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A B S T R A C T

Neuronal polarization, a process wherein nascent neurons develop a single long axon and multiple short
dendrites, can occur within in vitro cell cultures without environmental cues. This is an apparently random
process in which one of several short processes, called neurites, grows to become long, while the others
remain short. In this study, we propose a minimum model for neurite growth, which involves bistability and
random excitations reflecting actin waves. Positive feedback is needed to produce the bistability, while negative
feedback is required to ensure that no more than one neurite wins the winner-takes-all contest. By applying
the negative feedback to different aspects of the neurite growth process, we demonstrate that targeting the
negative feedback to the excitation amplitude results in the most persistent polarization. Also, we demonstrate
that there are optimal ranges of values for the neurite count, and for the excitation rate and amplitude that best
maintain the polarization. Finally, we show that a previously published model for neuronal polarization based
on competition for limited resources shares key features with our best-performing minimal model: bistability
and negative feedback targeted to the size of random excitations.
1. Introduction

A nervous system is composed of interconnected neurons, each of
which has multiple short dendrites that receive signals from upstream
neurons and a single long axon that transmits signals to downstream
neurons. Early in development, however, a neuron has multiple short
neurites of similar lengths that extend and retract repeatedly and
apparently randomly (coined by Dotti et al. (1988) as Stage 2). These
neurites later differentiate into dendrites and a single axon (Fig. 1). The
symmetry-breaking process by which a single axon emerges from the
neurites (Stage 3) is referred to as neuronal polarization. Surprisingly,
this process does not require release of growth factors from target
cells, as neuronal polarization has been shown to occur within in vitro
hippocampal neuron cell cultures in which there are no growth factor
gradients guiding the selection process (Dotti et al., 1988; Wissner-
Gross et al., 2013). The symmetry breaking appears to be random,
and in experiments where the initial axon was cleaved off, a new one
emerged from one of the other neurites (Goslin and Banker, 1989). Sub-
sequent experimental manipulations demonstrated that it was possible
for any neurite to become the winning neurite in the winner-takes-all
contest (Takano et al., 2017a; Yamamoto et al., 2012). It has been
shown that even in the in vivo setting where growth factor gradients
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are present, the developing neurons go through these stages, lasting
about a day, characterized by growth and retraction of neurites with
a subsequent symmetry breaking event (Tabata and Nakajima, 2003;
Noctor et al., 2004). In this case, growth factor gradients influence the
selection process, and indeed the random growth and retraction of neu-
rites is thought to be a way for the neurites to explore the environment
to seek out the growth factors (called neurotrophins). Nonetheless, even
in vivo there is a winner-takes-all process that takes place, with bias
provided by neurotrophin gradients.

There have been many studies aimed at understanding the biophys-
ical mechanism of the neuronal polarization process (Inagaki et al.,
2011; Banker, 2018; Takano et al., 2019, 2017a; Arimura and Kaibuchi,
2007; Winans et al., 2016; Yogev and Shen, 2017). Several potential
mechanisms have been identified, and it is clear that the process
involves positive feedback signals to promote the growth of the axon
as well as negative feedback signals to prevent the emergence of a
second axon (Fivaz et al., 2008; Namba et al., 2015; Takano et al.,
2019; Toriyama et al., 2010; Yogev and Shen, 2017). In this article, we
focus on the polarization process that occurs in vitro, without external
neurotrophin gradients, using a minimal model for the winner-take-all
selection process that incorporates positive feedback and explores the
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Fig. 1. Neuronal polarization. A nascent neuron (stage 2) has several short neurites that extend and retract repeatedly and randomly (left). Later, during stage 3, one of the
neurites develops into an axon while others become dendrites (right).
efficacy of several different negative feedback mechanism in generating
persistent neuronal polarization.

The model is constructed based on the hypothesis that the dynamics
underlying neurite growth and retraction are such that the system
is bistable. That is, each neurite has two stable equilibria, short and
long. The bistability is a product of the positive feedback. A second
hypothesis is that the selection process is truly random, so no neurite
is biased towards winning the competition to become an axon. We then
explore three mechanisms of negative feedback. One of these involves
the retraction rate that is common to all neurites. The others involve a
stochastic term that reflects randomly-timed and uniformly distributed
actin waves which are known to be key to neurite elongation; each actin
wave provides growth spurts by locally increasing the neurite volume to
allow for microtubule polymerization (Winans et al., 2016; Inagaki and
Katsuno, 2017a; Ruthel and Banker, 1999a). We consider the effects
of making neurite retraction, actin wave magnitude, and actin wave
frequency dependent on the combined length of the neurites such that
increased length increases the retraction rate, or decreases the actin
wave magnitude or frequency. In all cases, the negative feedback is
unbiased.

The results demonstrate that targeting the negative feedback to
the stochastic growth magnitude (i.e., the actin wave term) results
in the most persistent polarized system. They also demonstrate that
having more than 2 neurites, but less than some upper bound, is
optimal for achieving and maintaining neuronal polarization. This is
consistent with the finding that most nascent neurons have between 2
and 10 neurites (Wissner-Gross et al., 2013). One model for neuronal
polarization is based on competition for limited resources, including
growth factor (Toriyama et al., 2010). In the last section of Results,
we demonstrate that a simplified model based on this limited-resource
model contains the two elements that we find to be most successful
at achieving persistent polarization: bistability and length-dependent
reduction in the amplitude of actin-wave-driven stochastic excitation .

2. The minimal model

We consider a small population of 𝑅 neurites, each with length 𝐿𝑖,
𝑖 = 1, 2,… , 𝑅. The basic model contains a term for positive feedback, a
retraction term, and a stochastic term reflecting randomly-timed actin
waves. The negative feedback is included later. The basic model is:

d𝐿𝑖
d𝑡

= 𝑔
𝐿2
𝑖

𝐿2
𝑖 +𝐾2

− 𝑟𝐿𝑖 +
∑

𝑛
𝐴𝛿(𝑡 − 𝑡(𝑖)𝑛 (𝜆)), 𝑖 = 1, 2,… , 𝑅. (1)

The first term reflects positive feedback through intracellular signal-
ing (Arimura and Kaibuchi, 2007; Cheng et al., 2011; Inagaki et al.,
2011; Takano et al., 2019; Namba et al., 2015; Yogev and Shen, 2017),
length-dependent diffusion of polarity effectors (Schelski and Bradke,
2017; Toriyama et al., 2010; Naoki et al., 2011), and stabilization of
microtubules (Gomis-Rüth et al., 2008; Farías et al., 2019). Positive
feedback is an essential ingredient of bistability (Alon, 2020). The
second term provides a constant rate of neurite retraction, reflect-
ing the retraction that occurs in all neurites between the arrival of
actin waves (Winans et al., 2016). The last term includes a sum of
2

Fig. 2. The bistability in the neurite growth model interpreted as a double well
potential and the effects of negative feedback. (A) The double well potential shows the
bistability in neuronal polarization. Due to random excitations, a particle representing
a neurite may cross the potential barrier, located at position 𝐿𝑏. (B) The increased
retraction rate due to the formation of an axon (gray dot) destroys the double well
potential for a short neurite (black dot). (C) Under the excitation rate reduction,
the particle falls back significantly between two excitations. (D) Under the excitation
amplitude reduction, each pulse only helps the particle climb a short distance.

delta functions that describes sudden neurite elongation due to actin
waves (Winans et al., 2016; Inagaki and Katsuno, 2017b; Ruthel and
Banker, 1999b). Each wave induces a jump in length of size 𝐴. The
term 𝑡(𝑖)𝑛 (𝜆) is the time when the tip of the 𝑖th neurite receives the 𝑛th
wave, which follows a Poisson process of rate 𝜆 (this is also the average
number of waves generated per unit time).

With our minimal model, a neurite can be thought of as a particle
in a double-well potential, as shown in Fig. 2A. The left potential well
corresponds to the state of being a short neurite, and the right well
corresponds to the state of being a long neurite that will become an
axon. The actin waves then provide random excitations that can drive
the particle across the potential barrier at location 𝐿𝑏, marking the
establishment of an axon. All nascent neurons have short neurites, so
they begin in the left potential well.

Since only one neurite develops into the axon of a typical neuron,
the growth of other neurites should be suppressed to avoid having
multiple axons. One way to incorporate this negative feedback into the
model is to have the retraction rate 𝑟 increase as the neurites get longer.
For simplicity, we use the following length-dependent retraction rate:

𝑟 = 𝑟0

(

1 + 𝛼
𝑅
∑

𝑖=1
𝐿𝑖

)

, (2)

where 𝑟0 is a basal retraction rate and 𝛼 is a parameter that controls
the degree of suppression. The retraction rate is the same for every
neurite, so the suppression is unbiased. Reducing the growth rate 𝑔 in
an unbiased way will give qualitatively similar results. Targeting the
negative feedback to the retraction rate has the effect of eliminating
the upper equilibrium state for each of the short neurites (Fig. 2B).
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Fig. 3. The dynamics of the two-neurite system when negative feedback targets the retraction rate. (A) The long-term probability density of the neurite lengths exhibits two peaks.
The mean transition time between the peaks is of 𝑂(102), which is estimated by the mean time to enter [4, 8] × [0, 2] from (0, 6). (B) The phase portrait of Eq. (5) shows two stable
equilibria close to the peaks of the stationary probability density, corresponding to two polarized states. The 𝐿1-nullclines (black) and 𝐿2-nullclines (gray) intersect at 5 additional
locations, one of which (gray point) is a stable equilibrium. (C) Monte Carlo simulation shows frequent alternations in the lengths of neurite 1 (black) and neurite 2 (gray). To
study the effect of the increased retraction alone, we set 𝜆 = 𝜆0 and 𝐴 = 𝐴0. Other parameter values are given in Table 1.
Biologically, the increased retraction rate reflects the collection of
inhibitory signals in the cell body sent from the neurite tips.

Since actin waves drive neurite growth, negative feedback can also
be implemented by suppressing the generation of the waves. In our
model, this is done by reducing the excitation rate 𝜆 according to the
following equation:

𝜆 =
𝜆0

1 + 𝜇
∑𝑅

𝑖=1 𝐿𝑖
, (3)

where 𝜆0 is a basal excitation rate and 𝜇 controls the degree of re-
duction. Again, the inhibition is unbiased because the actin waves are
shared equally among neurites. Under the rate reduction, a neurite
retracts significantly between two waves, so its net growth is small
(Fig. 2C). A length-dependent decrease in actin wave frequency is con-
sistent with the observation that actin waves are less frequent once an
axon is formed (Ruthel and Banker, 1999a). This inhibitory mechanism
was also implemented in a previous mathematical model (Naoki et al.,
2011; Naoki and Ishii, 2014).

Finally, we implement negative feedback by reducing the amplitude
𝐴 as follows:

𝐴 =
𝐴0

1 + 𝜙
∑𝑅

𝑖=1 𝐿𝑖
, (4)

where 𝐴0 is a basal excitation amplitude and 𝜙 controls the degree
of reduction. In terms of the particle in a double well potential, a
reduced amplitude means that more excitations will be required to
cross the potential barrier (Fig. 2D). Biologically, actin waves carry
growth factors produced at the cell body, so amplitude reduction could
reflect depletion of the growth factors. A similar amplitude reduction
mechanism was adopted in a previous modeling study (Toriyama et al.,
2010).

3. Persistence of polarization with different forms of negative
feedback

For mathematical simplicity, we consider a nascent neuron with two
neurites (𝑅 = 2) in this section. In fact, neurons with two neurites were
also observed in experiments (Wissner-Gross et al., 2013). For such
a neuron, we study the effect of each of the three negative feedback
mechanisms from three perspectives: (1) the joint probability density
of the lengths, denoted by 𝑝(𝐿1, 𝐿2), (2) the underlying deterministic
phase portraits, and (3) the stochastic dynamics. To analyze the proba-
bility density and stochastic dynamics, we employ two complementary
methods: the generalized cell-mapping method (GCM) and Monte Carlo
(MC) simulations, which are explained in detail in Appendix. The
GCM allows us to efficiently determine the probability density of the
lengths and its long-term limit. However, when dealing with neurons
3

Table 1
List of parameters and their values used in the study of different negative feedback
mechanisms.

Notation Definition Value

𝑔 Maximum growth rate 10
𝐾 Half activation level

√

21
𝑟0 Basal retraction rate 1
𝛼 Feedback coefficient of increased retraction 0.026
𝜆0 Basal excitation rate 1
𝜇 Feedback coefficient of reduced excitation rate 0.4
𝐴0 Basal excitation amplitude 1
𝜙 Feedback coefficient of reduced excitation amplitude 0.4
𝐿𝑏 Location of the potential barrier 3

possessing more than two neurites, the GCM becomes computationally
expensive. In such cases, the MC method proves to be more efficient,
particularly when the timescale is short. Additionally, the MC method
unveils neurite dynamics that are not captured by the probability
density obtained through the GCM. Nevertheless, the MC method is
less effective than the GCM in analyzing the long-term behavior of the
probability density.

We begin by considering negative feedback through a length-
dependent increase in the neurite retraction rate (Eq. (2)). The long-
term joint probability distribution of the lengths exhibits two peaks,
which indicates that the system spends most of the time near these
peaks (Fig. 3A). Each peak represents a state with a long neurite and a
short neurite, which we refer to as a polarized state. The formation of
the peaks can be inferred from the following deterministic system:

d𝐿𝑖
d𝑡

= 𝑔
𝐿2
𝑖

𝐿2
𝑖 +𝐾2

− 𝑟𝐿𝑖 +
1
2
𝐴𝜆, 𝑖 = 1, 2, (5)

where the term 1
2𝐴𝜆 is the time average of the Poissonian term in Eq.

(1). The factor 1∕2 accounts for the fact that the total number of actin
waves is divided between the two neurites. We continue to use 𝐿𝑖 for
the neurite lengths in this system, though they are no longer random
variables. Fig. 3B shows nullclines and the vector field for Eq. (5). There
are seven equilibria, three of which are stable. Two correspond to the
polarized state and are near the peaks of the probability distribution,
while one near the origin corresponds to a state in which both neurites
are short. The basin of attraction of the latter is small, so in the
stochastic system described next trajectories leave this region quickly.

The bimodal probability density does not necessarily imply a firmly
established axon. Monte Carlo simulations show that both neurite
lengths alternate between two levels. That is, the system makes fre-
quent transitions between the two polarized states (Fig. 3C). This is
further indicated by the short mean transition time from one peak to
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Fig. 4. The dynamics of the two-neurite system with negative feedback implemented through a length-dependent reduction in the excitation rate. (A) The probability density at
𝑡 = 400 shows peaks at the two polarized states as well as a peak in which both neurites are long. The mean transition time from a polarized state to a nonpolarized state is
𝑂(103) time units, estimated by the mean time to reach [6, 10] × [6, 10] from (0, 8). (B) The phase portrait shows two stable equilibria at polarized states (black circles), another in
which both neurites are short (gray), and another in which both are long (black). (C) A Monte Carlo simulation shows that both neurites become long at 𝑡 ≈ 1000. To study the
effect of the excitation rate reduction alone, we set 𝑟 = 𝑟0 and 𝐴 = 𝐴0. Other parameter values are given in Table 1.
Fig. 5. The dynamics of the two-neurite system with negative feedback implemented through both a length-dependent increase in the retraction rate and a decrease in the
excitation rate. (A) The long-term probability density is bimodal with two polarized states. The mean transition time between these states is 𝑂(103). (B) The phase portrait shows
two stable polarized equilibria and a stable equilibrium with small basin of attraction in which both neurites are short. (C) A Monte Carlo simulation shows the system flipping
between the two polarized states. We set 𝛼 = 0.02 and 𝐴 = 𝐴0 here. Other parameter values are given in Table 1.
the other (𝑂(102) time units; see Fig. 3A). Thus, a single polarized state
is not maintained when the negative feedback is implemented upon the
retraction rate.

We next explore the dynamics in which negative feedback is im-
plemented through length-dependent reduction in the excitation rate
as prescribed by Eq. (3). The joint probability density initially has
two peaks at the two polarized states. As time progresses, however,
the polarized peaks fade and a third peak corresponding to two long
neurites gains prominence (the top right peak in Fig. 4A). The mean
transition time from a polarized state to the nonpolarized state is 𝑂(103)
time units (Fig. 4A). All three states appear as stable equilibria in the
deterministic system, in addition to the stable equilibrium with a small
basin of attraction corresponding to two short neurites (Fig. 4B). A
Monte Carlo simulation shows the early development of a polarized
state, followed by a transition to a state with two long neurites at 𝑡 ≈
1000 (Fig. 4C). These results indicate that this form of negative feedback
is not effective at maintaining a persistent polarized state. Incorporating
both length-dependent increased retraction rate and reduced excitation
rate eliminates the two long-neurite state (Fig. 5A and B), but does not
prevent flipping between polarized states (Fig. 5C).

Finally, we consider negative feedback implemented through a
length-dependent reduction in the excitation amplitude as prescribed
by Eq. (4). Unlike the excitation rate reduction, the amplitude reduction
yields a bimodal probability density that develops almost immediately
(at 𝑡 = 𝑂(10), see Fig. 6A) and persists even at 𝑡 = 106 (to be explained
in the next section). A peak in which both neurites are long does not
appear until much later, and the mean transition time from a polarized
state to this nonpolarized state is 𝑂(109) (Fig. 6B), which is much larger
than the mean transition time when negative feedback is through rate
4

reduction. Biologically, this means that the polarized state persists long
enough that later stages of neuron development, including targeting of
the nascent axon to appropirate targets via neurotrophins, can occur.
Also, the system does not flip between the two polarized states, as
shown with a Monte Carlo simulation (Fig. 6C). These results indi-
cate that implementing negative feedback through a length-dependent
reduction in the excitation amplitude results in persistent neuronal
polarization.

4. Metastability resulting from different forms of negative feed-
back

We demonstrated above that regardless of the target of the negative
feedback, the system enters a polarized state for some time before
exiting to either (1) a different polarized state (i.e., flipping) or (2)
a nonpolarized state (i.e., a state in which both neurites are long).
However, the time that the system is in the polarized state varies
greatly with the different forms of negative feedback. In this section,
we examine why the persistence of the metastable polarized state is
so different with the different negative feedback mechanisms. For this,
we employ a tool called the 𝜖-committor, developed by Lindner and
Hellmann (2019). It provides an estimate of the probability that a
stochastic trajectory remains in a region of phase space for a duration
of 1∕𝜖, where 𝜖 is the rate at which the trajectory is moved into an
absorbing state connected to the region. A definition and description
of the calculation of the 𝜖-committor is given in the Appendix.

We focus on a region that encloses the upper left peak in any of the
bimodal probability densities in the previous section: 𝑅𝑆 = [0, 𝐿𝑏] ×
[𝐿 ,𝐿 ] in the phase space (see the Appendix for the definition of
𝑏 max
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Fig. 6. The dynamics of the two-neurite system with negative feedback implemented through a length-dependent decrease in the excitation amplitude. (A) The probability density
at 𝑡 = 106 is bimodal. (B) The addition of another peak in the probability distribution occurs much later, after 𝑂(109) time units. (C) A Monte-Carlo simulation shows a persistent
polarized state. To study the effect of the excitation amplitude reduction alone, we set 𝑟 = 𝑟0 and 𝜆 = 𝜆0. Other parameter values are given in Table 1.
Fig. 7. Metastability resulting from different forms of negative feedback. (A) Strength of attraction of the polarized state 𝑆 is measured by the 𝜖-committor 𝐶𝜖 . Within the time
window marked by the vertical dashed lines, 𝐶𝜖 is almost 1 when negative feedback is applied to the excitation amplitude, whereas it drops significantly when applied to the
excitation rate or retraction rate. (B) The mean escape time 𝑇𝑐 for a single neurite to surpass the threshold 𝐿𝑏 increases faster when the excitation amplitude 𝐴 is reduced (black)
than when the excitation rate 𝜆 is reduced (gray).
𝐿max). By definition, the 𝜖-committor corresponding to 𝑅𝑆 characterizes
the persistence of the polarized state in which 𝐿2 ≫ 𝐿1, for any of the
three negative feedback mechanisms. Denote this 𝜖-committor by 𝐶𝜖 .
For each form of negative feedback, we calculate 𝐶𝜖 at different values
of 𝜖. Fig. 7A shows that when the negative feedback is on the excitation
amplitude, 𝐶𝜖 ≈ 1 over a timescale of 108, meaning that with high
probability a trajectory starting in 𝑅𝑆 remains in 𝑅𝑆 during this period
of time. In contrast, 𝐶𝜖 falls to zero much earlier when the negative
feedback is on the excitation rate. This indicates that the system leaves
𝑅𝑆 quickly and explains the rapid transition from a bimodal probability
density to a unimodal probability density corresponding to two long
neurites (Fig. 4). 𝐶𝜖 starts to drop even earlier when the negative
feedback is on the retraction rate, and it reaches ≈ 0.4. This means that
the system spends about 40% of time in 𝑅𝑆 in the long run, consistent
with its flipping behavior. These 𝜖-committorresults demonstrate again
that applying the length-dependent negative feedback to the excitation
amplitude works best in maintaining a unique polarized state.

The difference in the variations of 𝐶𝜖 when negative feedback is on
excitation amplitude versus rate can also be quantified via the mean
escape time. That is, the time at which a trajectory in a polarized
state escapes to the other polarized state or to the nonpolarized state.
Consider a single neurite of length 𝐿 that follows Eq. (1). We use the
general cell-mapping method (see the Appendix) to calculate the mean
time that 𝐿, starting at 𝐿 = 0, exceeds 𝐿𝑏 for different values of 𝐴 and
𝜆 (mimicking the effects of negative feedback on either of these two
targets).
5

We find that the mean escape time (denoted by 𝑇𝑐) increases faster
as the excitation amplitude is reduced than when rate is reduced
(Fig. 7B). Therefore, reducing the excitation amplitude is more effective
than reducing excitation rate on keeping a trajectory within an attract-
ing basin. This explains the long persistence of the polarized state with
negative feedback upon excitation amplitude.

Finally, we estimate the probability of crossing the threshold 𝐿𝑏
starting from 𝐿 = 0 for a single neurite. To overcome retraction, the
neurite must receive at least 𝐿𝑏∕𝐴 excitations during a short period
(for simplicity, we assume that 𝐿𝑏∕𝐴 is an integer here, which is true
for the parameter values listed in Table 1. If 𝐿𝑏∕𝐴 is not an integer,
we need to round it up to the nearest integer. But this will not affect
our result qualitatively). Consider 𝜏 = 1∕𝑟, the timescale of retraction.
Let 𝑃𝑐 be the probability of having 𝐿𝑏∕𝐴 excitations during 𝜏, which
follows a Poisson distribution:

𝑃𝑐 =
(𝜆𝜏)

𝐿𝑏
𝐴 𝑒−𝜆𝜏

(

𝐿𝑏
𝐴

)

!
. (6)

With the Stirling’s Approximation for factorial

𝑛! =
√

2𝜋𝑛
( 𝑛
𝑒

)𝑛
, (7)

we get

ln(𝑃𝑐 ) =
𝐿𝑏

[

ln(𝜆𝜏) − ln
𝐿𝑏 + 1

]

− 1 ln
𝐿𝑏 − 𝜆𝜏 − 1 ln(2𝜋). (8)
𝐴 𝐴 2 𝐴 2
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Fig. 8. Probabilities of having 0, 1 and ≥ 2 long neurites when the negative feedback is targeted to the excitation amplitude. (A) Varying neurite number 𝑅, with 𝐴0 = 𝜆 = 1. (B)
Varying base amplitude 𝐴0, with 𝑅 = 4 and 𝜆 = 1. (C) Varying excitation rate 𝜆, with 𝑅 = 4 and 𝐴0 = 1. Each probability is obtained by running 2000 Monte Carlo simulation
trials up to time 10 000. For all simulations, 𝜙 = 0.1 and other parameter values are as in Table 1.
If the amplitude 𝐴 is reduced to 𝐴∕𝑚 (𝑚 > 1) and 𝜆 remains unchanged,
then

ln(𝑃𝑐 ) = 𝑚
𝐿𝑏
𝐴

[

ln(𝜆𝜏) + 1 − ln
𝐿𝑏
𝐴

− ln(𝑚)
]

− 1
2
ln

𝐿𝑏
𝐴

− 1
2
ln(𝑚)−𝜆𝜏 1

2
ln(2𝜋).

(9)

Thus, ln(𝑃𝑐 ) decreases faster than linear reduction. To see this more
clearly, we plug in the parameter values in Table 1, namely 𝐿𝑏 = 3,
𝐴 = 1, 𝜆 = 1, 𝜏 = 1∕𝑟 = 1, and get

ln(𝑃𝑐 ) = 3𝑚[1 − ln(3) − ln(𝑚)] − 1
2
ln(𝑚) − 1

2
ln(3) − 1

2
ln(2𝜋) − 1

∼ −3𝑚 ln(𝑚), for large 𝑚. (10)

On the other hand, if 𝐴 is unchanged and 𝜆 is reduced to 𝜆∕𝑚 (𝑚 > 1),
then

ln(𝑃𝑐 ) = −
𝐿𝑏
𝐴

ln(𝑚)+
𝐿𝑏
𝐴

ln(𝜆𝜏)− 𝜆𝜏
𝑚

−
𝐿𝑏
𝐴

(ln
𝐿𝑏
𝐴

−1)−
𝐿𝑏
𝐴

− 1
2
ln(2𝜋). (11)

With the parameter values mentioned above, we get

ln(𝑃𝑐 ) = −3 ln(𝑚) − 1
𝑚

− 3(ln(3) − 1) − 1
2
ln(3) − 1

2
ln(2𝜋)

∼ −3 ln(𝑚), for large 𝑚, (12)

where we can see that ln(𝑃𝑐 ) decreases with 𝑚 logarithmically. Thus, the
probability of crossing the threshold is much larger at small excitation
rate compared with the probability at a small excitation amplitude. One
can conclude from this that the persistence in a single polarized state
is greater when negative feedback is applied to excitation amplitude.

5. Polarization with more than two neurites

Most developing neurons have between 2 and 10 neurites (Wissner-
Gross et al., 2013). We next focus on the most effective form of
negative feedback, targeted to the excitation amplitude, in model sys-
tems with more than 2 neurites. Results are obtained through Monte
Carlo simulations, since the GCM approach to obtaining probability
distributions is computationally expensive at higher dimensions. We
seek to determine how the number of neurites 𝑅, as well as excitation
amplitude and frequency, impact the probability of obtaining a single
persistent polarized state.

The first set of results shows that the probability of obtaining a
persistent polarized state first rises and then falls with the number of
neurites, and the probability is almost 1 when 𝑅 is from 3 to 6 (Fig. 8A).
Within this range, the probabilities of having a state with 0 or ≥2
long neurites is almost zero. At smaller values of 𝑅, the probability
of having ≥2 long neurites increases. In this case the actin waves are
distributed among a smaller number of neurites, so that each receives
more excitation that can push it across the threshold from short to long.
At larger 𝑅 values the probability of having no long neurites increases,
6

since each neurite receives fewer actin waves and thus it becomes more
likely that none will go past the threshold.

When the number of neurites is held constant at 𝑅 = 4, an optimal
range of parameter values exists for either the basal excitation ampli-
tude or the excitation rate (Fig. 8B and C). If either parameter is too
small, then the size or frequency of actin waves are too small for any of
the neurites to cross over from small to long. If either parameter is too
large, then more than one neurite will cross over despite of the negative
feedback. The optimum range for all three parameters, 𝑅, 𝐴0, and 𝜆
depend on the values of other parameter, as they are determined by the
balance among excitatory pulses, retraction, and negative feedback. A
change in the value of any one parameter changes the balance.

6. Bistability and excitation amplitude reduction in a limited-
resource model

There have been several modeling studies in which the biophysical
mechanism underlying neuronal polarization was competition for a
limited supply of some growth factor or structural protein; the neurite
acquiring the most becomes an axon (Hentschel et al., 1998; Naoki
et al., 2011; Toriyama et al., 2010; Fivaz et al., 2008). In this sec-
tion, we show how bistability and excitation amplitude reduction are
involved in this mechanism.

To illustrate, we build a simple model based on (Toriyama et al.,
2010). Consider a neuron with two neurites whose growth is supported
by some growth factor 𝐹 produced at the cell body. 𝐹 is transported
by actin waves to the neurite tips and diffuses back to the cell body. As
in Toriyama et al. (2010), we assume that 𝐹 slows down the retraction
of the neurites. Let 𝐶0, 𝐶1 and 𝐶2 be the concentrations of 𝐹 at the
cell body and the neurite tips. These quantities, and neurite lengths 𝐿𝑖,
evolve according to:
d𝐶𝑖
d𝑡

= −
𝐶𝑖 − 𝐶0
𝑎𝐿𝑖

+ 𝐵
∑

𝑗
𝛿(𝑡 − 𝑡(𝑖)𝑗 (𝜆)), (13)

d𝐿𝑖
d𝑡

= 𝑏 − 𝑟𝑎(𝐿1 + 𝐿2) − 𝑟𝑏
𝐾5

𝑐

𝐾5
𝑐 + 𝐶5

𝑖

𝐿𝑖
𝐿𝑖 + 𝐺

. (14)

The first term on the right-hand side of Eq. (13) describes the Fickian
flux of 𝐹 which is proportional to the concentration gradient (𝐶𝑖 −
𝐶0)∕𝐿𝑖. Unlike (Toriyama et al., 2010), we assume that 𝐶0 is constant,
so that the total amount of 𝐹 is not conserved. (The results below
are similar whether the growth factor is conserved or not.) The sec-
ond term represents actin waves carrying the growth factor 𝐹 . The
term approximates the narrow Guassian spikes used in the original
model (Toriyama et al., 2010). Each wave causes a jump of size 𝐵
in concentration. The first two terms of Eq. (14) describe the growth
of a neurite that is limited by a common resource that is used up as
the neurites become longer (e.g., the protein tubulin, which is a key
constituent of microtubules). The third term is the retraction rate that
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Fig. 9. Neuronal polarization with a limited-resource model. (A) A Monte Carlo simulation reproduces the emergence of a single axon. The inset shows the time evolution of the
concentrations of the growth factor at two neurite tips. (B) The reduced two-dimensional system shows two stable equilibria (black filled circles). (C) For the neurite that develops
into the axon (neurite 1), the fluctuation in its retraction rate, represented by 𝐾5

𝑐 ∕(𝐾
5
𝑐 + 𝐶5

1 ), becomes smaller as the neurite grows over time. Parameter values for these results
are given in Table 2.
Table 2
List of parameters in the limited-resource model. We choose a constant excitation
amplitude (𝐵 = 1), reflecting a constant level of growth factor at the cell body (𝐶0 = 2).
Other parameter values are as in Toriyama et al. (2010).

Notation Definition Value

𝑎 Diffusion parameter 0.121
𝐵 Excitation amplitude 1∗

𝜆 Excitation rate 0.059
𝑏 Maximum growth rate 0.25
𝑟𝑎 Fixed retraction rate 0.0002
𝑟𝑏 Maximum fluctuating retraction rate 0.5
𝐾𝑐 Half activation level 2
𝐶0 Concentration at the cell body 2

is reduced when growth factor is present. It retains the key properties
of the original retraction term in the model in Toriyama et al. (2010):
(1) the sharp reduction in the retraction rate as 𝐶𝑖 gets closer to 𝐾𝑐 ; (2)
the sigmoidal increase of the retraction rate with 𝐿𝑖.

Using parameter values based on experimental measurements in
Toriyama et al. (2010) (see Table 2), Monte Carlo simulations repro-
duce the emergence of a single axon (Fig. 9A). Although fluctuating, the
factor mostly accumulates in the long neurite that ultimately becomes
the axon. To see bistability in the model, we replace the pulse term
in Eq. (13) by its average 𝐵𝜆∕2 to obtain an auxiliary deterministic
system:
d𝐶𝑖
d𝑡

= −
𝐶𝑖 − 𝐶0
𝑎𝐿𝑖

+ 𝐵𝜆
2

, (15)

d𝐿𝑖
d𝑡

= 𝑏 − 𝑟𝑎(𝐿1 + 𝐿2) − 𝑟𝑏
𝐾5

𝑐

𝐾5
𝑐 + 𝐶5

𝑖

𝐿𝑖
𝐿𝑖 + 𝐺

. (16)

This system evolves on two disparate time scales, with the growth
factor concentrations changing much more rapidly than the neurite
lengths. In the quasi-steady state, in which d𝐶𝑖∕d𝑡 = 0, 𝐶𝑖 is given by

𝐶𝑖 = 𝐶0 +
𝐵𝜆𝑎𝐿𝑖

2
. (17)

Substituting this expression for 𝐶𝑖 into Eq. (16), we get a two-
dimensional system for 𝐿1 and 𝐿2, whose phase portrait is shown in
Fig. 9B. The two stable equilibria in the phase plane demonstrate the
bistability in the model at the two polarized states.

To see that the model employs length-dependent excitation ampli-
tude reduction, we plot 𝐾5

𝑐 ∕(𝐾
5
𝑐 + 𝐶5

𝑖 ) for the neurite that developed
into the axon (𝑖 = 1 for the case shown in Fig. 9A), which provides
for random fluctuation in its retraction rate. As Fig. 9C shows, the
fluctuation becomes progressively smaller as the neurite grows. As a
result, the ‘‘stochasticity’’ in the neurite length is damped as the neurite
grows, reflecting an excitation amplitude reduction. Physically, the
decay of the fluctuation results from the decreasing Fickian flux as the
7

neurite grows, which facilitates growth factor accumulation. Length-
dependent Fickian flux was also involved in other limited-resource
models (Naoki et al., 2011; Hentschel et al., 1998).

In the original model (Toriyama et al., 2010), the total amount
of the growth factor was assumed to be conserved. Therefore, the
neurites competed for both the growth factor and structural proteins.
Also, the excitation amplitude 𝐵 was assumed to be proportional to
𝐶0, which decreased as the neurites grew. This was a second means
of reduction in the size of the stochasticity. Although unnecessary for
successful neuronal polarization, as we showed here, these additional
mechanisms may help the establishment of a single-axon in a noisy
biological environment. Redundancy in biological processes is common
in biological systems (Alon, 2020).

7. Discussion

In this article, we developed and analyzed a minimal model for
achieving neuronal polarization that is based on what we believe to
be the two key ingredients of the polarization process: bistability and
length-dependent negative feedback. The bistability is necessary for the
formation of two distinct classes of neurites (short and long), while
the length-dependent negative feedback assures that once a neurite
becomes long the others are prohibited from doing so. While there are
several plausible targets of the negative feedback in the minimal model,
we demonstrated that one stands out as the most effective in achieving
persistent polarization. The success of this mechanism, targeted to the
amplitude of stochastic actin waves, was demonstrated in several ways,
including the joint probability distribution, Monte Carlo simulations,
a large 𝜖-committor, a long escape time from a polarized state, and a
low escape probability. Additionally, we found that with this negative
feedback mechanism, polarization is more successful if there are more
than two neurites competing in the winner-takes-all contest. Finally, we
demonstrated that a neuronal polarization model based on competition
for a limited growth factor has the same underlying key ingredients as
our most successful minimal model: bistability and length-dependent
reduction in the excitation magnitude.

The clear distinctions between the axon and other short neurites of
a neuron during its polarization indicate an inherent bistability (Dotti
et al., 1988; Lamoureux et al., 2002). Typically, bistability arises from
positive feedback (Alon, 2020), and various sources of positive feed-
back have been identified. One example involves length-dependent
retrograde diffusion flux of polarity effectors (Toriyama et al., 2010;
Naoki et al., 2011; Takano et al., 2017a). Another results from the
anterograde transportation of polarity effectors that is enhanced by
their accumulation at neurite tips (Fivaz et al., 2008), possibly due
to stabilization of microtubules (Gomis-Rüth et al., 2008). Microtubule
stabilization was also shown to help the localization of endoplasmic
reticulum tubules, which in turn enhanced the stabilization (Farías
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et al., 2019). Some of the signaling pathways involved in polarization
are discussed in Schelski and Bradke (2017), Yogev and Shen (2017),
Namba et al. (2015) and Takano et al. (2019).

Another major element of positive feedback in neurite growth is
the autocrine effects of neurotrophic factors such as Brain-Derived Neu-
rotrophic Factor (BDNF) and neurotrophin-3 (NT-3). These factors are
released by individual neurites and bind to receptors on the neurites,
stimulating their growth. It has been shown that BDNF activation of its
receptor TrkB not only promotes neurite growth, but provides positive
feedback by promoting BDNF secretion (Cheng et al., 2011). The impact
of the local neurotrophin secretion depends on the receptor density
at the neurite tip, and it has been shown that neurotrophin binding
to receptors recruits more receptors to the membrane, thus providing
positive feedback in the response to the neurotrophin (Cheng et al.,
2011; Adler et al., 2006).

Once an axon has formed, negative feedback mechanisms are neces-
sary to prevent the formation of a second axon. In this study, we exam-
ined three different unbiased negative feedback mechanisms. Length-
dependent increased retraction prevents the growth of a short neurite
by destroying its bistability. This negative feedback may result from
long-range signals emitted from neurite tips (Kandel et al., 2013), or
from a competition for material proteins (Toriyama et al., 2010). We
showed that this mechanism is successful in creating polarized states,
but does not prevent flipping between the polarized states, which
does not appear to occur in actual neurons. This demonstrates that
maintenance of a unique polarized state depends on length-dependent
suppression of random actin waves, at least in the case of unbiased neg-
ative feedback. It is certainly possible that some form of biased negative
feedback occurs, in which only a long neurite can initiate the negative
feedback. One example of this is with the neurotrophin NT-3. This
growth factor can accumulate at a long neurite and initiate Ca2+ waves
that travel from the neurite tip back to the cell body, activating the
small GTPase RhoA that inhibits growth of all neurites (Takano et al.,
2017b). Thus, a growth factor can contribute to neuronal polarization
by both facilitating growth of a neurite exposed to it and by inhibiting
the growth of competing neurites.

In addition to increased retraction, we also studied the effects
of reducing excitation rate and magnitude. We found that reducing
excitation rate was insufficient for preventing the formation of a second
axon, while reducing excitation magnitude effectively maintained the
polarization of our model neuron. It was observed in previous exper-
iments that the frequency of actin waves (i.e., the average number of
actin waves per unit time) and the net growth driven by a single actin
wave both decreased after an axon had formed (Ruthel and Banker,
1999a). Our study suggests that the decrease in net growth is a more
crucial factor in preventing the formation of a second axon.

Previous studies have proposed a mechanism in which all neurites
compete for a limited amount of growth proteins, and the neurite that
acquired the most becomes an axon (Toriyama et al., 2010; Schelski
and Bradke, 2017). It was assumed that the axon’s acquisition of these
proteins was facilitated by active anterograde transportation and ret-
rograde diffusion. Using a simplification of one such model (Toriyama
et al., 2010), we demonstrated that this mechanism exhibits bistability
and a length-dependent reduction in excitation magnitude. The excita-
tion magnitude reduction results from the axon’s decreased diffusion
flux as it grows. Length-dependent diffusion flux is not the only means
of preventing the redistribution of growth proteins. It is also possible
that blockage occurs in the long neurites. This was demonstrated in a
study showing a novel cytoskeletal mechanism in which a dampened
retrograde microtubule network assists in the accumulation of Kinesin-
1 in the neurite that becomes the axon (Burute et al., 2022). Similar to
the effect of slow diffusion, the retrograde transportation of Kinesin-1
is reduced, which prevents its redistribution among all neurites.

Our model’s bistability and reduction in excitation magnitude may
not completely prevent the emergence of multiple axons, which could
8

be considered a flaw. However, a previous experimental study found m
that a short neurite was able to develop into an axon when it was me-
chanically stretched, even after another axon had already formed (Lam-
oureux et al., 2002). Our model easily explains this result, as mechan-
ical stretching can cause a neurite to surpass the threshold length,
putting it into the basin of attraction of the higher stable equilibrium,
regardless of whether another axon already exists. In contrast, a limited
resource model that does not allow for more than one axon could not
account for this experimental finding.

In a prior experimental study by Wissner–Gross et al. it was ob-
served that neurons with varying numbers of neurites polarized syn-
chronously (Wissner-Gross et al., 2013). The authors found that prior
models based on competition for a limited resource (Toriyama et al.,
2010; Samuels et al., 1996) failed to replicate this, but instead the
polarization time increased with the number of neurites. However, if
the amount of the limited resource was increased with the number of
neurites, the polarization time was similar for model cells with different
numbers of neurites. Indeed, they found that the levels of two polarity
factors, Shootin1 and HRas, were both higher in neurons with more
neurites. We find similar behavior with our models. In the minimal
model (Eq. (1)), if the basal excitation amplitude 𝐴0 is properly up-
egulated according to the neurite number, the time to polarize will be
imilar regardless of the number of neurites. Similarly, for our limited-
esource model (Eqs. (13) and (14)), if the concentration of the growth
actor at the cell body, 𝐶0, is adjusted based on the neurite number,
he time to polarize will remain unchanged. The Wissner–Gross study
lso found that the majority of rat hippocampal neurons grown in cell
ulture had between 5 and 7 neurites (Wissner-Gross et al., 2013),
uggesting the existence of an optimal range for the number of neurites,
s in our Fig. 8, and raising the possibility of a regulatory mechanisms
or achieving polarization by modulating both the number of neurites
nd the levels of effectors.
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.1. The generalized cell-mapping method

The generalized cell-mapping method (GCM) is a numerical imple-

entation of the transfer operator (also called the Perron–Frobenius
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Fig. 10. Illustration of the generalized cell mapping method. The phase space of size
𝐿max × 𝐿max is divided into small square cells of size 𝛥𝐿 × 𝛥𝐿. Starting from a sample
point, the two-neurite system may follow a continuous trajectory to reach another cell,
or a discontinuous trajectory with a jump of size 𝐴 in 𝐿1 or 𝐿2. The black and the gray
dots mark the starting and ending positions, respectively. For purposes of illustration,
the region is split into 4 × 4 cells. In actual simulations, we choose 𝛥𝐿 = 0.2 and
𝐿max = 10, so that there are 50 cells in each direction. The time increment 𝛥𝑡 to
generate the trajectories is 0.1.

operator), often used to find the probability distributions of the quan-
tities in a random dynamical system (Sun and Hsu, 1988; Wu and Zhu,
2008; Yue et al., 2012, 2013, 2019; Han et al., 2015). The GCM is
also called Ulam’s method (see Lindner and Hellmann (2019), Froyland
(2001) and Froyland and Padberg (2009) and the references therein).
The idea of the GCM is to discretize the system into a discrete-time
Markov chain, and to calculate the distribution using the transition
matrix. We use this method to compute probability distributions of
neurite length.

To illustrate the method, consider a system of two neurites. We
aim at finding the joint probability distribution 𝑝(𝐿1, 𝐿2, 𝑡) of neurite
lengths, 𝐿1 and 𝐿2, at time 𝑡. We consider a region [0, 𝐿max] × [0, 𝐿max],
where the upper bound 𝐿max is large enough so that 𝑝(𝐿1, 𝐿2, 𝑡) is
negligible outside the region. Then we divide the region into 𝑁 × 𝑁
square cells of width 𝛥𝐿 (𝛥𝐿 = 𝐿max∕𝑁), as shown in Fig. 10, and
denote the cell in the 𝑖th row and 𝑗th column as 𝐶𝑖,𝑗 (𝑖, 𝑗 = 1, 2,… , 𝑁).
To discretize time, we choose a small time increment 𝛥𝑡 and only
consider the distribution at 𝑡 = 𝑛𝛥𝑡 (𝑛 = 0, 1,…). Then the probability
that (𝐿1, 𝐿2) falls within 𝐶𝑖,𝑗 at 𝑡 = 𝑛𝛥𝑡, denoted by 𝑝𝑖,𝑗 (𝑛), is given by

𝑝𝑖,𝑗 (𝑛) = Pr{(𝐿1, 𝐿2) ∈ 𝐶𝑖,𝑗 at 𝑡 = 𝑛𝛥𝑡} = ∫(𝑙1 ,𝑙2)∈𝐶𝑖,𝑗

𝑝(𝑙1, 𝑙2, 𝑡) d𝑙1d𝑙2, (18)

where the notation (𝑙1, 𝑙2) ∈ 𝐶𝑖,𝑗 means that 𝑙1 ∈ [(𝑖 − 1)𝛥𝐿, 𝑖𝛥𝐿] and
𝑙2 ∈ [(𝑗 − 1)𝛥𝐿, 𝑗𝛥𝐿].

Let

𝐩(𝑛) = (𝑝1,1(𝑛), 𝑝1,2(𝑛),… , 𝑝𝑁,𝑁 (𝑛)) (19)

be an 1-by-𝑁2 probability vector at time step 𝑛. Define the transition
probability matrix 𝐐 as

𝐐 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑄(1,1)→(1,1) 𝑄(1,1)→(1,2) … 𝑄(1,1)→(𝑁,𝑁)
𝑄(1,2)→(1,1) 𝑄(1,2)→(1,2) … 𝑄(1,2)→(𝑁,𝑁)

⋮ ⋮ ⋱ ⋮
𝑄(𝑁,𝑁)→(1,1) 𝑄(𝑁,𝑁)→(1,2) … 𝑄(𝑁,𝑁)→(𝑁,𝑁)

⎤

⎥

⎥

⎥

⎥

⎦

(20)

where 𝑄(𝑖′ ,𝑗′)→(𝑖,𝑗) is the transition probability from 𝐶(𝑖′ ,𝑗′) to 𝐶(𝑖,𝑗) during
𝛥𝑡. (For our model, the Markov chain is time-independent, so 𝑄
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(𝑖′ ,𝑗′)→(𝑖,𝑗)
does not depend on 𝑛). The probability vector at time step 𝑛 is related
to that at the previous time step by:

𝐩(𝑛) = 𝐩(𝑛 − 1)𝐐, (21)

or

𝑝𝑖,𝑗 (𝑛) =
∑

𝑖′ ,𝑗′=1,2,…,𝑁
𝑄(𝑖′ ,𝑗′)→(𝑖,𝑗)𝑝𝑖,𝑗 (𝑛 − 1),

𝑖, 𝑗 = 1, 2,… , 𝑁, 𝑛 = 1, 2,… (22)

To estimate 𝑄(𝑖′ ,𝑗′)→(𝑖,𝑗), we sample 𝑀 points uniformly in 𝐶(𝑖′ ,𝑗′).
Starting from each point, we could find a trajectory by solving Eq.
(1) with a Monte Carlo method. Let 𝑀𝑖,𝑗 be the number of trajec-
tories that end in 𝐶𝑖,𝑗 , then 𝑀𝑖,𝑗∕𝑀 approximates 𝑄(𝑖′ ,𝑗′)→(𝑖,𝑗). This
should be repeated many times and the average taken. This is a time-
consuming procedure, so we employ the more efficient procedure
developed in Köylüoğlu et al. (1995). Starting from each sample point
(𝑖′, 𝑗′) we solve Eq. (1) without the stochastic term over time 𝛥𝑡:

d𝐿𝑖
d𝑡

= 𝑔
𝐿2
𝑖

𝐿2
𝑖 +𝐾2

− 𝑟𝐿𝑖, 𝑖 = 1, 2. (23)

Let 𝑀 (𝑑)
𝑖,𝑗 be the number of trajectories that end in 𝐶𝑖,𝑗 , then 𝑀 (𝑑)

𝑖,𝑗 ∕𝑀
approximates the probability of transition from 𝐶(𝑖′ ,𝑗′) to 𝐶𝑖,𝑗 , provided
no pulse occurs during 𝛥𝑡. (The superscript ‘‘(𝑑)’’ represents ‘‘determin-
istic’’.) Then we consider the case where a single pulse occurs during
𝛥𝑡. Since we describe actin waves as a Poisson process, the time of the
occurrence is uniformly distributed within 𝛥𝑡 (Taylor and Karlin, 2010).
Thus, we solve Eq. (23) over 𝛥𝑡∕2, then randomly choose a length
from 𝐿1 and 𝐿2 and add 𝐴 to it, and finally solving Eq. (23) over the
rest of the time interval 𝛥𝑡∕2 (Fig. 10). The result is a trajectory with
a single discontinuity. We repeat the same calculation for all sample
points. Let 𝑀 (𝑠)

𝑖,𝑗 be the number of trajectories that end in 𝐶𝑖,𝑗 , then
𝑀 (𝑠)

𝑖,𝑗 ∕𝑀 approximates the probability of transition from 𝐶(𝑖′ ,𝑗′) to 𝐶𝑖,𝑗 ,
provided a single pulse occurs during this short period. (The superscript
‘‘(𝑠)’’ represents ‘‘stochastic’’.) Since the probability of having two or
more pulses during 𝛥𝑡 is of 𝑂(𝛥𝑡2), we neglect this probability and
approximate 𝑄(𝑖′ ,𝑗′)→(𝑖,𝑗) as

𝑄(𝑖′ ,𝑗′)→(𝑖,𝑗) = (1 − 𝜆𝛥𝑡)
𝑀 (𝑑)

𝑖,𝑗

𝑀
+ 𝜆𝛥𝑡

𝑀 (𝑠)
𝑖,𝑗

𝑀
, (24)

where 𝜆𝛥𝑡 is the first order approximation of the probability of having a
single pulse during 𝛥𝑡. In principle, one could refine the approximation
by dividing 𝛥𝑡 into more subintervals.

Given an initial distribution 𝐩(0), we can calculate 𝐩(𝑛) iteratively
with Eq. (21). To obtain 𝐩(0), suppose that the system starts from
(𝐿1(0), 𝐿2(0)). We find the cell 𝐶𝑖,𝑗 containing this point and set the
corresponding 𝑝𝑖,𝑗 (0) to be 1 and all other probabilities to be 0. To
estimate the limiting distribution 𝐩(∞), we iterate according to Eq. (21),
until the change in 𝐩(𝑛) becomes negligible. To speed up the iteration,
we utilize 𝐐2𝑘 = (𝐐2(𝑘−1) )2, such that 𝐩(2𝑘) can be obtained with 𝑘
iterations.

In addition to solving the distribution, we will also use the GCM
to calculate various first passage probabilities and mean first passage
times. This requires modification of the transition matrix 𝐐. Suppose
we are interested in finding the probability that the two-neurite system
enters a specific region  and the mean entering time. For a cell
centered within , the transition probability 𝑄(𝑖′ ,𝑗′)→(𝑖,𝑗) is modified as
𝑄̃(𝑖′ ,𝑗′)→(𝑖,𝑗):

𝑄̃(𝑖′ ,𝑗′)→(𝑖,𝑗) =

{

1, (𝑖, 𝑗) = (𝑖′, 𝑗′)
0, otherwise

(25)

This makes  an absorbing region, which means that once the system
enters , it is frozen and cannot make further transitions. Let the
modified transition matrix be 𝐐̃ and the resulting distribution be 𝐩̃(𝑛).
The probability of entering  at 𝑡 ≤ 𝑛𝛥𝑡 is given by

𝑃(𝑛) =
∑

𝑝̃𝑖,𝑗 (𝑛), (26)

𝐶𝑖,𝑗∈
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where 𝐶𝑖,𝑗 ∈  means that the center of 𝐶𝑖,𝑗 is in . The probability of
entering  is given by

Pr{Entering } = 𝑃(∞) =
∑

𝐶𝑖,𝑗∈
𝑝̃𝑖,𝑗 (∞), (27)

which can be obtained by iterating enough number of times according
to 𝐩̃(𝑛) = 𝐩̃(𝑛 − 1)𝐐̃. Finally, let ⟨𝑇⟩ be the mean entering time, then

⟨𝑇⟩ =
∞
∑

𝑛=1
𝑛𝛥𝑡(𝑃(𝑛) − 𝑃(𝑛 − 1)). (28)

Numerically, the series is truncated to drop the terms that make little
contribution.

The GCM can be implemented regardless of the dimension of a
system of interest. The mean escape time shown in Fig. 7B is calculated
by applying the GCM to a single neurite. By setting  = [𝐿𝑏, 𝐿max], the
mean 𝑇𝑐 that the neurite length surpasses the threshold 𝐿𝑏 is given by
Eq. (28).

A.2. Monte Carlo simulations

In addition to the GCM, we also simulate the time evolution of the
neurite lengths using a Monte Carlo method. The algorithm that we use
is the following:

(1) Set the initial lengths 𝐿𝑖(0) = 0, (𝑖 = 1, 2,… , 𝑅).
(2) At each time step 𝑡 = 𝑛𝛥𝑡, add to each 𝐿𝑖(𝑡) the deterministic

increment 𝛥𝑡[𝑔𝐿2
𝑖 ∕(𝐿

2
𝑖 +𝐾2) − 𝑟𝐿𝑖].

(3) Generate a random number 𝑢 within [0, 1]. If 𝑢 > 𝜆𝛥𝑡, go back to
Step (2). Note that 𝜆 may be variable if there is length-dependent
rate reduction (Eq. (3)).

(4) If 𝑢 ≤ 𝜆𝛥𝑡, randomly choose an 𝐿𝑖(𝑡) from the 𝑁 lengths, and add
𝐴 to it. Note that 𝐴 may be variable if there is length-dependent
amplitude reduction (Eq. (4)). Then go back to Step (2).

(5) Repeat Steps (2) to (4) until iterations are completed.

We choose 𝛥𝑡 = 0.1 for all simulations. The duration of a simulation
depends on the type of negative feedback. Monte Carlo simulation is
also applied to the winner-takes-all model (Eqs. (13) and (14)), and
the implementation is similar.

A.3. Implementation of the 𝜖-committor method

The 𝜖-committor was introduced by Lindner and Hellmann (2019)
as a means of estimating the probability that a stochastic trajectory
remains in a region of phase space for a duration of 1∕𝜖. Here, we
describe its implementation within the framework of the GCM.

Consider the polarized state where 𝐿1 ≪ 𝐿2, referred to as 𝑆 in
the following. To study its persistence, we choose a rectangular region
𝑆 = [0, 𝐿𝑏] × [𝐿𝑏, 𝐿max], where 𝐿𝑏 is the aforementioned location
of the potential barrier and 𝐿max is the user-defined boundary of the
phase space in both directions. With the parameter values in Table 1,
we have 𝐿𝑏 = 3. The top-left peak of the bimodal probability density
resulting from any of the negative feedback mechanisms described
above (see Figs. 3, 4 and 6) falls into 𝑆 . Now we introduce two
auxiliary absorbing states 𝑍1 and 𝑍2. When the system is in 𝑆 , it has
a probability 𝜖 of being absorbed into 𝑍1 at each time step. When the
system is in the rest of the region, it is absorbed into 𝑍2 at each time
step with the same probability (Fig. 11). Let 𝑞𝑖,𝑗 be the probability of
being absorbed into 𝑍1 when the system starts from (the center of) 𝐶𝑖,𝑗 .
The probability vector 𝐪 formed by all 𝑞𝑖,𝑗 ’s is called the 𝜖-committor,
namely

𝐪 = (𝑞1,1, 𝑞1,2,… , 𝑞𝑁,𝑁 )𝑇 . (29)

Since the probability of being absorbed at each time step by either
𝑍1 or 𝑍2 is 𝜖, the mean time till absorption is 𝛥𝑡∕𝜖, where 𝛥𝑡 is the
step size used in the GCM. Over such a timescale, if the system starts
10
Fig. 11. Illustration of the 𝜖-committor. Two absorbing states, 𝑍1 and 𝑍2 are intro-
duced. When the system wanders within 𝑅𝑆 (gray rectangle covering [0, 𝐿𝑏]×[𝐿𝑏 , 𝐿max]),
it has a probability of being absorbed into 𝑍1 at each time step. If the system is outside
𝑅𝑆 , it has the same probability of being absorbed into 𝑍2.

from 𝐶𝑖,𝑗 and spends most of the time within 𝑆 , it will have a high
probability of being absorbed into 𝑍1, i.e., 𝑞𝑖,𝑗 will be close to 1.
Conversely, if the system never enters 𝑆 or quickly leaves it without
coming back, 𝑞𝑖,𝑗 will be close to 0 (Lindner and Hellmann, 2019).
Therefore, 𝑞𝑖,𝑗 characterizes the attracting strength of the region 𝑆
over a timescale of 𝛥𝑡∕𝜖, when the system starts from 𝐶𝑖,𝑗 . By choosing
a starting cell close to the top left peak of a bimodal distribution and
changing the value of 𝜖, the resulting 𝑞𝑖,𝑗 quantifies the persistence of
the polarized state 𝑆 over different timescales under the corresponding
negative feedback mechanism. Specifically, we choose the cell at [0, 6]
when the increased retraction is implemented, and the cell at [0, 7]
when the excitation rate or amplitude reduction is implemented. The
corresponding probability 𝑞𝑖,𝑗 (𝑆 , 𝜖) is denoted by 𝐶𝜖 for notational
simplicity.

To calculate 𝐪 use the formula in Lindner and Hellmann (2019),
given as

[𝐈 − (1 − 𝜖)𝐐]𝐪 = 𝜖𝐈𝑆
, (30)

where 𝐈 is an 𝑁2-by-𝑁2 identity matrix and 𝐐 the transition matrix
given by Eq. (20). 𝐈𝑆

is an 𝑁2-by-1 indicator vector defined as

𝐈𝑆
= (𝛿(1,1),𝑆

, 𝛿(1,2),𝑆
,… , 𝛿(𝑁,𝑁),𝑆

)𝑇 , (31)

where

𝛿(𝑖,𝑗),𝑆
=

{

1, (𝑖, 𝑗) ∈ 𝑆 ,
0, (𝑖, 𝑗) ∉ 𝑆 .

(32)
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