8.4
 Vectors

A vector is a line segment with a direction. The length of the vector is called its magnitude.

$\|v\|$ is the magnitude of v
$2 \boldsymbol{v}$ means the vector in the same direction as \boldsymbol{v} with magnitude $2\|v\|$ 2 is called a scalar

If a scalar is negative, the resulting vector has the opposite direction of \boldsymbol{v}.
Draw -2 v on graph paper.
Vectors may be added together.
$\mathrm{v}+\mathrm{w}$ is shown graphically:

Vectors with an initial point at $(0,0)$ are called position vectors.
$\boldsymbol{v}=\mathrm{ai}+\mathrm{bj} \quad$ components of v are a and $\mathrm{b} \&(\mathrm{a}, \mathrm{b})$ is the terminal point of v

\boldsymbol{i} is a unit vector (its magnitude is 1) in the direction of the positive x -axis
\boldsymbol{j} is a unit vector (its magnitude is 1) in the direction of the positive y-axis

Vector Operations

For $\boldsymbol{v}=\mathrm{a}_{1} \mathrm{i}+\mathrm{b}_{1} \mathrm{j}$ and $\boldsymbol{w}=\mathrm{a}_{2} \mathrm{i}+\mathrm{b}_{2} \mathrm{j}$:
$\boldsymbol{v}+\boldsymbol{w}=\left(a_{1}+a_{2}\right) i+\left(b_{1}+b_{2}\right) j$
$\boldsymbol{v}-\boldsymbol{w}=\left(\mathrm{a}_{1}-\mathrm{a}_{2}\right) \mathrm{i}+\left(\mathrm{b}_{1}-\mathrm{b}_{2}\right) \mathrm{j}$
and for scalar α :
$\alpha v=\left(\alpha a_{1}\right) i+\left(\alpha b_{1}\right) j$
$\|\boldsymbol{v}\|=\sqrt{a_{1}^{2}+b_{1}^{2}}$

EXAMPLES

For $v=2 i+3 j$ and $w=-4 i+j$, find:

1) $2 v-3 w$
2) $\|v\|$
3) $||2 v-3 w||$

Unit Vector in the direction of v
$\mathrm{u}=\frac{v}{\|v\|}$ is the unit vector (magnitude $=1$) in the same direction as v

EXAMPLE: If $v=3 i-2 j$, then what is the unit vector in the same direction as v ?

EXAMPLE of eGrade question \#154:
A) If $\mathrm{P}=(3,4)$ and $\mathrm{Q}=(5,7)$, then $\mathrm{PQ}=$
B) Now find QP.

Note: There are two types of multiplication with vectors. One is scalar multiplication, mentioned in this unit. The second is called a "dot product" of vectors. We will cover that one in 8.5 . For now, understand that scalar multiplication produces a new vector, while adot product produces a real number.

