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1. Introduction

One of the earliest bursting models was not for a neural system, but for
the insulin-secreting pancreatic β-cell. This cell type is of great interest
because defects in insulin secretion are important for the pathogenesis of
Type 2 Diabetes Mellitus (T2DM). In fact, in recent years data has ac-
cumulated implicating electrical properties of β-cells, specifically channel
polymorphisms, in T2DM (Ashcroft and Rorsman 2004).

Here, however, our focus will be on two other aspects of the Chay-
Keizer (CK) model (Chay and Keizer, 1983). One is the underlying bifur-
cation structure of the model, which is square-wave (Rinzel, 1987) or fold-
homoclinic (Izhikevich, 2000) or Type I bursting (Bertram et al., 1995).
This easy-to-understand pattern has provided a template for a number of
other important models, some of which are reviewed in this book, includ-
ing the Hindmarsh-Rose model for thalamic neurons (Hindmarsh and Rose,
1984), the Butera-Rinzel-Smith model for respiratory pacemaker neurons
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in the pre-Bötzinger complex (Butera et al., 1999), and the Tabak-Rinzel-
O’Donovan model for episodic network activity in embryonic spinal cord
(Tabak et al., 2001).

A second aspect of general interest is the paradigm of slow negative feed-
back by cytosolic Ca2+, which in CK targets a Ca2+-activated K+ channel.
This was a natural choice following the success of the early Plant model
for the R-15 neuron (Plant, 1978). However, this seductive hypothesis has
traveled a hard road, falling into disfavor before the age of 10 and mak-
ing a comeback before the age of 20. The Ca2+-feedback hypothesis has
emerged from these trials altered, but still recognizable, and strengthened
by insights into new areas of cellular Ca2+ handling, including sequestra-
tion and release by the endoplasmic reticulum (ER) and exotic effects on
metabolism, including mitochondrial respiration and glycolytic oscillations.

In addition, we have found that the simplest square-wave burster mod-
els, with a single slow variable, are not adequate to account for the com-
plexity of β-cell activity patterns. Adding a second or third slow variable,
while mathematically redundant, greatly enhances the robustness and dy-
namic range and leads to qualitative changes in some properties, such as
phase resetting.

In this chapter we will trace out a pedagogically streamlined history of
the twin ideas of square-wave bursting and calcium feedback, focusing in
detail on the properties of the ER.

2. Before the Beginning

The square-wave bursting typcial of β-cells is dynamically similar to a re-
laxation oscillation. The prototypical relaxation oscillator was developed
by van der Pol and van der Mark as a description of an oscillatory car-
diac pacemaker (van der Pol and van der Mark, 1928). Later, FitzHugh
and Nagumo developed simple neural models, recognizing that an action
potential or electrical impulse could be described as a relaxation oscillation
(FitzHugh, 1961; Nagumo et al., 1964). The key features of what was to be
called the FitzHugh-Nagumo model are (1) a cubic voltage nullcline, and (2)
a separation of time scales of the two variables, so that one changes much
more rapidly than the other. The Morris-Lecar model for a barnacle muscle
fiber, developed two decades later, also possesses these features, although
the voltage nullcline is only approximately cubic in this case (Morris and
Lecar, 1981). Because Morris-Lecar includes expressions for ionic currents,
it is more suitable for describing biophysical phenomena, such as the effects



March 18, 2005 18:15 WSPC/Trim Size: 9in x 6in for Review Volume road˙3

The Road from Chay-Keizer 3

of channel blockers.
We use a modification of the Morris-Lecar model to describe impulses

in the β-cell:

Cm
dV

dt
= −[ICa + IK + IK(Ca) + IK(ATP )] (1)

dn

dt
= λ(n∞(V )− n)/τn , (2)

where Cm is the membrane capacitance of the cell, V is membrane potential
or voltage, ICa is an inward Ca2+ current, IK is an outward K+ current
of the delayed rectifier type, IK(Ca) is a Ca2+-activated K+ current and
IK(ATP ) is an ATP-sensitive K+ current (ATP=adenosine triphosphate).
The latter two currents, IK(Ca) and IK(ATP ), were not included in the
Morris-Lecar model, but have been added here because they play impor-
tant roles in β-cells. Additional variables and parameters in the model are
n, the activation variable for IK , its equilibrium function n∞(V ), and its
activation time constant, τn. The parameter λ is used as a convenient means
to speed up or slow down the time scale of the variable n. Additional equa-
tions are:

ICa = gCam∞(V )(V − VCa) (3)

IK = gKn(V − VK) (4)

IK(Ca) = gK(Ca)

(
c3

c3 + K3
d

)
(V − VK) (5)

IK(ATP ) = gK(ATP )(V − VK) (6)

m∞(V ) = [1 + exp((vm − V )/sm)]−1 (7)

n∞(V ) = [1 + exp((vn − V )/sn)]−1 . (8)

With the parameter values listed in Table 1 the system is oscillatory,
producing a continuous train of impulses. One of these is shown in Fig. 1A.
This impulse is characterized by a rapid upstroke (due to the inward cur-
rent ICa) and a rapid downstroke (due to the outward current IK), with
slow changes between impulses. Figure 1B illustrates the impulse trajec-
tory (oriented curve) in the nV -phase plane. The scaling parameter λ is
small in this simulation (λ = 0.01), so the activation variable n changes
much more slowly than V . As a result, the trajectory is attracted to the
V -nullcline, and moves along either the top or bottom branch of the cu-
bic until the branch switches back. The trajectory moves slowly to the left
(since dn/dt < 0) along the bottom branch between impulses. When the
branch ends the trajectory moves rapidly to the top branch and travels
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rightward (since dn/dt > 0) until this branch ends, after which the tra-
jectory moves rapidly to the lower branch. Motion along the upper branch
and the rapid transitions between branches constitute the impulse. The full
orbit is a classic relaxation oscillation. It is important that the nullclines
intersect only along the middle branch of the V -nullcline. Otherwise, the in-
tersection point, a steady state of the system, would be stable and periodic
motion would not occur.

Table 1: Parameter Values for the Morris-Lecar Model

Parameter Value Parameter Value
gCa 1000 pS gK 2700 pS
gK(Ca) 400 pS gK(ATP ) 180 pS
VCa 25 mV VK −75 mV
Cm 5300 fF λ 1
τn 20 msec KD 0.4 µM
vn −16 mV sn 5 mV
vm −20 mV sm 12 mV

In most β-cell models the time scale separation is not as extreme as
in this example. Thus, rather than λ = 0.01 a value closer to λ = 1 is
used. With the n dynamics now 100 times faster, the trajectory no longer
rides along the branches of the V -nullcline, but instead travels along an
elliptical path between the upper and lower branches of the nullcline. The
resulting impulse is of lower amplitude, with peak value less than −10
mV (Fig. 2A). For more detailed phase-plane analysis see Sherman (1997)
and corresponding exercises at http://mrb.niddk.nih.gov/sherman, where the
equations used here may also be found. Smaller impulses like these are
characteristic of impulses recorded in β-cells (Zhang et al., 2003). For the
remainder of this chapter we use λ = 1.

Calcium-activated K+currents, IK(Ca), are found in many neurons
(Hille, 2001). In β-cells, Ca2+-activated and voltage-independent K(Ca)
channels were originally thought to be responsible for packaging impulses
into bursts (Atwater et al., 1980), which led to the Chay-Keizer model
described in the next section. For now we treat the cytosolic Ca2+ concen-
tration, c, as a parameter. Increasing this parameter increases the outward
K(Ca) current (Eq. 5), which has a hyperpolarizing effect on the cell. In
terms of the phase plane, increasing c translates the V -nullcline leftward
(Fig. 2B). This may result in an intersection of the two nullclines on the
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Fig. 1. (A) A single impulse from a train of impulses generated by the Morris-Lecar-like
model. (B) Phase plane view of an impulse. The trajectory (oriented curve) moves along
the top and bottom branches of the V -nullcline, and is a typical relaxation oscillation.
The time scale parameter is small, λ = 0.01, accentuating the separation in time scales
of the V and n variables. Cytosolic calcium, c, is fixed at 0.1 µM.

lower branch of the V -nullcline, creating a hyperpolarized stable steady
state (indicated by a circle). When this occurs the system moves from a
state of continuous spiking to a resting state at a low voltage (Fig. 2A).
Thus, the dynamics of the system depend critically on the cytosolic Ca2+

concentration.
The scenarios described in Fig. 2 reflect two extreme cases, where the

system has either a globally attracting periodic solution or a globally at-
tracting steady state. An important intermediate case occurs for 1 < c < 2.
Here, a stable periodic solution coexists with a stable steady state (Fig. 3).
There are three steady state solutions. The solution with the highest volt-
age (open circle) is an unstable spiral, which is surrounded by a stable limit
cycle. The middle steady state solution (open triangle) is a saddle point,
whose stable manifold (dot-dashed curve) forms the separatrix between the
basins of attraction of the stable limit cycle and the stable steady state
(filled circle). In this bistable system the ultimate fate of a trjectory is de-



March 18, 2005 18:15 WSPC/Trim Size: 9in x 6in for Review Volume road˙3

6 R. Bertram and A. Sherman

0 0.02 0.04 0.06 0.08 0.1
n

−80
−60
−40
−20

0
20

V
 (m

V
)

0 5 10 15 20
Time (sec)

−70

−50

−30

−10

V
 (m

V
)

c=0.1
c=0.2

A

B

Fig. 2. (A) A train of β-cell-like impulses is terminated when the cytosolic Ca2+ con-
centration is increased from c = 0.1 to c = 0.2. (B) Increasing c from 0.1 to 0.2 shifts
the V -nullcline leftward. The filled circle represents a stable steady-state solution.

termined by its starting location. If the trajectory starts between the two
branches of the stable manifold, then it is attracted to the limit cycle. If
it starts below this region then the trajectory is attracted to the stable
steady state. We shall see below that bistability between a steady state and
a periodic solution is the key ingredient for square-wave bursting.

3. The Beginning

All current models for β-cellelectrical activity are descendants of the Chay-
Keizer model (1983). Even though this model did not contain all of the
features subsequently shown to be important in β-cell electrical activity, it
successfully identified the key elements of square-wave bursting and pro-
vided a scaffold onto which additional elements could be added. The ap-
pealing simplicity accounts for its impact on bursting models in general.
Chay-Keizer was based on the earlier hypothesis of Atwater and Rojas that
bursting is due to the slow rise and fall of the cytosolic Ca2+ concentration,
acting on K(Ca) channels (Atwater et al., 1980).

Historically, however, Chay-Keizer was preceded by a less well-known
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Fig. 3. For intermediate values of the parameter c (here c = 0.15) the system is bistable.
A stable limit cycle coexists with a stable hyperpolarized steady state (filled circle).
Trajectories starting within the two branches of the saddle point’s stable manifold (dot-
dashed curve) are attracted to the limit cycle. Those starting below this region are
attracted to the stable steady state.

model developed by Matthews and O’Connor (1979). It anticipated many
features of Chay-Keizer, such as a central role for K(Ca) channels, as well
as features not introduced until much later, such as metabolic oscillations.
However, the Matthews-O’Connor model was much more complex than
Chay-Keizer because special currents were assigned roles in producing the
plateau and pacemaker functions, roles that arose organically from a much
simpler set of currents in Chay-Keizer. This perhaps accounts for why it
left no apparent progeny and serves as a lesson on the virtue of knowing
what data to ignore when beginning to develop a model.

Chay and Keizer used modified squid axon Hodgkin-Huxley equations
(Hodgkin and Huxley, 1952) to describe action potentials. We use the sim-
pler Morris-Lecar model, supplemented by a differential equation for the
cytosolic Ca2+ concentration:

dc

dt
= fcytJmem , (9)

where c is the cytosolic Ca2+ concentration, fcyt is the fraction of cytosolic
Ca2+ that is not bound to buffers, and Jmem is the Ca2+ flux across the
plasma membrane. The Ca2+ influx is through Ca2+ channels and the efflux
is through Ca2+ pumps (Ca2+ ATPases):

Jmem = −(αICa + kpmcac) , (10)
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where α converts current to flux, and kpmca is the pump rate.
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Fig. 4. (A) Bursting produced by the Chay-Keizer model. (B) Bursting is driven by
slow activity-dependent oscillations in the cytosolic Ca2+ concentration. The Ca2+ con-
centration rises during the active phase and falls during the silent phase of bursting.
The horizontal dashed line is used to illustrate that the fast subsystem is bistable: for
the same value of c the fast subsystem may be oscillatory (“O”) or stationary (“S”).
Fraction of free Ca2+ is fcyt = 0.00025.

This three-variable model is able to reproduce the square-wave bursting
that characterizes β-cells (Fig. 4A). During the oscillatory or active phase,
Ca2+ channels are mostly open, so that Ca2+ accumulates in the cell. Thus,
c rises during the active phase (“O” in Fig. 4B). This rise is slow, since the
effective time scale for c is large. (The time scale can be easily adjusted
using the parameter fcyt, which is currently set to a very small value, fcyt =
0.00025.) The rise in c activates K(Ca) current, translating the V -nullcline
leftward (Fig. 2). Eventually c rises to a large enough value that the V -
and n-nullclines intersect, terminating the active phase of spiking. Now
that the system has entered the silent phase and V is in a low rest state the
Ca2+ channels close. This results in a slow decline in c (“S” in Fig. 4B).
As a result, hyperpolarizing K(Ca) current is shut off and the V -nullcline
is translated rightward. Eventually, the stable intersection of the V - and
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n-nullclines is lost and the system re-enters the oscillatory active phase.
Note that the burst period is on the order of tens of seconds (here about
22 sec). This is typical of most in vitro electrical recordings from β-cells
within intact islets, but is very slow compared with bursting produced by
most neurons.

A standard way to analyze bursting oscillations is to separate the vari-
ables into slow and fast subsystems, and then to treat the slow variable as
a parameter of the fast subsystem. This “fast/slow analysis” was pioneered
by John Rinzel, and used to analyze several types of bursting oscillations,
including the square-wave bursting characteristic of β-cells (Rinzel and Lee,
1985; Rinzel, 1987). In our case, the fast subsystem consists of Eqs. 1–2,
with fast variables V and n. The calcium concentration c is the single slow
variable. For large values of c, now treated as a parameter of the fast sub-
system, the V nullcline is shifted far to the left (see Fig. 2) and the model
cell is silent at a hyperpolarized voltage. As c is reduced the V nullcline
is translated rightward, so the intersection with the n-nullcline occurs at
higher voltages. For sufficiently small values of c the lower knee of the V -
nullcline is to the right of the n-nullcline. That is, a saddle-node bifurcation
(SN) has occurred. This is illustrated in the bifurcation diagram of Fig. 5.
The lower branch of this diagram corresponds to the lower, stable, steady
state of the fast subsystem. The middle, unstable, branch corresponds to
steady states on the middle branch of the V -nullcline, and is a branch of
saddle points. This saddle point branch begins at the SN bifurcation with
the stable steady state branch, and ends at a second SN bifurcation with a
branch of unstable equilibria. The SN bifurcations are marked by triangles
in Fig. 5.

The branch of upper unstable equilibria continues for lower values of
c, and eventually goes through a supercritical Hopf bifurcation (circle).
Beyond this the branch is stable. A branch of stable periodic solutions
emerges from the Hopf bifurcation. Each of these periodic solutions repre-
sents a continuous train of action potentials (as in the left portion of Fig. 2).
The periodic branch terminates at a homoclinic bifurcation, where the limit
cycle connects with a saddle point, forming an infinite-period homoclinic
orbit. The bistability illustrated in Fig. 3 occurs for all values of c between
the left SN (triangle) and the homoclinic bifurcation (square).

The z-shaped fast-subsystem bifurcation diagram, called the “slow man-
ifold” or “z-curve”, is defined as the curve on which V and n are at steady
state and can be constructed numerically using XPPAUT by treating c as a
parameter. The z-curve can also be calculated analytically by defining the
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Fig. 5. Fast/slow analysis of bursting. The burst trajectory and c-nullcline are super-
imposed on a bifurcation diagram (z-curve) of the fast subsystem. On the z-curve, solid
curves represent stable solutions and dashed curves represent unstable solutions. There
are two saddle-node bifurcations (triangles), a supercritical Hopf bifurcation (circle), and
a homoclinic bifurcation (square). The periodic branch is represented using the minimum
(Vmin) and maximum (Vmax) voltage of the oscillations.

fraction of activated K(Ca) channels,

ω =
c3

c3 + K3
d

, (11)

solving Eq. 1 for ω,

ω = −gCam∞(V )(V − VCa) + gKn(V − VK)
gK(Ca)(V − VK)

+
gK(ATP )

gK(Ca)
, (12)

and solving Eq. 11 for c.
We now add in the slow dynamics of c, and view Fig. 5 as a c-V phase

plane. The c-nullcline, obtained from Eq. 9, is superimposed. Below the
nullcline dc/dt < 0, while above the nullcline dc/dt > 0. Finally, we su-
perimpose the burst trajectory. This moves along the z-curve since the fast
subsystem dynamics are much faster than the slow subsystem dynamics.
This relaxation-like oscillation is similar to the relaxation oscillation shown
in Fig. 1. The burst trajectory rides along the bottom branch of the z-curve
during the silent phase, traveling to the left since it is below the c-nullcline.
When the trajectory reaches the SN bifurcation it moves to the periodic
branch, since the limit cycle is now the only remaining attractor. At this
point the trajectory travels rightward since it is above the c-nullcline. The



March 18, 2005 18:15 WSPC/Trim Size: 9in x 6in for Review Volume road˙3

The Road from Chay-Keizer 11

active pase of bursting ends when the trajectory reaches the homoclinic
bifurcation. This completes one cycle of bursting.

The bistability of the fast subsystem is a crucial feature of square-wave
bursting. Without bistability there would be no bursting. Also, bursting
does not occur if the c-nullcline intersects the lower branch of the z-curve,
since in this case the intersection is a stable equilibrium of the full system of
equations. Likewise, if the nullcline crosses deep into the periodic branch the
system will spike continuously. Thus, for bursting to occur, the c-nullcline
must cross the z-curve either between the lower SN and the homoclinic
bifurcation, or slightly above the homoclinic bifurcation. If the slow variable
were infinitely slow then bursting would occur only if the crossing occurs
between the saddle node and the homoclinic bifurcation (Terman, 1992).
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Fig. 6. The z-curve is similar in shape to the cubic V -nullcline of the Morris-Lecar
relaxation oscillator when the periodic branch is represented by the average voltage
curve.

The similarity between the fast/slow analysis of bursting and the dy-
namics of a relaxation oscillation is emphasized in Fig. 6. Here the periodic
branch is represented not only by the maximum and minimum voltage
curves, but also by a curve showing the average voltage (Vavg). The aver-
age voltage of the burst trajectory then travels along the average V branch
during the active phase, and the lower branch of the z-curve during the
silent phase (Fig. 6, heavy curve). (We note that the equivalent V curve,
Veqv, is more representative of the periodic branch than the average V

curve (Bertram et al., 1995). However, Vavg is much easier to compute, and



March 18, 2005 18:15 WSPC/Trim Size: 9in x 6in for Review Volume road˙3

12 R. Bertram and A. Sherman

is in many cases, including this one, a sufficiently good approximation of
Veqv.) The union of the z-curve with the Vavg curve is then analogous to
the V -nullcline in the relaxation oscillator of Fig. 1.

In addition to exhibiting bursting, Chay-Keizer was able to reproduce
the effects on membrane potential of increasing the glucose concentration.
This is physiologically important because β-cells adjust their output (in-
sulin secretion) according to the glucose level in the blood. The insulin
secretion rate is roughly proportional to the plateau fraction, the ratio of
the active phase duration to the total burst period. At low glucose levels the
cell is silent, so the plateau fraction is 0 and the rate of insulin secretion
is low. With glucose concentrations just beyond about 5 mM the β-cells
burst, but the plateau fraction is relattively low, < 0.5. As the glucose
concentration is increased, the plateau fraction increases, raising the mean
rate of insulin secretion. At very high glucose concentrations, ≈ 20 mM,
the cell spikes continuously and the plateau fraction reaches a value of 1
(Beigelman et al., 1977).
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Fig. 7. Simulation of a gradual increase in the glucose concentration. The parameter
kpmca is increased from 0.1 to 0.13, then 0.22, and finally 0.25 (at arrows). The response
of the model is similar to what has been observed in islets (Beigelman et al., 1977).
Fraction of free Ca2+ is fcyt = 0.00025.

Chay and Keizer simulated the effect of glucose by increasing the Ca2+

pump rate kpmca. This is biophysically reasonable, since Ca2+ pumps are
powered by ATP, and the ATP level in the β-cell increases when the glucose
level is increased. Figure 7 shows that the mechanism used by Chay and
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Keizer to simulate an increase in the glucose level is able to reproduce
the glucose effect on the β-cell’s electrical activity. In this figure, kpmca is
increased from 0.1, to 0.13, 0.22, and 0.25. With each step increase in kpmca

the duration of the silent phase decreases while the duration of the active
phase increases, until the cell finally enters a continuous spiking state. In
terms of the fast/slow analysis, the c-nullcline is translated upward when
kpmca is increased. This increases the distance between the nullcline and
the bottom branch of the z-curve, so the trajectory traverses this branch
more quickly and the silent phase duration is reduced. At the same time,
the distance between the nullcline and the periodic branch (or Vavg curve)
is decreased, so that the trajectory moves more slowly along this branch,
increasing the duration of the active phase. With kpmca small the nullcline
intersects the bottom branch of the z-curve and the model cell is at rest.
With kpmca large the nullcline intersects deep into the periodic branch and
the cell spikes continuously.

It is now believed that a factor more important than Ca2+ pumps is the
inhibitory effect that glucose has on ATP-sensitive K+ channels (Ashcroft
et al., 1984). When these channels were discovered after the Chay-Keizer
model was published, it was easy to demonstrate that reduction of gK(ATP )

could also increase plateau fraction (Rinzel et al., 1986). Geometrically,
increasing kpmca moves the c nullcline to the left (Eqs. 9, 10), whereas
reducing gK(ATP ) moves the z-curve to the right (Eq. 12), both of which
prolong the active phase at the expense of the silent phase. [We may need

to put some more c nullclines in Fig. 5. - AS]

Another feature of islet behavior captured by the Chay-Keizer model is
the ability to reset. That is, the model predicts that it should be possible to
reset the system from the silent phase to the active phase, and vice versa,
by giving a brief voltage perturbation. This is due to the bistability of the
fast subsystem (Fig. 8). Furthermore, when the system is reset from the
silent phase to the active phase, the active phase should be shorter than
usual. This is because the distance that the trajectory must travel along
the periodic branch is less than during a typical active phase. The same can
be said for resetting from active to silent phase. Thus, the model predicts
that resetting is phase-dependent.

Resetting experiments were performed on islets by Cook et al. (1980).
They found that it was possible to reset an islet from one phase of bursting
to the other, consistent with the model. However, this resetting was phase-
independent, contrary to the Chay-Keizer model. That is, when the islet
was reset from the silent phase to the active phase (or active to silent), the
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Fig. 8. The Chay-Keizer model predicts that it should be possible to reset from the
silent phase to the active phase (at arrow). The active phase is shorter than usual.
Resetting should also be possible from the active phase to the silent phase.

active phase duration was similar to that of a typical active phase. A later
modeling study suggested one explanation for this behavior (Smolen and
Sherman, 1994). Although the Chay-Keizer model failed in this respect, it
still established the important principle that bursting oscillations based on
bistability are resettable. This is in contrast to bursting oscillations driven
by an endogenous oscillatory process, such as the glycolytic oscillations
discussed later in this chapter.

4. The Demise of K(Ca)

The most obvious prediction of the Chay-Keizer model is that the cytosolic
Ca2+ concentration rises slowly during the active phase and declines slowly
during the silent phase (Fig. 4B). When Ca2+ was first measured some
years after publication of the model, it did indeed show clear oscillations
(Valdeolmillos et al., 1989). However, these oscillations did not have the
sawtooth shape that was predicted by the model. Instead, the concentration
often shows two time scales, a rapid rise to a plateau followed by a slowly
rising plateau, and a similar pattern in the silent phase (Fig 9A). Even
worse, some records showed Ca2+ declining before the end of the active
phase (Fig. 9B). These measurements seemed to be incompatible with a
burst mechanism driven by Ca2+ acting on K(Ca) channels.

With cytosolic Ca2+ out of favor as a slow variable to drive bursting, a
succession of other models with different slow variables was proposed. These
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Fig. 9. Cytosolic Ca2+ in islets imaged with fura-2. The black curves represent the raw
data in arbitrary fluorescence ratio units, and the grey curves are the data smoothed
to highlight the trends. Data courtesy of Craig Nunemaker and Les Satin, Virginia
Commonwealth University.

included slow inactivation of a voltage-dependent Ca2+ current (Chay and
Cook, 1988; Keizer and Smolen, 1991); slow changes in the ratio of ATP
to ADP, acting on K(ATP) channels (Keizer and Magnus, 1989; Smolen
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and Keizer, 1992); and the effects of the endoplasmic reticulum (ER) act-
ing either indirectly on cytosolic Ca2+ or directly through Store-Operated-
Current (Chay, 1996, 1997). The mathematical template established by the
Chay-Keizer model made it relatively easy to devise new models, but in the
end none of these survived experimental testing in its pure form.

5. The Return of K(Ca): Help from the Endoplasmic
Reticulum

Although not fully appreciated at the time, the most important advance
following the Chay-Keizer model was Chay’s addition of the ER. This or-
ganelle is a storehouse for Ca2+, maintaining a free Ca2+ level on the order
of hundreds of micromolar (by comparison, the cytosolic free Ca2+ concen-
tration never reaches 1 µM .) The ER acts as both a Ca2+ source and a Ca2+

sink (Bertram and Sherman, 2004b). When the cell is spiking, Ca2+ enters
the cytosol through Ca2+ channels and some of this is transported into
the ER through Ca2+ pumps in the ER membrane called SERCA pumps
(Sarco- and Endoplasmic Reticulum Calcium pumps). Thus, the ER acts
as a sink during the active phase of bursting. When the cell is silent, Ca2+

channels are closed and there is a net efflux from the cell due to the plasma
membrane Ca2+ pumps. At the same time, Ca2+ enters the cytosol from
the ER due to Ca2+ leakage across the ER membrane. Thus, the ER acts
as a Ca2+ source during the silent phase of bursting. The actions of the ER
therefore provide a slow component to the cytosolic Ca2+ concentration.

With the addition of the ER, the Ca2+ subsystem becomes

dc

dt
= fcyt(Jmem − Jer) (13)

dcer

dt
= fer

νcyt

νer
Jer (14)

= fcytσerJer , (15)

where σer = νcyt/fcyt

νer/fer
is the ratio of effective cytosolic to ER volume, Jmem

is given by Eq. 10, and

Jer = Jserca − Jleak (16)

where Jserca = ksercac is the flux into the ER through SERCA pumps
and Jleak = pleak(cer − c) is the leak out of the ER into the cytosol. An
additional term could be added to Jer to account for flux out of the ER
through IP3 receptors/channels, but here we assume that this term is zero
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Fig. 10. (A) The Chay-Keizer model with the fraction of free cytosolic Ca2+ increased
by a factor of 40 produces fast bursting (fcyt = 0.01, gK(Ca) = 500 pS, gK(ATP ) = 185
pS). (B) The cytosolic Ca2+ concentration has a sawtooth shape. (C) When an ER
compartment is added to the model the bursting slows down dramatically. (D) Cytosolic
Ca2+ now has a square shape with a slow decline, similar to experimental measurements.
The model predicts that the ER Ca2+ concentration (dashed) has a sawtooth shape.

(no muscarinic agonist is present). Details of the model with ER can be
found in Bertram and Sherman (2004a).

Table 2: Additional Parameter Values for the Chay-Keizer Model
with ER

Parameter Value Parameter Value
fcyt 0.01 kpmca 0.18 msec−1

α 4.5× 10−6 fA−1 µM msec−1 fer 0.01
kSERCA 0.4 msec−1 pleak 0.0002 msec−1

νcyt 10 µm3 νer 0.3 µm3

Figure 10 illustrates the bursting and Ca2+ oscillations produced by the
Chay-Keizer model without (panels A and B) and with (panels C and D) an
ER. The fraction of Ca2+ in the cytosol that is free (fcyt) has been increased
from 0.00025 to a more physiological value of 0.01. The effect of this change
is to speed up changes in c by a factor of 40. Thus, with this change the
Chay-Keizer model bursts with a short period of a few seconds (Fig. 10A).
The time course of the cytosolic Ca2+ concentration has a sawtooth shape,
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reflecting its role in driving the bursting.
The parameter fcyt reflects the amount of Ca2+ buffer present in the

model cell. A small value of fcyt represents a large concentration of buffer, so
that little of the Ca2+ that enters the cell remains free. Comparing Fig. 4A
with Fig. 10A we see that when the buffer concentration is high, the bursting
produced by the Chay-Keizer model is slow. Note that changing fcyt does
not change either the z-curve or the c-nullcline but rather controls the speed
of cycling around the hysteresis loop.

Another way to slow down the bursting is to add an ER to the model.
Bursting with a physiological level of buffer (fcyt = 0.01), but with an ER,
is shown in Fig. 10C. Note that the level of buffer in the ER is also modest
(fer = 0.01, Table 2), but that cer is nonetheless slow because the ER Ca2+

concentration is three orders of magnitude larger than that of the cytosol.
The burst period, ≈ 35 sec, is much longer than that produced by the model
with no ER (Fig. 10A). In addition, the cytosolic Ca2+ concentration no
longer has a sawtooth shape (Fig. 10D), but instead has fast and slow
components, in better agreement with experiment (Fig. 9).

Thus, while one often speaks casually of the ER acting to buffer Ca2+,
the model shows that the kinetic effect is quite different: Because buffering
is rapid compared to the intrinsic timescale of c, it produces a uniform
slowing of the c time course (compare Figs. 10B, 4B), whereas cer is much
slower than c and introduces a second slow kinetic component (Fig. 10D).

The new quantity in the model, cer, has a sawtooth appearance, and is
largely responsible for driving the bursting (Fig. 10D). This model predic-
tion has not yet been tested experimentally, due to the technical difficulty
of measuring the Ca2+ concentration in the ER, separate from the cytoso-
lic Ca2+, in an intact islet. Thus, a variable that we believe to be crucial
to bursting in β-cells, the ER Ca2+, is practically invisible to current ex-
perimental measurements, and can only be observed indirectly through its
effects on the cytosolic Ca2+.

The most robust feature in experiments is the biphasic decline of cytoso-
lic Ca2+ during the silent phase (Fig. 9). The initial rapid decline reflects the
abrupt cessation of Ca2+ entry, while the much slower decline that follows
reflects release from the ER of Ca2+ that was taken up during the active
phase. This interpretation is supported by the observation that the slow
component disappears when SERCA pumps are blocked pharmacologically
or genetically.

The addition of an ER compartment to the model also adds a great
deal of flexibility to the system dynamics. That is, the period of bursting
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Fig. 11. The Chay-Keizer model with an ER can generate bursting with a wide range
of periods. (A) Fast bursting is produced when gK(Ca) = 1000 pS. (B) Slower bursting
is produced when gK(Ca) is reduced to 500 pS. (C) Bursting becomes slower yet when
gK(Ca) is reduced to 370 pS. The range of burst periods obtained by varying gK(Ca) is
much smaller without an ER.

now ranges from a few seconds to more than a minute, and changes in
period can be achieved by varying a single parameter, gK(Ca) (below we
show that other parameters can also be varied to achieve a similar range
of periods). From a biophysical perspective, if gK(Ca) is decreased it will
take more Ca2+ to terminate the spiking since more K(Ca) channels must
be activated, so the active phase duration will increase. Since the extra
Ca2+ that accumulated during the active phase must be removed when
the cell is hyperpolarized, the silent phase duration also increases. Thus,
we expect the burst period to increase when gK(Ca) is reduced. While this
would be true even without an ER, the role of the ER as a Ca2+ sink
and source accentuates the effect of reducing gK(Ca), so that now the burst
period can vary over orders of magnitude when gK(Ca) is varied modestly.
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This is illustrated in Fig. 11. With gK(Ca) = 1000 pS the bursting is fast,
with a period of ≈ 3 sec (Fig. 11A). With gK(Ca) = 500 pS the bursting is
much slower and more islet-like, with period of ≈ 35 sec (Fig. 11B). Finally,
with gK(Ca) = 370 pS the bursting is slower still, now with period of ≈ 65
sec (Fig. 11C). Reducing gK(Ca) any further leads to continuous spiking.
In contrast to Chay-Keizer with an ER, the burst period of Chay-Keizer
without an ER (and with fcyt = 0.01) is never more than a few seconds,
regardless of the value of gK(Ca).

The dramatic effect of gK(Ca) can be be understood in terms of the
fast/slow analysis. Figure 12A shows the z-curve and c-nullcline with
gK(Ca) = 1000 pS, the case in which fast bursting is produced. The second
slow variable, cer, is clamped at its average value, 181 µM. The relationship
between z-curve and nullcline is essentially the same as for the Chay-Keizer
model without an ER (Fig. 5). It is therefore not surprising that the burst-
ing produced by this system is fast. Indeed, it is so fast that the oscillation
amplitude in cer is nearly zero, and one can clamp cer at its average value
without affecting the bursting.

The situation is quite different in Fig. 12B, where gK(Ca) = 500 pS.
The reduction in gK(Ca) has stretched the z-curve, moving the knees farther
apart, and moving the homoclinic bifurcation farther to the right. (This can
also be seen from Eqs. 11, 12.) As a result, the c-nullcline now intersects
both the bottom branch and the periodic branch. Thus, during the silent
phase the trajectory moves along the bottom branch until it reaches the
intersection with the nullcline. At this point the trajectory stalls, and in
the absence of an ER would remain at this point. However, cer influences
the c-nullcline: when cer declines (as it would during the silent phase) the
nullcline moves leftward. This can be seen by setting the right-hand-side of
Eq. 13 to 0, viewing cer as a parameter, to get

c =
−αICa + pleakcer

kpmca + kserca + pleak
(17)

on the c-nullcline. Eventually, the nullcline moves past the lower knee of
the z-curve, and the trajectory escapes the silent phase and enters the
active phase. Once again, though, the trajectory stalls, this time on the
periodic branch during the active phase. However, as the cell spikes, Ca2+

accumulates in the ER, shifting the c-nullcline to the right. Eventually, the
nullcline moves past the homoclinic bifurcation and the trajectory escapes
the periodic branch to re-enter the silent phase.

Unlike the “classical” bursting of the Chay-Keizer model, where the
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Fig. 12. The z-curve and c-nullcline for two different values of gK(Ca) and with cer

clamped. (A) With gK(Ca) = 1000 pS the dynamics are similar to those of the Chay-
Keizer model without an ER. Here, cer = 181 µM. (B) Decreasing gK(Ca) to 500 pS
stretches the z-curve, so that the knees are farther apart and the homoclinic bifurcation is
further to the right. Now the trajectory stalls at intersections with the nullcline, awaiting
slow changes in cer to shift the nullcline to the right or the left (the nullcline moves to
the right when cer increases). Unlike the case above, if cer is clamped bursting will not
occcur. To make this diagram, cer is set at 267 µM.

period was set by the time scale of c, the period of the bursting produced
by the model with an ER is determined by the time scales of both c and cer.
The c time scale determines the time required for the trajectory to move
along the z-curve until it reaches an intersection with the c-nullcline. The
cer time scale determines the time required for the nullcline to move past
the knee during the silent phase and past the homoclinic bifurcation during
the active phase. Since cer changes more slowly than c, the burst period is
dominated by the cer time scale. Another factor in setting the burst period
is the distance that the nullcline must travel for the trajectory to escape the
silent or active phase. This is determined by how much the z-curve has been
stretched, and thus by the value of gK(Ca). It is for this reason that such
a large range of burst periods is achieved by varying this parameter. This
scenario, in which the bursting is driven by activity-dependent oscillations
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in two or more slow variables with disparate time scale, is called “phantom
bursting” (Bertram et al., 2000; Bertram and Sherman, 2004a).

It is interesting to note that the mechanism of phantom bursting, a
slow variable translating a nullcline while the other “nullcline” (the z-curve)
remains fixed, is similar to the mechanism for Chay-Keizer bursting itself
when viewed in the nV -phase plane (Figs. 2 and 3). That is, bursting is
produced when slow changes in c translate the V -nullcline while the n-
nullcline remains fixed. The duration of the silent phase of the burst is
determined primarily by the length of time required to move the lower
knee of the V -nullcline past n-nullcline, so that there is no intersection on
the lower branch. The active phase duration is also determined by the time
required for changes in c to move the V -nullcline, this time past a homoclinic
bifurcation point. Thus, the dynamics of phantom bursting recapitulate
those of classical bursting at a higher level.

This suggests that we go on to view c as a component of the fast subsys-
tem and consider a stack of phase-planes for different values of cer. That is,
we construct the bifurcation diagram of the V -n-c subsystem with respect
to cer. The z-curve for V with respect to cer is then the curve on which V ,
n, and c are at steady state. It can be computed analytically by inverting
Eq. 17 to get cer in terms of c, and using Eqs. 11, 12 to express c in terms
of V . Although the algebra is the same as before, when we viewed Eq. 17
as the equation for the c-nullcline and c as a slow variable, the point of
view has changed. We now view c as a fast variable in equilibrium with
V . The results are shown in Fig. 13 for the default parameters (A) and for
increased ER leak (B). The oscillations become faster (see insets) because
the the z-curve is squashed when the ER is partially depleted, decreasing
the amplitude of cer. This is the case that was considered by Chay (1996,
1997), in an early unappreciated example of phantom bursting. The in-
crease in frequency is physiologically relevant for β-cells, representing part
of the effect of acetylcholine to increase burst frequency and insulin se-
cretion. Eqs. 11, 12, 17 also predict an increase in frequency when stores
are depleted by reducing kserca, another phenomenon seen in β-cells. See
Bertram and Sherman (1994a) for details.

Varying kserca and pleak in proportion changes the rate of ER Ca2+

turnover without depleting or overfilling the ER. This also affects burst
kinetics, with reduced turnover increasing burst frequency and also atten-
uating the slow tail in cytosolic Ca2+ (not shown). Thus, the ratio of ER
flux to plasma membrane flux is an important parameter for adjusting β-cell
models to produce realistic Ca2+ timecourses.
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It may seem paradoxical that cer is now the slow, negative-feedback
variable because it does not affect the plasma membrane ion channels di-
rectly. The resolution of the paradox is contained in Eq. 17, which can be
rewritten in the following form:

c =
−αICa(V )

kpmca + kserca + pleak
+

pleakcer

kpmca + kserca + pleak

= cfast + cslow

Thus, c can be decomposed into a fast component, which is in equilibrium
with V and a slow component, which is in equilibrium with cer. The slow
rise and fall of cer is communicated to gK(Ca) through the latter component.
From this point of view, the increase in burst frequency as pleak is increased
reflects the increased efficiency with which the ER can influence gK(Ca).
This “subtle inhibitory effect” of the ER was noted by Shorten and Wall
(2000) in a model for pituitary corticotrophs exhibiting a range of non-
square-wave bursting patterns. We point out that the ER does not play
solely an inhibitory role: during the early part of the active phase, it blunts
the rise of c and hence the activation of gK(Ca). This stimulatory effect
prolongs the active phase, setting the stage for the delayed inhibitory effect
that ultimately terminates the active phase.

6. Further Modifications to the Model

The model presented here is in reasonable agreement with the data in
Fig. 9A, in which cytosolic Ca2+ rises throughout the active phase, but
not with Fig. 9B, in which cytosolic Ca2+ declines towards the end of the
active phase. Here we point to several modifications to the model in the cur-
rent literature where this issue is addressed in different but complementary
ways.

One way is to incorporate a hidden Ca2+ compartment that commu-
nicates with gK(Ca) and rises throughout the active phase (Goforth et al.,
2002). Such a compartment was postulated in order to account for data
showing that block of SERCA pumps eliminated IK(Ca).

A second way is to incorporate a slow negative feedback process that
is triggered by a rise in c but outlasts the rise in c. The hypothesis of
Keizer and Magnus (1989) that the rise in c inhibits mitochondrial ATP
production and hence reopens K(ATP) channels fits this description, and
complements the effects of cer in phantom-type models by sliding the V -c
z-curve horizontally. (See Eqs. 11, 12 and Bertram and Sherman, 2004a).



March 18, 2005 18:15 WSPC/Trim Size: 9in x 6in for Review Volume road˙3

24 R. Bertram and A. Sherman

0 250 500
-80

-60

-40

-20

V
 (

m
V

)

0 40 80
t (sec)

0.1

0.2

c 
(µ

Μ
)

0 250 500
c

er
 (µΜ)

-80

-60

-40

-20

0 40 80
t (sec)

0.1

0.2

c 
(µ

Μ
)

A

B

Fig. 13. Increasing ER efflux reduces cer amplitude and increases burst frequency. BDs
with respect to cer. A. pleak = 0.0002, B. pleak = 0.001 (insets, c vs. t.)

A third proposal is that c is not the primary ionic negative feedback
process, but rather Na+, which enters through the Na+-Ca2+ exchanger
and activates the Na+-K+ pump (Fridlyand et al. 2003).

Finally, data on compound oscillations (“bursts of bursts”) in membrane
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potential, cytosolic Ca2+, and metabolic variables, such as oxygen, glu-
cose, and mitochondrial membrane potential, have led to models in which
glycolytic oscillations interact with electrical oscillations (Bertram et al,
2004c). These oscillations of metabolism would again slide the V -c z-curve,
but, because they are independent of or only weakly dependent on cytosolic
Ca2+, the trajectory can be dragged outside the region of bistability. One
consequence is that the oscillation may no longer be resettable by brief
perturbations of membrane potential.

This is an area in which rapid development is in progress, but the dy-
namic foundation described here should continue to be useful in analyzing
new models as they appear.

7. Discussion

We have traced the development of ideas on negative feedback by cytosolic
Ca2+ via K(Ca) channels in β-cell models, starting with the Chay-Keizer
model (1983). That model was successful in a number of ways, but its
prediction of the kinetics of Ca2+ oscillations appeared to be fatally in
disagreement with experiments showing both fast and slow components in
c. Here we showed how adding a slow ER to Chay-Keizer could account for
much of the discrepancy. The essential idea is that cytosolic Ca2+ is not
very slow (viewed on the timescale of tens of seconds to minutes as found
in β-cell electrical activity), but that the ER can impart an effective slow
component.

More generally, one can speak of bi-directional communication between
the plasma membrane and the ER. Oscillations of membrane potential
cause oscillations of cytosolic Ca2+, which are propagated into the ER.
In turn, oscillations of ER Ca2+ modulate the kinetics of cytosolic Ca2+

and can thus affect membrane potential through cytosolic Ca2+-dependent
ion channels. This idea was used by Li et al. (1997) to explain how the ER
promotes its own refilling after being emptied by agonists: when the ER is
refilling, it takes up Ca2+ from the cytosol, deactivating K(Ca) channels
and thus increasing action potential frequency and Ca2+ entry through the
plasma membrane.

With regard to the β-cell, we caution that it has only been shown that
K(Ca) channels can, with assistance from the ER, function as a slow neg-
ative feedback mechanism. While this hypothesis has also received some
support from the identification for the first time of an appropriate non-
voltage dependent K(Ca) channel in β-cells (Göpel et al., 1999; Goforth
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et al., 2002), it remains to be established experimentally that these K(Ca)
channels play the role we have attributed to them.

We know that K(Ca) channels can not be solely responsible for bursting,
because slow cytosolic Ca2+ oscillations persist in mice in which the low-
affinity SERCA3 pump has been knocked-out (Arredouani et al. 2002). In
this case, the cytosolic oscillations lack the slow tail seen normally (Fig. 9),
which likely means that ER Ca2+ is flat. Thus, one can have oscillations
of c without oscillations in cer, raising the question of what role the latter
serve. One intriguing possibility is that oscillations in the ER are more
important for other functions of the cell, such as protein trafficking and gene
expression, than for regulating cytosolic Ca2+ and membrane potential.
This would be parallel to cytosolic Ca2+, which serves both signaling and
rhythmogenic roles.

Even if ER Ca2+ uptake is intact, the ER may fail to oscillate if it is
too slow (eg. if σer is very small in Eq. 15). In the model decribed here,
the ER only has an effect when it is sourcing or sinking Ca2+. However, it
is believed that β-cells, like many other cells, also possess store-operated
channels (SOC) that carry an inward current directly activated by the level
of cer. SOC was previously proposed by us to mediate the response to
acetylcholine-dependent store dumping (See Sherman, 1997) in a model
with a very slow ER. Alternatively, when the ER is fast enough to oscil-
late in response to bursting, SOC can provide a gross depolarization that
complements the increased frequency we showed here when ER efflux is ac-
tivated (Fig. 13; Bertram and Sherman, 1994a). It has also been suggested
that SOC itself can drive bursting, since influx would be attenuated by ER
filling during the active phase and would recover during the silent phase
(Chay, 1997 ; Fridlyand et al., 2003). A different proposal is that Ca2+ in-
flux triggers Ca2+ release from the ER by calcium-induced calcium release
(CICR) and thus activates SOC to help sustain the active phase. This sce-
nario seems unlikely, however, because disabling SERCA pumps increases,
rather than decreases, the amplitude of c (Bertram and Sherman, 2004b.

The dynamical issues of having two negative feedback variables (here,
cytosolic and ER Ca2+) in a square-wave bursting model obviously gener-
alize well beyond the β-cell. We have illustrated the concept of phantom
bursting by means of bifurcation diagrams in the V -c plane, with cer used
as a parameter, and in the V -cer plane, with c treated as a fast variable.
The reader may wish to consider yet another point of view, the two-slow-
variable plane (here, c vs. cer), as described by Smolen et al. (1993).
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