8.2

Polar Equations and Graphs

eGrade questions 135-142
We will use some helpful identities:
Equal values: $\sin \theta=\sin (\pi-\theta)$
$\cos \theta=\cos (-\theta)$
Opposites: $\cos \theta$ and $\cos (\pi-\theta), \cos \theta$ and $\cos (\pi+\theta), \sin \theta$ and $\sin (\pi+\theta), \sin \theta$ and $\sin (-\theta)$
Symmetry

1) Origin
2) x-axis
3) y-axis

Check for symmetry for:

1) $r=4 \sin \theta$
2) $r=6+4 \cos \theta$
3) $r=2-3 \sin \theta$
4) $r=2 \sin 2 \theta$
5) $r=2 \cos 3 \theta$
6) $r=4 \cos \theta$

Polar Graphs

Circles

a is a constant $(a \neq 0$, but note that a may be positive or negative)
$\mathrm{r}=\mathrm{a} \quad$ circle with radius $|\mathrm{a}|$ centered at the origin
$\mathrm{r}=\mathrm{a} \cos \theta \quad$ circle with center on the x -axis and tangent with respect to the origin
$\mathrm{r}=\mathrm{a} \sin \theta \quad$ circle with center on the y -axis and tangent with respect to the origin
Cardiod (looks like a heart)
$\mathrm{r}=\mathrm{a} \pm \mathrm{a} \cos \theta$ symmetric with respect to x -axis
$\mathrm{r}=\mathrm{a} \pm \mathrm{a} \sin \theta$ symmetric with respect to y -axis
Examples: $\quad \mathrm{r}=2-2 \cos \theta$

$$
\mathrm{r}=\sin \theta-1
$$

Limaçon (without inner circle)
$|\mathrm{a}|>|\mathrm{b}| \neq 0$
$\mathrm{r}=\mathrm{a} \pm \mathrm{b} \cos \theta$ symmetric with respect to x -axis
$\mathrm{r}=\mathrm{a} \pm \mathrm{b} \sin \theta$ symmetric with respect to y -axis
Examples: $r=3+2 \cos \theta$
$\mathrm{r}=\sin \theta-2$
Limaçon (with inner circle)
$|\mathrm{b}|>|\mathrm{a}| \neq 0$
$\mathrm{r}=\mathrm{a} \pm \mathrm{b} \cos \theta$ symmetric with respect to x -axis
$\mathrm{r}=\mathrm{a} \pm \mathrm{b} \sin \theta$ symmetric with respect
to y-axis
Examples: $\quad r=3 \cos \theta-2$
$\mathrm{r}=1+2 \sin \theta$

4 Petal Roses

$r=a \cos 2 \theta \quad$ all types of symmetry max distance from origin along axes
$r=a \sin 2 \theta \quad$ all types of symmetry max distance from origin along 45° lines

Examples
$\mathrm{r}=-2 \cos 2 \theta$
$\mathrm{r}=\sin 2 \theta$

Spirals

$\mathrm{r}=\mathrm{a} \theta$
Use only $\theta \geq 0$ when you try to match points.

Graph:

2)	$=-\theta$				
θ	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$
r					

Other graphs:

1) $\operatorname{rcos} \theta=-2$
2) $\theta=\pi / 4$
