Section 6.1 Verifying Identities

In higher math courses, including calculus, it is sometimes necessary to rewrite trigonometric expressions in different forms. In order to do this you may:

- 1) use known identities
- 2) perform algebraic operations
- 3) use acceptable algebraic manipulations such as "multiplying by the conjugate" or combining fractions

Recall these identities that may be used:

Reciprocal identities		
$\csc\theta = \frac{1}{\sin\theta}$	$\sec\theta = \frac{1}{\cos\theta}$	$\cot\theta = \frac{1}{\tan\theta}$
Cofunction identities		
If A and B are complimentary	/:	
$\sin A = \cos B$	$\tan A = \cot B$	$\sec A = \csc B$
Written another way: $\sin \theta = \cos (\pi/2 - \theta)$ $\cos \theta = \sin (\pi/2 - \theta)$	$\tan \theta = \cot (\pi/2 - \theta)$ $\cot \theta = \tan (\pi/2 - \theta)$	sec $\theta = \csc(\pi/2 - \theta)$ csc $\theta = \sec(\pi/2 - \theta)$
Pythagorean Identities $\cos^2\theta + \sin^2\theta = 1$	$1 + \tan^2 \theta = \sec^2 \theta$	$\cot^2\theta + 1 = \csc^2\theta$
Even/Odd Identities $cos(-\theta) = cos \theta$ $sec(-\theta) = sec \theta$	$sin(-\theta) = -sin \theta$ $csc(-\theta) = -csc \theta$	$\tan (-\theta) = -\tan \theta$ $\cot (-\theta) = -\cot \theta$
Useful Algebra formula: $(A - B)(A + B) = A^2 - B^2$		

 $\frac{\cos\theta}{\sin\theta} = \cot\theta$ **ALSO USEFUL:**

 $\frac{\sin\theta}{\cos\theta} = \tan\theta$

EXAMPLES – For each example show the left side is equal to the right side.

1) $(1 + \sec \theta)(1 - \sec \theta) = -\tan^2 \theta.$

2)
$$1 - \frac{\cos^2 \theta}{1 - \sin \theta} = -\sin \theta$$

3)
$$\csc \theta \cdot \cos \theta = \cot \theta$$

4)
$$\frac{\sec\theta}{\csc\theta} + \frac{\sin\theta}{\cos\theta} = 2\tan\theta$$

5)
$$\frac{1-\sin\theta}{1+\sin\theta} = (\sec\theta - \tan\theta)^2$$

6)
$$\frac{\tan\theta - \cot\theta}{\tan\theta + \cot\theta} = \sin^2\theta - \cos^2\theta$$

7)
$$1 - \frac{\sin^2(-\theta)}{1 + \cos(-\theta)} = \cos\theta$$

EGRADE PROBLEMS

8) Select ALL the equations which are identities
A) none of these are identities
B) cot² θ = csc² θ - 1

C)
$$\frac{\sin(-\theta)}{\tan \theta} = -\cos \theta$$

D) $\frac{\cos \theta}{\cos \theta - 1} = -1$

9) Select ALL the equations which are NOT identities

A) all of these are identities $\cot \theta = 1$

B)
$$\frac{\cot \theta - 1}{\cot \theta} = -1$$

- C) $\sec(-\theta) \cdot \cot \theta = -\csc \theta$
- D) $\cos^2 \theta = 1 \sin^2 \theta$