8.2 Polar Equations and Graphs

eGrade questions 135-142

We will use some helpful identities:

Equal values: $\sin \theta = \sin (\pi - \theta)$ $\cos \theta = \cos (-\theta)$ Opposites: $\cos \theta$ and $\cos (\pi - \theta)$, $\cos \theta$ and $\cos (\pi + \theta)$, $\sin \theta$ and $\sin (\pi + \theta)$, $\sin \theta$ and $\sin (-\theta)$

Symmetry

1) Origin

2) x-axis

3) y-axis

Check for symmetry for:

1) $r = 4\sin\theta$

2) r = $6 + 4\cos\theta$

3) $r = 2 - 3\sin\theta$

4) $r = 2 \sin 2\theta$

5) $r = 2\cos 3\theta$

6) r = $4\cos\theta$

Polar Graphs

Circles

a is a constant	$(a \neq 0, but note that a may be positive or negative)$
$\mathbf{r} = \mathbf{a}$	circle with radius a centered at the origin
$r = a \cos \theta$	circle with center on the x-axis and tangent with respect to the origin
$\mathbf{r} = \mathbf{a} \sin \theta$	circle with center on the y-axis and tangent with respect to the origin

Cardiod (looks like a heart)

 $r = a \pm a \cos \theta$ symmetric with respect to x-axis $r = a \pm a \sin \theta$ symmetric with respect to y-axis

Examples: $r = 2 - 2 \cos \theta$ $r = \sin \theta - 1$

Limaçon	(without inner circle)	Limaçon	(with inner circle)	
a > b ≠ 0	0	b > a ≠	0	
$r = a \pm b \cos \theta$	θ symmetric with respect to x-axis	$r = a \pm b co.$	s θ symmetric with respect	
$r = a \pm b \sin \theta$ symmetric with respect to y-axis		to x-axis		
		$r = a \pm b sin$	θ symmetric with respect	
Examples:	$r = 3 + 2 \cos \theta$	to y-axis		
	$r = sin \theta - 2$			
		Examples:	$r = 3 \cos \theta - 2$	
			$r = 1 + 2sin \theta$	

3 Petal Roses

4 Petal Roses

symmetric with respect to x-axis symmetric with respect to y-axis	$r = a \cos 2\theta$ all types of symmetry – max distance from origin along axes
$r = -2 \cos 3\theta$ r = sin 30	$r = a sin 2\theta$ all types of symmetry – max distance from origin along 45° lines
	Examples
	$r = -2 \cos 2\theta$ r = sin 20
	Use only $\theta \ge 0$ when you try to match points.
	symmetric with respect to x-axis symmetric with respect to y-axis $r = -2 \cos 3\theta$ $r = \sin 3\theta$

Graph:

1) $r = \theta$							
θ	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$		
r							
	I	I	I	I	I		
2) "	- O						
2) I A	0	-16	-/4	-/2	-/2		
0	U	π/6	π/4	π/3	$\pi/2$		
r							
1							

Other graphs:

1) $\operatorname{rcos} \theta = -2$ 2) $\theta = \pi/4$