Section 7.1 Solving Right Triangles

Use Pythagorean Theorem and triangle definitions to find measure of missing sides in a right triangle.

B
a

b
C

$$
\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}
$$

$$
\sin A=a / c
$$

$$
\cos \mathrm{A}=\mathrm{b} / \mathrm{c}
$$

$$
\tan \mathrm{A}=\mathrm{a} / \mathrm{b}
$$

$$
\sin B=b / c
$$

$$
\cos \mathrm{B}=\mathrm{a} / \mathrm{c}
$$

$$
\tan \mathrm{B}=\mathrm{b} / \mathrm{a}
$$

Example 1 Given right triangle $\mathrm{ABC} w /$ hypotenuse c , if $\mathrm{a}=5, \mathrm{~b}=4$, find c .

Example 2 A right triangle has an 8 inch hypotenuse. If one angle is 30°, find the length of each leg.
a) $8 \cos 30^{\circ}, 8 \sin 30^{\circ}$
b) $8 / \cos 30^{\circ}, 8 / \sin 30^{\circ}$
c) $\cos 30^{\circ} / 8, \sin 30^{\circ} / 8$
d) $8 / \cos 60^{\circ}, 8 / \sin 60^{\circ}$

$$
\begin{array}{ll}
& \alpha=A \\
\text { NOTE: } & \beta=B \\
& \gamma=C
\end{array}
$$

Example 3 In the right triangle ABC , if hypotenuse $\mathrm{c}=1$ and $\mathrm{b}=\mathrm{x}$, then $(\cos \alpha)(\cot \beta)=$
a) $\sqrt{1-x^{2}}$
b) $\sqrt{1+x^{2}}$
c) $\frac{x^{2}}{\sqrt{1-x^{2}}}$
d) $\frac{1}{\sqrt{1-x^{2}}}$
e) None of these

Example 4 A right triangle contains an angle of $\pi / 8$ radians. If one leg is 3 meters, what is the length of the hypotenuse? (Hint: Two answers are possible.)
a) $3 \cos (\pi / 8), 3 \sin (\pi / 8)$
b) $3 / \cos (\pi / 8), 3 / \sin (\pi / 8)$
c) $\cos (\pi / 8) / 3, \sin (\pi / 8) / 3$
d) $3 \cos (3 \pi / 8), 3 \sin (3 \pi / 8)$

