Section 5.6
Amplitude, Period, Phase Shift
Draw $y=\sin x$. Then draw $y=\cos x$.

Note that one complete cycle, or period, occurs from 0 to 2π.

Now look at $\mathrm{y}=\sin (1 / 2) \mathrm{x}$.

What is the period for this graph?

PERIOD for $\mathrm{y}=A \cos (\mathrm{Bx}), \mathrm{y}=A \sin (\mathrm{Bx}), \mathrm{y}=A \sec (B x)$, and $\mathrm{y}=A \csc (B x)$ is: $\mathrm{T}=\frac{2 \pi}{|B|}$
And AMPLTITUDE is: $|\mathrm{A}|$
PERIOD for $\mathrm{y}=\operatorname{Atan}(\mathrm{Bx})$ and $\mathrm{y}=\operatorname{Acot}(\mathrm{Bx})$ is: $\quad \mathrm{T}=\frac{\pi}{|B|}$

EXAMPLES: Find the amplitude and period for each function.

1) $y=-2 \sin 3 t$
2) $y=3 \cos (-2 t)$
3) $y=2 \cos t$
4) $y=2 \sin (t+\pi / 2)$

Now, let's graph the last two functions on the same axis.

Compare $\mathrm{y}=2 \sin (\mathrm{t}+\pi / 4)$ with $\mathrm{y}=2 \cos (\mathrm{t}-\pi / 4)$.

PERIOD \& PHASE SHIFTS

For $\mathrm{y}=\mathrm{A} \sin (\mathrm{Bx}-\mathrm{C}), \mathrm{y}=\mathrm{A} \cos (\mathrm{Bx}-\mathrm{C}), \mathrm{y}=\mathrm{Asec}(\mathrm{Bx}-\mathrm{C})$, and $\mathrm{y}=\mathrm{Acsc}(\mathrm{Bx}-\mathrm{C})$ and $\mathrm{B}>0$
the phase shift is found by solving: $\mathrm{Bx}-\mathrm{C}=0$

EXAMPLES- Find the amplitude, period, and phase shift for each function.

1) $y=3 \sin (2 \pi x-\pi)$
2) $y=-2 \cos (3 x+\pi)$

In working with function where $\mathrm{B}<0$ it will be helpful to factor out -1 and then use the fact that the function is even or odd.
3) $y=\cos (-2 \pi x-\pi)$
4) $y=-2 \sin (-3 x+\pi / 2)$

Now let's work some EGRADE problems.

