8.3

Complex Numbers

eGrade question \#147-153
$\mathrm{z}=\mathrm{x}+\mathrm{yi}$ is complex number in standard form
The graph of z is the point (x, y).
x is the "real part" of z and y is the "imaginary part" of z
Plot the points in the complex plane:
A) 3
B) -2 i
C) $3-2 \mathrm{i}$

The distance from the origin to z is called the modulus or magnitude of z and is found by:
$|\mathrm{z}|=\sqrt{x^{2}+y^{2}}$

The polar form of z is found using $\mathrm{x}=\mathrm{rcos} \theta$ and $\mathrm{y}=\mathrm{r} \sin \theta$:
$\mathrm{z}=\mathrm{r} \cos \theta+\mathrm{irsin} \theta=\mathrm{r}(\cos \theta+\mathrm{irsin} \theta)$
θ is called the argument of z and r is the magnitude of $z\left(r=\sqrt{x^{2}+y^{2}}\right)$
NOTE: you will see many values for θ but you will use $0 \leq \theta \leq 2 \pi$ when you are asked to find θ. Also, when referring to complex numbers you will use $r \geq 0$.

EXAMPLES: Plot z and write z in polar form.

1) $z=3-3 i$
2) $\mathrm{z}=3 \mathrm{i}$
3) $\mathrm{z}=\sqrt{3}-i$
4) Plot and write in standard form $z=2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)$

PRODUCTS AND QUOTIENTS

$\mathrm{z}_{1}=\mathrm{r}_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $\mathrm{z}_{2}=\mathrm{r}_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$
PRODUCT OF 2 COMPLEX NUMBERS: $\mathrm{z}_{1} \mathrm{z}_{2}=\mathrm{r}_{1} \mathrm{r}_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+\operatorname{isin}\left(\theta_{1}+\theta_{2}\right)\right]$
proof: $r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \times r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$
$=r_{1} r_{2}\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right)$
$=\mathrm{r}_{1} \mathrm{r}_{2}\left(\cos \theta_{1} \cos \theta_{2}+\mathrm{i} \cos \theta_{1} \sin \theta_{2}+\mathrm{i} \sin \theta_{1} \cos \theta_{2}+\mathrm{i}^{2} \sin \theta_{1} \sin \theta_{2}\right)$
$=r_{1} r_{2}\left(\cos \theta_{1} \cos \theta_{2}+i \cos \theta_{1} \sin \theta_{2}+i \sin \theta_{1} \cos \theta_{2}+(-1) \sin \theta_{1} \sin \theta_{2}\right)$
$=r_{1} r_{2}\left(\cos \theta_{1} \cos \theta_{2}+i \cos \theta_{1} \sin \theta_{2}+i \sin \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right)$
$=$
$=$

QUOTIENT OF 2 COMPLEX NUMBERS: $\mathrm{z}_{2} \neq 0$
$\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]$

EXAMPLES

Given $\mathrm{z}=3[\cos (-\pi / 2)+\mathrm{i} \sin (-\pi / 2)]$ and $\mathrm{w}=2[\cos (2 \pi / 3)+\operatorname{isin}(2 \pi / 3)]$.

1) Find $z w$.
2) Find $\frac{z}{w}$.
3) Find $\frac{w}{z}$.

POWERS

$z^{n}=r^{n}(\cos n \theta+i \sin n \theta), n \geq 1$ (you can use an inductive proof to prove this one)
n is a positive integer
Recall meaning of $\mathrm{x}^{1 / n}$
EXAMPLES

1) If $z=\sqrt{2}\left(\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}\right)$ find z^{8}.
2) If $z=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$ find z^{5}.

FINDING COMPLEX ROOTS

Let $z=r(\cos \theta+i \sin \theta)$. if $\mathrm{z} \neq 0$, there are n distinct complex roots of z , given by the formula:

$$
z_{k}=\sqrt[n]{r}\left[\cos \left(\frac{\theta}{n}+\frac{2 k \pi}{n}\right)+i \sin \left(\frac{\theta}{n}+\frac{2 k \pi}{n}\right)\right] \text { where } \mathrm{k}=0,1,2, \ldots, \mathrm{n}-1
$$

EXAMPLE 1: Find all the values of $z^{1 / 2}$ for $\mathrm{z}=16 \mathrm{i}$.
Solution:
$1^{\text {st }}$ you need to find r and θ for z . Graph these and it is easy to see what these values are. (Remember: the standard form of $\mathrm{z}=0+16 \mathrm{i}$ which is plotted as $(0,16)$).

So $r=16$ and $\theta=\pi / 2$. Also note that for this problem $n=2$ (since we are finding square roots).

There will be TWO square roots of any complex number.
To use the formula above we will need to find θ / n. And we will use $\mathrm{k}=0$ to find the $1^{\text {st }}$ root and $\mathrm{k}=1$ to find the $2^{\text {nd }}$.

$$
\frac{\theta}{n}=\frac{\frac{\pi}{2}}{2}=\frac{\pi}{2} \cdot \frac{1}{2}=\frac{\pi}{4}
$$

Using $\mathrm{k}=0$, the values we have already found, and plugging into the formula we get:

$$
z_{0}=\sqrt{16}\left(\cos \left(\frac{\pi}{4}+\frac{2(0) \pi}{2}\right)+i \sin \left(\frac{\pi}{4}+\frac{2(0) \pi}{2}\right)\right)=4\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)
$$

Using $\mathrm{k}=1$, the values we have already found, and plugging into the formula we get:

$$
z_{1}=\sqrt{16}\left(\cos \left(\frac{\pi}{4}+\frac{2(1) \pi}{2}\right)+i \sin \left(\frac{\pi}{4}+\frac{2(1) \pi}{2}\right)\right)=4\left(\cos \left(\frac{\pi}{4}+\frac{4 \pi}{4}\right)+i \sin \left(\frac{\pi}{4}+\frac{4 \pi}{4}\right)\right)=4\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right)
$$

EXAMPLE 2: Find all the values of $z^{1 / 3}$ for $\mathrm{z}=16 \mathrm{i}$.
Note the $\mathrm{r} \& \theta$ are the same as in the first example. BUT, now we are finding cube roots so $\mathrm{n}=3$.

Also, there will be THREE cube roots of any complex number. So we will use the formula again making the change in " n " and using $\mathrm{k}=0, \mathrm{k}=1$, and $\mathrm{k}=2$.
$r=16$, and $\theta=\pi / 2$, and $n=3$
$\frac{\theta}{n}=\frac{\frac{\pi}{2}}{3}=\frac{\pi}{2} \cdot \frac{1}{3}=\frac{\pi}{6}$
Using $\mathrm{k}=0$, the values we have already found, and plugging into the formula we get
$z_{0}=\sqrt[3]{16}\left(\cos \left(\frac{\pi}{6}+\frac{2(0) \pi}{3}\right)+i \sin \left(\frac{\pi}{6}+\frac{2(0) \pi}{3}\right)\right)=2 \sqrt[3]{2}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
Using $k=1$, the values we have already found, and plugging into the formula we get:
$z_{1}=\sqrt[3]{16}\left(\cos \left(\frac{\pi}{6}+\frac{2(1) \pi}{3}\right)+i \sin \left(\frac{\pi}{6}+\frac{2(1) \pi}{3}\right)\right)=2 \sqrt[3]{2}\left(\cos \left(\frac{\pi}{6}+\frac{2 \pi}{3}\right)+i \sin \left(\frac{\pi}{6}+\frac{2 \pi}{3}\right)\right)=$
$2 \sqrt[3]{2}\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$

Using $\mathrm{k}=2$, the values we have already found, and plugging into the formula we get:
$z_{2}=2 \sqrt[3]{2}\left(\cos \left(\frac{\pi}{6}+\frac{2(2) \pi}{3}\right)+i \sin \left(\frac{\pi}{6}+\frac{2(2) \pi}{3}\right)\right)=2 \sqrt[3]{2}\left(\cos \left(\frac{9 \pi}{6}\right)+i \sin \left(\frac{9 \pi}{6}\right)\right)$
$=2 \sqrt[3]{2}\left(\cos \left(\frac{3 \pi}{2}\right)+i \sin \left(\frac{3 \pi}{2}\right)\right)$

I have left a few algebra/pre-algebra steps for you to fill in. Come see me if you need help!!
(Such as, why $\sqrt[3]{16}=2 \sqrt[3]{2}$?)

EXAMPLE 3: Given $z=4 \sqrt{3}-4 i$. Find all the values of $z^{1 / 2}$.

NOTE: eGrade will ask for only one root.

