8.3 Complex Numbers eGrade question #147-153 z = x + yi is complex number in standard form The graph of z is the point (x, y). x is the "real part" of z and y is the "imaginary part" of z

Plot the points in the complex plane: A) 3 B) -2i C) 3 - 2i

The distance from the origin to z is called the modulus or magnitude of z and is found by:

 $|z| = \sqrt{x^2 + y^2}$

The polar form of z is found using $x = r\cos \theta$ and $y = r\sin \theta$:

 $z = r\cos \theta + i r\sin \theta = r(\cos \theta + i r\sin \theta)$

 θ is called the argument of z and r is the magnitude of z (r = $\sqrt{x^2 + y^2}$)

NOTE: you will see many values for θ but you will use $0 \le \theta \le 2\pi$ when you are asked to find θ . Also, when referring to complex numbers you will use $r \ge 0$.

EXAMPLES: Plot z and write z in polar form.

1) z = 3 - 3i 2) z = 3i

3) $z = \sqrt{3} - i$

4) Plot and write in standard form $z = 2(\cos 30^\circ + i \sin 30^\circ)$

PRODUCTS AND QUOTIENTS

 $z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$ and $z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$

PRODUCT OF 2 COMPLEX NUMBERS: $z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]$

```
proof: r_1(\cos \theta_1 + i\sin \theta_1) \times r_2(\cos \theta_2 + i\sin \theta_2)

= r_1 r_2(\cos \theta_1 + i\sin \theta_1) (\cos \theta_2 + i\sin \theta_2)

= r_1 r_2(\cos \theta_1 \cos \theta_2 + i \cos \theta_1 \sin \theta_2 + i \sin \theta_1 \cos \theta_2 + i^2 \sin \theta_1 \sin \theta_2)

= r_1 r_2(\cos \theta_1 \cos \theta_2 + i \cos \theta_1 \sin \theta_2 + i \sin \theta_1 \cos \theta_2 + (-1)\sin \theta_1 \sin \theta_2)

= r_1 r_2(\cos \theta_1 \cos \theta_2 + i \cos \theta_1 \sin \theta_2 + i \sin \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2)

= r_1 r_2(\cos \theta_1 \cos \theta_2 + i \cos \theta_1 \sin \theta_2 + i \sin \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2)
```

QUOTIENT OF 2 COMPLEX NUMBERS: $z_2 \neq 0$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2) \right]$$

=

EXAMPLES Given $z = 3 [\cos (-\pi/2) + i \sin (-\pi/2)]$ and $w = 2 [\cos (2\pi/3) + i \sin (2\pi/3)]$.

1) Find zw. 2) Find $\frac{z}{w}$.

3) Find $\frac{w}{z}$.

POWERS

 $z^{n} = r^{n} (\cos n\theta + i \sin n\theta), n \ge 1$ (you can use an inductive proof to prove this one) n is a positive integer Recall meaning of x^{1/n} EXAMPLES

1) If
$$z = \sqrt{2} \left(\cos \frac{\pi}{8} + i \sin \frac{\pi}{8} \right)$$
 find z^8 .

2) If
$$z = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$$
 find z^5 .

FINDING COMPLEX ROOTS

Let $z = r(\cos\theta + i\sin\theta)$. if $z \neq 0$, there are n distinct complex roots of z, given by the formula:

$$z_k = \sqrt[n]{r} \left[\cos\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right) + i\sin\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right) \right] \text{ where } k = 0, 1, 2, \dots, n-1.$$

EXAMPLE 1: Find all the values of $z^{\frac{1}{2}}$ for z = 16i.

Solution:

 1^{st} you need to find r and θ for z. Graph these and it is easy to see what these values are. (Remember: the standard form of z = 0 + 16i which is plotted as (0,16)).

So r = 16 and $\theta = \pi/2$. Also note that for this problem n = 2 (since we are finding square roots).

There will be TWO square roots of any complex number.

To use the formula above we will need to find θ/n . And we will use k=0 to find the 1st root and k=1 to find the 2nd.

$$\frac{\theta}{n} = \frac{\frac{\pi}{2}}{2} = \frac{\pi}{2} \cdot \frac{1}{2} = \frac{\pi}{4}$$

Using k = 0, the values we have already found, and plugging into the formula we get:

$$z_0 = \sqrt{16} \left(\cos\left(\frac{\pi}{4} + \frac{2(0)\pi}{2}\right) + i\sin\left(\frac{\pi}{4} + \frac{2(0)\pi}{2}\right) \right) = 4 \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \right)$$

Using k=1, the values we have already found, and plugging into the formula we get:

$$z_1 = \sqrt{16} \left(\cos\left(\frac{\pi}{4} + \frac{2(1)\pi}{2}\right) + i\sin\left(\frac{\pi}{4} + \frac{2(1)\pi}{2}\right) \right) = 4 \left(\cos\left(\frac{\pi}{4} + \frac{4\pi}{4}\right) + i\sin\left(\frac{\pi}{4} + \frac{4\pi}{4}\right) \right) = 4 \left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right)$$

EXAMPLE 2: Find all the values of $z^{\frac{1}{3}}$ for z = 16i.

Note the r & θ are the same as in the first example. BUT, now we are finding cube roots so n = 3.

Also, there will be THREE cube roots of any complex number. So we will use the formula again making the change in "n" and using k=0, k=1, and k=2.

r = 16, and $\theta = \pi/2$, and n = 3

$$\frac{\theta}{n} = \frac{\frac{\pi}{2}}{3} = \frac{\pi}{2} \cdot \frac{1}{3} = \frac{\pi}{6}$$

Using k = 0, the values we have already found, and plugging into the formula we get $z_0 = \sqrt[3]{16} \left(\cos\left(\frac{\pi}{6} + \frac{2(0)\pi}{3}\right) + i \sin\left(\frac{\pi}{6} + \frac{2(0)\pi}{3}\right) \right) = 2\sqrt[3]{2} \left(\cos\frac{\pi}{6} + i \sin\frac{\pi}{6} \right)$

Using k=1, the values we have already found, and plugging into the formula we get:

$$z_{1} = \sqrt[3]{16} \left(\cos\left(\frac{\pi}{6} + \frac{2(1)\pi}{3}\right) + i\sin\left(\frac{\pi}{6} + \frac{2(1)\pi}{3}\right) \right) = 2\sqrt[3]{2} \left(\cos\left(\frac{\pi}{6} + \frac{2\pi}{3}\right) + i\sin\left(\frac{\pi}{6} + \frac{2\pi}{3}\right) \right) = 2\sqrt[3]{2} \left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6} \right)$$

Using k=2, the values we have already found, and plugging into the formula we get:

$$z_{2} = 2\sqrt[3]{2} \left(\cos\left(\frac{\pi}{6} + \frac{2(2)\pi}{3}\right) + i\sin\left(\frac{\pi}{6} + \frac{2(2)\pi}{3}\right) \right) = 2\sqrt[3]{2} \left(\cos\left(\frac{9\pi}{6}\right) + i\sin\left(\frac{9\pi}{6}\right) \right)$$
$$= 2\sqrt[3]{2} \left(\cos\left(\frac{3\pi}{2}\right) + i\sin\left(\frac{3\pi}{2}\right) \right)$$

I have left a few algebra/pre-algebra steps for you to fill in. Come see me if you need help!!

(Such as, why $\sqrt[3]{16} = 2\sqrt[3]{2}$?)

EXAMPLE 3: Given $z = 4\sqrt{3} - 4i$. Find all the values of $z^{1/2}$.

NOTE: eGrade will ask for only one root.