T (x, s) dxds,

= 1 + sup
(u0,θ0)∈X

lim sup
t→∞

1

tLxLy

∫ t

0

∫

Ω
u3(x, s)θ(x, s) dxds (32)

where T = 1 − z + θ is the temperature field, and (u, θ) are suitable weak solutions to the
Boussinesq system with initial data (u0, θ0) . The Nusselt number is a statistical property
of the Boussinesq system in the sense that it is the average of 1 + u3θ over the whole phase
space with respect to some appropriate invariant measure (stationary statistical solution) of
the Boussinesq system [29].

The approach we take here is to view the Boussinesq system at large Prandtl number as
a perturbation of the infinite Prandtl number model for convection. More specifically, we
write the Boussinesq system as

∇p = ∆u + Rakθ + εf , ∇ · u = 0, (33)

∂θ

∂t
+ u · ∇θ + u3τ

′(z) = ∆θ + τ”(z), (34)

u|z=0,1 = 0, (35)

θ|z=0,1 = 0, (36)

f = −(
∂u

∂t
+ (u · ∇)u), (37)

where we have employed the background temperature profile method for the Boussinesq
system proposed by Constantin and Doering [5, 6, 10] which is a generalization of E. Hopf’s
original idea [25]. Here we diverge from our previous work [29] where we emphasized the pos-
itive contribution of the transport term

∫

Ω u3θ (following the idea of [10]) with u3 containing
the effect of total derivative. As we shall see that our new approach of isolating the effect of
total derivative provides better (optimal) estimate on the Nusselt number than lumping the
total derivative term in the “asymptotic” spectral constraint approach that we used before.

Multiplying the temperature equation by θ and integrate over Ω we have

1

2

d

dt
‖θ‖2 + ‖∇θ‖2 + (τ ′, θ) +

∫

Ω
τ ′u3θ = 0. (38)
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We also have
‖∇T‖2 = ‖∇θ‖2 + 2(τ ′, θ) + ‖τ ′‖2. (39)

Following [6, 10] and combining the two we have

< ‖∇T‖2 >

= ‖τ ′‖2− <
∫

Ω
(|∇θ|2 + 2τ ′u3θ) >

= ‖τ ′‖2− <
∫

Ω
(|∇θ|2 + 2Raτ ′A−1(kθ)3θ + 2ετ ′A−1(f)3θ) >

= ‖τ ′‖2− <
∫

Ω
(|∇θ|2 + 2Raτ ′A−1(kθ)3θ − 2ετ ′A−1(

∂u

∂t
)3θ − 2ετ ′A−1((u · ∇)u)3θ) >(40)

We now choose a specific background temperature profile of the form

τ ′(z) =

{

1
δ
, 1 − δ ≤ z ≤ 1,

0, 0 ≤ z ≤ 1 − δ.
(41)

According to [6], we have

∫

Ω
(
1

2
|∇θ|2 + 2Raτ ′A−1(kθ)3θ) ≥ 0, ∀θ (42)

provided we choose δ as
δ−1 = cCDRa

1

3 (1 + ln Ra)
2

3 (43)

for some appropriate constant cCD independent of the Rayleigh number. Roughly speak-
ing, the idea of Constantin and Doering was to apply Poincaré inequality and to dominate
‖ ∂2

∂z2 A
−1(kθ)3‖L∞ = ‖ ∂2

∂z2 A
−1(kT )3‖L∞ by ‖T‖L∞ (which can be dominated by the maximum

principle (12)) together with a logarithmic term in ‖∆T‖ which induces the logarithmic term
in Ra. A polynomial in Ra bound on ‖∆T‖ may be found in [28].

Now we have

2ε|
∫

Ω
τ ′A−1(

∂u

∂t
)3θ| ≤ 2δ2ε‖

∂2

∂z2
A−1(

∂u

∂t
)3‖‖

∂θ

∂z
‖

≤
1

4
‖∇θ‖2 + cδ4ε2‖

∂u

∂t
‖2 (44)

where we have applied Poincaré, Hölder, Cauchy-Schwarz inequality, Stokes regularity, the
boundary conditions for θ, A−1(∂u

∂t
)3 and ∇A−1(∂u

∂t
)3, and the specific form of τ (41).

We also have

2ε|
∫

Ω
τ ′A−1((u · ∇)u)3θ| ≤ 2δε‖

∂2

∂z2
A−1((u · ∇)u)3‖‖θ‖

≤ cδε‖(u · ∇)u‖ (45)

where we have applied Poincaré inequality, Stokes regularity, the specific form for τ (41) and
the maximum principle on θ.
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Therefore we deduce

< ‖∇T‖2 >

≤ ‖τ ′‖2− <
∫

Ω
(
1

2
|∇θ|2 + 2Raτ ′A−1(kθ)3θ) > +cδ4ε2 < ‖

∂u

∂t
‖2 > +cδε < ‖(u · ∇)u‖ >

≤ ‖τ ′‖2 + cδ4ε2 < ‖
∂u

∂t
‖2 > +cδε < ‖(u · ∇)u‖ >

≤ ‖τ ′‖2 + cδ4ε2 < ‖∇
∂u

∂t
‖2 > +cδε < ‖u‖L∞‖∇u‖ >

≤ ‖τ ′‖2 + cδ4ε2 < ‖∇
∂u

∂t
‖2 > +cδε < ‖∇u‖

3

2‖Au‖
1

2 >

≤ ‖τ ′‖2 + cδ4ε2 < ‖∇
∂u

∂t
‖2 > +cδε < ‖∇u‖2 >

3

4 < ‖Au‖2 >
1

4

≤ cRa
1

3 (ln Ra)
2

3 + cε2Ra
13

6 (ln Ra)−
8

3 + cεRa
31

24 (ln Ra)−
2

3

≤ cRa
1

3 (ln Ra)
2

3 + cRa
1

6 (ln Ra)−
8

3 + cRa
7

24 (ln Ra)−
2

3

≤ cRa
1

3 (ln Ra)
2

3 (46)

where we have utilized the spectral constraint (42), Poincaré inequality, Agmon inequality,
Hölder’s inequality, the specific form of τ and our choice of δ together with the a priori
estimates (14, 22, 31) as well as the large Prandtl number assumption (28) . This completes
the proof of our main result.

4 Concluding Remarks

We have derived a new upper bound on the Nusselt number (non-dimensional measurement
of heat transport in the vertical direction) for the Boussinesq system under the relatively
large Prandtl number over Rayleigh number assumption (28). The new bound (46) scales

like Ra
1

3 (modulo logarithmic term) in agreement with the best known upper bounds on the
Nusselt number for the infinite Prandtl number model derived earlier by Constantin and
Doering [6], and Doering, Otto and Reznikoff [10] again. The result here is optimal (modulo

logarithmic correction) if one believes that the Ra
1

3 scaling is optimal for the infinite Prandtl
number model of Rayleigh-Bénard convection.

The large Prandtl number assumption (28) may be interpreted as a small Reynolds
number assumption since the ratio of the inertial and viscous terms which we interpreted
as the Reynolds number is heuristically proportional to Ra

Pr
(for fixed Rayleigh number) at

large Prandtl number. An alternative interpretation due to Charlie Doering is to notice
that Ra

Pr
= Re2

max where the maximum Reynolds number is defined through the maximum

free-fall velocity Umax ∼ (gα∆Th)
1

2 where g is the acceleration of gravity, α is the thermal
expansion coefficient of the fluid, ∆T is the temperature gap between the bottom and top
plates, and h is the distance between the two plates. Hence relative large Prandtl number
over Rayleigh number is exactly small maximum Reynolds number assumption. This small
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Figure 1: Schematic log-log plot of the new upper bound on the Nusselt number (46) in

junction with the uniform Ra
1

2 bound versus Rayleigh number for different values of the
Prandtl number.

Reynolds number assumption is also in accordance with the belief that the Ra
1

2 scaling can
only occur at large Reynolds number region when the flow is turbulent.

The result is derived via viewing the Boussinesq system at large Prandtl number as a
small (singular) perturbation of the infinite Prandtl number model. The perturbation idea
works for this singular perturbation case [27] since this special two time scale problem is of
relaxation type and we are looking for long time (stationary) behavior [29]. The perturbative
approach also allows us to improve bound on the Nusselt number for the Boussinesq system
if better bounds on the Nusselt number for the infinite Prandtl number are derived.

We point out that whether or not the Ra
1

3 scaling (modulo logarithmic corrections) of the
Nusselt number is true for all Prandtl number (when the large Prandtl number assumption
is violated) is still an outstanding open problem.
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