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ABSTRACT

Electrical bursting oscillations in neurons and endocrine cells are activity patterns that facilitate the secretion of neurotransmitters and hor-
mones and have been the focus of study for several decades. Mathematical modeling has been an extremely useful tool in this effort, and
the use of fast-slow analysis has made it possible to understand bursting from a dynamic perspective and to make testable predictions about
changes in system parameters or the cellular environment. It is typically the case that the electrical impulses that occur during the active phase
of a burst are due to stable limit cycles in the fast subsystem of equations or, in the case of so-called “pseudo-plateau bursting,” canards that
are induced by a folded node singularity. In this article, we show an entirely different mechanism for bursting that relies on stochastic opening
and closing of a key ion channel. We demonstrate, using fast-slow analysis, how the short-lived stochastic channel openings can yield a much
longer response in which single action potentials are converted into bursts of action potentials. Without this stochastic element, the system
is incapable of bursting. This mechanism can describe stochastic bursting in pituitary corticotrophs, which are small cells that exhibit a great
deal of noise as well as other pituitary cells, such as lactotrophs and somatotrophs that exhibit noisy bursts of electrical activity.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0059338

This article demonstrates how one can understand the dynamics
underlying stochastic bursting in pituitary corticotrophs. These
cells secrete a stress hormone when activated to produce electrical
bursting. This bursting relies on one type of ion channel that is
small in number but large in conductance. As a result, the current
through these channels is best described as a stochastic process.
This article demonstrates the mathematical basis for the bursting
pattern produced by the stochastic opening and closing of these
ion channels.

I. INTRODUCTION

Bursting electrical activity occurs in many neurons and
endocrine cells. This pattern of activity in which electrical impulses
are clustered together and the burst active phases are separated
by silent phases of quiescence, is a fundamental unit of neural
information1,2 and, in endocrine cells, is more effective than elec-
trical spiking at evoking the secretion of hormone.3,4 It has long

been recognized that bursting reflects dynamics that occur on sev-
eral time scales, and mathematical models of bursting cells are often
analyzed using a fast-slow analysis.5 In this analysis, variables are
partitioned into those that vary on a fast time scale and those that
vary on one or more slower time scales. The dynamics of each sub-
system are then analyzed and later stitched together to approximate
the full system dynamics. In most cases, the bifurcation analysis of
the fast subsystem, treating slow variables as slowly varying parame-
ters, provides an explanation for the genesis of the bursting rhythm
and allows one to predict the effects of varying key parameters. This
approach has been used since the pioneering work of Rinzel in the
1980s.6

Most endocrine cells, including those in the pituitary gland, are
very small, with a diameter of 7 − 15 µm.7–9 In these small cells,
the copy number of the various types of ion channels can be low,
and the effects of stochastic channel opening can be pronounced.10

This is particularly true for BK channels, which are a family of
K+ channels with high single-channel conductance,11 and in which
copy number is low.10 For this reason, models of electrical activity
in small endocrine cells often have a stochastic component, and it
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was recently shown that the primary effects of stochastic channel
gating can be accounted for by using a stochastic description
of BK channels while treating others as deterministic.10

The primary aim of this report is to demonstrate how a model
cell that produces tonic spiking can be converted to a bursting cell
with the addition of stochastic openings of a few hyperpolarizing BK
ion channels. As is typical for a mathematical analysis of bursting
oscillations, we use a fast-slow analysis. However, unlike most cases
of bursting, the fast subsystem bifurcation structure does not explain
the phenomenon. Instead, invariant manifolds of fast-subsystem
equilibria are the key to the behavior. This analysis not only shows
why bursting occurs, but also allows us to determine the approxi-
mate number of spikes that occur in each burst active phase and thus
the duration of the burst. We use a model of pituitary corticotrophs,
which are cells that release the stress hormone adrenocorticotropic
hormone (ACTH) when they are bursting. Experimental studies
have shown that these cells require BK channels for bursting, since
pharmacological blockage or genetic knockout converts the burst-
ing of stimulated cells to spiking.8,12 We demonstrate here that few
BK channels are actually needed for bursting, as long as they are
co-localized with Ca2+ channels.

II. THE MATHEMATICAL MODEL

A. The full model

The model that we employ to study corticotroph electrical
activity has a 3D deterministic component that includes the cell’s
membrane potential (V), an activation variable for delayed rectifier
K+ channels (n), and the free cytosolic Ca2+ concentration (c). The
differential equations are as follow:

Cm

dV

dt
= −(IKdr + IKir + ICa + INS + IL + IIK + IBK), (1)

dn

dt
=

n∞ − n

τn

, (2)

dc

dt
= −fc(αICa + kcc), (3)

where Cm is the membrane capacitance. There are seven ionic
currents: delayed rectifier K+ current (IKdr), inward rectifier K+

current (IKir), L-type Ca2+ current (ICa), non-selective-cation cur-
rent (INS), leak current (IL), intermediate conductance K+ current
(IIK), and big conductance K+ current (IBK). The time constant for
the activation variable n is τn, the fraction of Ca2+ that is free is
denoted by fc, the Ca2+ pumping rate is kc, and the conversion
from Ca2+ current to concentration is α. The ionic currents are
given by

IKdr = gKdrn(V − VK), (4)

IKir = gKirr∞(V)(V − VK), (5)

ICa = gCam∞(V)(V − VCa), (6)

INS = gNS(V − VNS), (7)

IL = gL(V − VL), (8)

IIK = gIKi∞(V − VK), (9)

IBK = ḡBK(No
sf

+ No
sn

+ No
zf

+ No
zn)(V − VK), (10)

where gx is maximal conductance for x ∈ {Kdr, Kir, Ca, NS, L, IK}

and ḡBK is the single-channel conductance of BK channels. Also,
for x ∈ {K, Ca, NS, L}, Vx is the Nernst potential of each current.
The intermediate conductance K+ channel activation variable, i,
unlike other channels, is gated by the cytosolic Ca2+. Its equilibrium
function is as follows:

i∞ =
c2

c2 + k2
ik

. (11)

The other gating variables are sensitive to voltage and are
governed by equations of the following form:

x∞ =
1

1 + exp

(

νx − V

sx

) , (12)

for x ∈ {n, r, m} and where νx is the half-activation membrane volt-
age and sx is the slope factor for the function. Most of the gating
variables respond to changes in V and Ca2+ faster than do the gating
variables for the delayed rectifier and BK channels and are treated as
instantaneous to reduce the dimensionality and facilitate analysis.

There are two dominant types of BK channels in corticotroph
cells: STREX channels and ZERO channels.13–16 The half-activation
membrane potential of STREX channels is left-shifted relative to
that of ZERO channels (νs < νz).13,16 Thus, STREX channels open
at lower voltages than do ZERO channels.

The BK type of K+ channels are activated by both Ca2+ and
voltage.17 BK channels that are located near Ca2+ channels are
functionally different from those located more distant, since the
“BK-near” channels are exposed to a very high Ca2+ concentration
(over 100 µM) near the mouth of an open Ca2+ channel.18,19 In con-
trast, the “BK-far” channels are exposed to the bulk Ca2+, which has
a much smaller concentration (under 0.5 µM). This means that the
BK-near channels have a much higher opening rate than do the BK-
far channels. Previous modeling studies have distinguished between
these two types.12,20 We assume that some STREX and ZERO chan-
nels are colocalized with Ca2+ channels, while the remainder are
more distant. Rather than using detailed formulations for the Ca2+

and voltage dependence of BK channels, we use a purely voltage-
based formulation in which the channel activation rate is higher in
BK-near channels, reflecting the much higher Ca2+ concentration to
which they are exposed.

The BK channels therefore fall into four classes: ZERO-near,
ZERO-far, STREX-near, and STREX-far, and the number of open
BK of each class is denoted by No

zn
, No

zf
, No

sn
, and No

sf
, respectively. The

state of each BK channel is then determined by a two-state Markov
process,

(13)

for x ∈ {zn, zf, sn, sf}, and Cx and Ox represent the closed and open
states, respectively. The closed-to-open transition rate is δx, and this
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is larger for BK-near channels than for BK-far channels. The open-
to-closed rate is γx and is the same for BK-near and BK-far channels.
The opening rates are as follows:

δsn =
s∞(V)

τBK−n

, δzn =
z∞(V)

τBK−n

, (14)

δsf
=

s∞(V)

τBK−f

, δzf
=

z∞(V)

τBK−f

, (15)

while the closing rates are as follows:

γsn =
1 − s∞(V)

τoc

, γzn =
1 − z∞(V)

τoc

, (16)

γsf
=

1 − s∞(V)

τoc

, γzf
=

1 − z∞(V)

τoc

. (17)

At each time point, the state of each BK channel is updated using
a uniform random number generator to choose a pseudo-random
number r ∈ [0, 1]. If a channel of type x is closed at time t, then it
is moved to an open state at time t + 1t if r < δx1t; otherwise it
remains closed. If the channel is open at time t, then it is moved to
a closed state at time t + 1t if r < γx1t; otherwise, it remains open.
This is done for each unblocked BK channel.

We assume that the numbers of ZERO and STREX channels are
constant and denoted as Nz and Ns, respectively. This is a reasonable
assumption given the short duration (5 s or less) of simulations. If βz

and βs denote the fraction of ZERO and STREX channels colocalized
with Ca2+ channels, then

Nzn = βzNz and Nzf
= (1 − βz)Nz, (18)

Nsn = βsNs and Nsf
= (1 − βs)Ns. (19)

For simplicity, we assume that βs = 0.2, so 20% of the STREX chan-
nels are colocalized with Ca2+ channels. We vary the fraction of
ZERO-type channels that are colocalized from 20% to 80%.

The drug paxilline is an effective and specific blocker of BK
channels. When bound to a channel, paxilline puts it into a blocked
state. However, even at high concentrations of paxilline not all BK
channels are blocked.21 In our simulations, we assume that when
paxilline is present, all but three BK channels are blocked at each
point in time. The identity and location of the blocked channels
are selected randomly at each time step. Because paxilline binds
preferentially to closed channels,22 our random selection of blocked
channels was biased so that closed channels are 10 times more likely
to be targeted than open BK channels.

All parameter values are given in Table I, and with these val-
ues, the model produces a bursting activity pattern corresponding
to a corticotroph that is stimulated with the primary hypothalamic
stimulator, corticotrophin-releasing hormone (CRH). Computer
simulations were performed using the Euler method in MATLAB

with time step 1t = 0.05 ms. Computer code can be downloaded
from www.math.fsu.edu/∼bertram/software/bursting. Bifurcation
diagrams were obtained using the numerical continuation software
AUTO-07P.23

TABLE I. Model parameter values for a corticotroph stimulated by CRH. Most values

are from Duncan et al.12 The number of BK channels is based on Richards et al.10

Param. Value Param. Value

Cm 7 pF νn −5 mV
gKdr 6.5 nS νm −20 mV
gKir 0.93 nS νKir −50 mV
gCa 2.1 nS νz −5 mV
gNS 0.12 nS νs −20 mV
gL 0.2 nS sn 10 mV
gIK 0.5 nS sm 12 mV
ḡBK 0.2 nS sz 2 mV
VCa 60 mV ss 2 mV
VK −70 mV sKir −1 mV
VNS −20 mV α 0.0015 µM/fC
VL −50 mV fc 0.005
τ n 30 ms kc 0.12 µM
τ BK−n 5 ms Nz 20
τ BK−f 1000 ms Ns 5
τ oc 5 ms βz 0.2–0.8
kik 0.4µ β s 0.2

B. The basic model

The basic model is the full model without stochastic BK chan-
nel openings, that is, without BK current. The differential equations
are as follows:

Cm

dV

dt
= −(IKdr + IKir + ICa + INS + IL + IIK), (20)

dn

dt
=

n∞ − n

τn

, (21)

dc

dt
= −fc(αICa + kcc). (22)

C. The reduced model

The reduced model is obtained from the basic model by setting
the intracellular Ca2+ concentration to a constant. It is thus the fast
subsystem of the basic model. The planar system is then

Cm

dV

dt
= −(IKdr + IKir + ICa + INS + IL + IIK), (23)

dn

dt
=

n∞ − n

τn

, (24)

with c [which enters into the IK current through Eqs. (9) and (11)]
treated as a parameter.

III. RESULTS

A. Bursting requires stochastic BK channel openings

Pituitary corticotrophs typically exhibit electrical bursting
when stimulated with the neurohormone corticotrophin-releasing
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FIG. 1. Activity patterns produced by the full model, representing a corticotroph stimulated by CRH. (a) A bursting pattern is produced. The intracellular Ca
2+

concentration
is superimposed in red. (b) The number of open BK-near and BK-far channels shows episodes during bursts. (c) When the application of the BK channel antagonist paxilline
is simulated by blocking 22 out of the 25 BK channels, the cell produces tonic spiking. (d) With paxilline, there are not enough BK channel openings to generate bursting. (e)

Even with only 3 BK channels remaining, bursting is restored when the fraction of ZERO-type BK channels colocalized with Ca
2+

channels is increased from βz = 0.2–0.8.
(f) BK-near channel openings are now much more frequent.

hormone (CRH).8 This pattern of activity is replicated with the
model cell, as shown in Fig. 1(a). Each burst is composed of an
episode of electrical impulses or spikes, followed by a silent phase.
The fast electrical spiking that occurs during a burst is in contrast
to the slower changes in the superimposed intracellular Ca2+ con-
centration (c, red). The slow variation of c is the basis of fast-slow
decomposition that is performed later.

During each burst, there is an episode of BK channel open-
ings [Fig. 1(b)]. Most of these are from BK-near channels, which
are colocalized with Ca2+ channels. The BK-type K+ channels are
necessary for bursting in corticotrophs, since the bursting is con-
verted to tonic spiking when the BK channel antagonist paxilline
is applied.8 This behavior is also captured by the model [Fig. 1(c)],
where the effects of paxilline are simulated by putting 88% (22 chan-
nels) of the BK channels into a blocked state, while the remaining
12% (3 channels) are unblocked and can be either open or closed.
This manipulation greatly reduces BK channel openings [Fig. 1(d)],
and this is the reason that bursting does not occur. Bursting behavior
is restored [Fig. 1(e)] by increasing the fraction of BK channels that
are colocalized with Ca2+ channels (βz increased from 0.2 to 0.8).
The colocalized BK channels activate more quickly and with higher
probability than do the others [Fig. 1(f)], which have been shown

to be important in burst production in pituitary cells.24 Thus, even
with only 12% of BK channels unblocked, bursting is possible if the
majority of BK channels are colocalized with Ca2+ channels.

To explain the patterns of electrical activity shown in Fig. 1, we
performed a fast-slow analysis of the basic model (i.e., the determin-
istic model that excludes the stochastic BK current, see Methods).
An analysis of the magnitudes of the time derivatives of the three
variables revealed that V and n change on a faster timescale than c
(see Appendix), so in the planar reduced model (see Methods), the
intracellular Ca2+ concentration c is treated as a parameter.

A bifurcation diagram for the reduced model with c as a bifur-
cation parameter is shown in Fig. 2, with full-model trajectories
superimposed. The blue curves represent equilibria, while the red
curves represent a branch of periodic solutions. The lower red curve
gives the minimum value of V during an oscillation, while the upper
one gives the maximum value. For both stationary and periodic
branches, solid curves indicate stable solutions while dashed curves
indicate unstable solutions.

The periodic spiking branch begins with a subcritical Hopf
bifurcation and terminates with an infinite-period SNIC (Saddle-
Node on Invariant Circle) bifurcation. The green curve in Fig. 2(a)
is the closed orbit of the basic model and corresponds to a tonic
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FIG. 2. Bifurcation diagrams of the reduced model, with c as a bifurcation param-
eter. Trajectories of the basic and full models are superimposed in green and
black, respectively. Solid curves indicate stable solutions, while dashed curves
indicate unstable solutions. Blue curves represent the stationary solutions, while
red curves represent the periodic tonic spiking branch; the lower curve is the min-
imum of the oscillations, the upper curve is the maximum. HB = subcritical Hopf
bifurcation at (c, V) = (0.175,−17.00); SNIC = saddle-node on invariant cir-
cle bifurcation at (c, V) = (0.283,−53.27). (a) Corticotroph stimulated by CRH
in the full model produces bursting activity (black), cf. Fig. 1(a). (b) With simulated
application of paxilline, in which 88% of the BK channels are blocked (22 of the 25
BK channels), the bursting is converted to tonic spiking [cf. Fig. 1(c)], with the orbit
coincident with the spiking orbit of the basic model. (c) Increasing the fraction of

ZERO-type BK channels colocalized with Ca
2+

channels (βz increased from 0.2
to 0.8) restores bursting, cf. Fig. 1(e).

spiking time course. There is no bursting in the basic model, and
indeed this is expected since there is no bistable interval between the
stationary and periodic branches of the fast subsystem, as is required
for deterministic bursting with a single slow variable.25

In the full model, the closed orbit is much wider, reflecting
the burst timecourse from Fig. 1(a). The genesis of bursting is not
evident from the reduced model bifurcation diagram. When the
application of paxilline is simulated, the burst orbit returns to a spik-
ing orbit that is almost identical to that of the basic model [Fig. 2(b)].
Yet, when the colocalization of BK channels is increased, the burst-
ing returns [Fig. 2(c)], though the reason is again not evident from
the reduced model bifurcation diagram.

FIG. 3. Stochastic BK channel openings allow the full model system to escape
the tonic spiking limit cycle of the basic model. Red and blue curves are portions
of the periodic and stationary branches of the reduced model, respectively. The
tonic spiking orbit is in green. The full system is started on the spiking limit cycle
at the yellow circle, and its trajectory is shown in gray. BK channel openings are
indicated by blue squares. These channel openings lead to a second impulse,
converting spiking to bursting.

B. Escape from the spiking limit cycle mediated by

stochastic BK channel openings

We now turn to the question of how the stochastic gating of BK
channels can convert tonic spiking to bursting. Figure 3 is a close-
up view of Fig. 2(a) with the bifurcation curves in red and blue,
and the spiking limit cycle of the basic model in green. To show
how the full model escapes the limit cycle to initiate a burst, it is
started from a point on the spiking orbit indicated by a yellow cir-
cle and the trajectory is shown in gray. The timings of BK channel
openings are shown as blue squares and do not begin until V has
risen to a depolarized level of approximately −10 mV, but from this
point through the remainder of the depolarized phase of the action
potential they are prevalent. One effect of these channel openings
is a slight decrease in the peak voltage of the impulse. A second
effect occurs later, during the downstroke of the impulse, when the
stochastic trajectory again deviates slightly from the spiking orbit.
This deviation is important since it leads to additional spikes that
make up the active phase of a burst. That is, the small deviation from
the spiking orbit allows the full model system to escape and enter
into a second spike rather than entering the hyperpolarized phase of
the action potential. As shown in Fig. 3, the second impulse follow-
ing the escape also produces a series of BK channel openings during
the depolarized phase of the impulse. These channel openings are
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FIG. 4. Mechanism for escape from the spiking limit cycle. (a) The phase plane view of the reduced model with c = 0.27µM, a value to the left of SNIC bifurcation. The
dashed curves are nullclines (red curve is the V-nullcline, blue curve is the n-nullcline). They intersect at an unstable focus (small green circle), which is surrounded by a
stable spiking limit cycle (green curve). The brown curve is a portion of the repelling slow manifold and forms a boundary for the escape region (blue shaded region). The
purple orbit originates in the escape region; the yellow trajectory originates outside the escape region. (b) Burst (purple) and spiking (yellow) time courses of the reduced
model corresponding to trajectories in panel (a). (c) View from the 3D phase space of the basic model. The escape boundary (brown) is extended to form a separating
surface. A trajectory (purple) starting from within the separating surface moves away from the spiking limit cycle (green) as a burst is initiated. (d) Burst (purple) and spiking
(yellow) time courses corresponding to trajectories of the basic model starting within and outside of, respectively, the separating surface in panel (c). Parameter values are
the same as in Table I for the basic model.

sufficient to induce yet another impulse, extending the duration of
the burst active phase.

C. Fast-slow analysis explains the escape

phenomenon

To understand why the small deviation from the spiking orbit
can produce bursting, we use the basic model and view the system
in the plane of its fast subsystem, i.e., the reduced model [Fig. 4(a)],

with c fixed at a value to the left of the SNIC bifurcation, where the
reduced model contains an unstable focus and a stable spiking limit
cycle. The nullclines are shown as dashed curves (blue curve is the
n-nullcline, red is the V-nullcline). They intersect at a single point,
an unstable focus (open green circle). The spiking orbit surrounds
the focus (green curve). The reduced model is itself a multiscale
system, with V changing more rapidly than the recovery variable
n. Thus, the spiking trajectory follows portions of the V-nullcline,
as expected for a relaxation oscillation (although the time scale
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FIG. 5. Spike initiation in the fast subsystem of the basic model for c = 0.35µM, past the SNIC bifurcation. (a) Phase plane view, showing the stable node (solid green
circle), unstable focus (open green circle), and saddle point (green triangle). A portion of the repelling slow manifold of the focus, which is also a branch of the stable manifold
of the saddle point, is shown in brown. The unstable manifold of the saddle point is shown in blue. Trajectories starting inside the brown curve produce an additional oscillation
(purple), while those starting outside do not (yellow). (b) Time courses for the two trajectories shown in panel (a).

separation between V and n is not large enough to produce a true
relaxation oscillation).

The brown curve in Fig. 4(a) is a portion of the slow repelling
manifold of the focus. This curve was generated by running time
backward starting at the knee of the V-nullcline. If a trajectory is ini-
tiated near the focus, then it oscillates as it moves away, with each
oscillation larger than the previous one (purple trajectory). These
oscillations are reflected in the slow repelling manifold; however,
we show only the outermost portion of the manifold since this por-
tion serves as a boundary. Any trajectory starting from a point in
the blue shaded region of Fig. 4(a) will produce at least one small
oscillation before approaching the spiking limit cycle. These small
oscillations correspond to spikes in a burst active phase. The trajec-
tory shown in purple, for example, produces a burst of five small
spikes before approaching the tonic spiking limit cycle where the
spikes are much larger in amplitude [Fig. 4(b)]. In contrast, a trajec-
tory initiated outside the escape region, such as the yellow trajectory,
directly approaches the spiking limit cycle without producing small
spikes [Figs. 4(a) and 4(b)].

The planar analysis of Fig. 4(a) is for a fixed value of the slow
variable c. The boundary curve is extended for a range of values
of c in Fig. 4(c), where it is shown as a surface that we refer to
as the “separating surface.” A basic model trajectory starting from
within the separating surface is shown (purple curve), and a burst-
like time course is shown in Fig. 4(d). During each small oscillation,
the value of c increases, reflecting the opening of Ca2+ channels and
the resultant Ca2+ influx, so the trajectory travels rightward through
the region of phase space enclosed by the separating surface as it
oscillates. In contrast, a trajectory started from outside the separat-
ing surface is immediately attracted to the spiking limit cycle [yellow
curve in Figs. 4(c) and 4(d)]. The variable c increases during the

portion of the limit cycle corresponding to the more depolarized
phase of an oscillation and decreases by an equal amount during
the more hyperpolarized phase when fewer Ca2+ channels are open.
Thus, we see that the separating surface separates burst trajectories,
in which Ca2+ reaches higher levels for longer periods of time, from
tonic spiking trajectories. In the full model, the opening of one or
more BK channels that occurs during the falling phase of the action
potential perturbs the phase point into the interior of the separating
surface. As a result, the phase point escapes from the spiking limit
cycle and initiates a burst.

D. Burst prolongation is achieved through re-entry

into the separating surface

The explanation for burst initiation given above relies on the
existence of a stable spiking limit cycle and an unstable focus in
the reduced model. Soon after the start of a burst in the full model,
however, the increase in c moves the system past the SNIC bifur-
cation (Fig. 3), and from that point until the end of the burst, the
reduced model phase plane contains a stable node at a hyperpolar-
ized voltage, a saddle point, and an unstable focus. This is illustrated
in Fig. 5(a), using a value of c = 0.35 µM. Now, the repelling slow
manifold of the focus connects to the saddle point, forming one
branch of its stable manifold (the unstable manifold is shown as blue
curves). As before, the manifold is twisted, and trajectories starting
inside the region bounded by the outermost portion of the curve
[shown in brown in Fig. 5(a)] exhibit small oscillations before being
absorbed by the stable node. This is demonstrated with the pur-
ple trajectory, which spirals once before moving to the rest state. In
the corresponding time course, this spiraling yields one extra action
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FIG. 6. Burst prolongation requires BK channel openings. A portion of the station-
ary (blue) and periodic (red) branches of the reduced model bifurcation diagram
are shown, superimposed with the tonic spiking orbit of the basic model (green)
and burst orbit of the full model (black). The timings of stochastic openings of BK
channels are shown as blue squares, which occur during the depolarized phase of
each spike. At the yellow circle, the BK conductance is set to 0 and the remainder
of the trajectory is traced out (gray), shortening the length of the burst. Parameter
values are as in Fig. 1(e).

potential [Fig. 5(b)]. In contrast, a trajectory initiated on the out-
side of the repelling slow manifold approaches the rest state without
producing an additional action potential (yellow curves). From the
analysis of the reduced model, it appears that the key to prolong-
ing a burst so that it has more than one spike is to have the phase
point perturbed to within the appropriate region of the phase plane,
i.e., the region bounded by the brown curve in Fig. 5. In the full
model, this is achieved by the stochastic openings of BK channels.
Indeed, during the depolarized phase of each spike in a burst, there
are numerous BK channel openings, and each has the potential to
provide an appropriate perturbation.

The timings of BK channel openings that occur during a burst
are shown superimposed on a burst orbit in Fig. 6, along with
portions of the reduced system bifurcation diagram (blue and red
curves) and a spiking orbit of the basic model (green curve). To
demonstrate the importance of these channel openings in produc-
ing an additional spike, we performed a simulation in which the BK
current conductance was set to 0 at the end of the third spike in the
burst (marked by a yellow circle in Fig. 6). The remainder of that
trajectory is shown as a gray curve. It completes the spike that was
initiated by the BK channel openings of the previous spike, but no
additional spikes are produced.

FIG. 7. The entire burst trajectory viewed from the 3D phase space. The slow
repelling manifold of the unstable focus (or one branch of the stable manifold of
the saddle point) is extended in the direction of c to form a twisted separating
surface (red). Stochastic BK channel openings (blue squares) that occur during
the depolarized phases of spikes push the full system trajectory across the sur-
face, producing an additional spike. The gray trajectory demonstrates that if the
BK conductance is set to 0 after the third spike (yellow circle), the burst terminates
prematurely. Parameter values are as in Fig. 6.

The full burst is shown in the 3D phase space in Fig. 7. The slow
repelling manifold from Fig. 5(a) is extended as a red surface, where
the twists are evident. The BK channel openings (blue squares) occur
when the burst trajectory (solid black curve) is outside of the twisted
separating surface, and during the falling phase of each action poten-
tial, one of these openings pushes the trajectory across the surface
(dashed portions of the trajectory are inside the surface), ensuring
the production of another action potential. During the final spike,
the BK channel openings fail to inject the trajectory to the interior
of the surface, so no additional spike is produced and the burst active
phase is terminated. The trajectory then enters a silent phase until c
is sufficiently small for spiking, and the possible escape from spik-
ing, to resume. The gray curve in the figure is the portion of the
trajectory that follows from setting the BK conductance to 0 on the
downstroke of the fourth spike. Removing the influence of the BK
channel openings, the trajectory fails to cross into the surface, so no
additional spikes are produced.

E. Burst period can be increased by injection into

deep sectors of the separating surface

In the bursts shown in Fig. 7, stochastic BK channel openings
repeatedly perturbed the trajectory into a separating surface sector
from which an additional spike was produced. However, the burst
duration can be increased further, and the spike size can be made
more variable, if the stochastic channel openings perturb the tra-
jectory into deeper sectors. This is illustrated with the basic model
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FIG. 8. Burst duration depends on the sector in which
the trajectory is initiated. () View from the reduced
model phase plane, with c = 0.3µM. Structures are
similar to those in Fig. 6, but now more of the repelling
slow manifold of the focus is shown (brown curve).
The four colored circles are locations in which trajec-
tories are started. In each case, V = −20mV and
c = 0.3µM. The n values are 0.11, 0.14, 0.18, and
0.2. (b) Time courses of the reduced model starting
from different sectors of the phase plane. (c) Phase
portraits of the basic model with trajectories started at
the locations indicated in panel (a). (d) Time courses
corresponding to the trajectories of panel (c). Param-
eter values are the same as in Table I for the basic
model.

FIG. 9. A long burst produced by the full model when the trajectory enters deep sectors delimited by the separating surface. (a) The trajectory initially enters outer sectors
of the separating surface, each time generating a single additional spike. Later in the burst, the trajectory is perturbed into deeper sectors, producing sequences of smaller

spikes. (b) The resulting burst is unusually long and has a mix of large and small spikes. The Ca
2+

concentration accumulates to an unusually high level during the burst.
Parameter values as in Fig. 1(a).
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in Fig. 8. Panel A shows initial points for four trajectories start-
ing in different sectors of the reduced model phase plane (with
c = 0.3 µM). The first point is in a sector in which a single action
potential is produced as the trajectory returns to rest [yellow circle
and yellow time course in panel (b)]. The second point (cyan circle)
is in the first sector for additional spike production, so two spikes
are produced [cyan curve in panel (b)]. The two remaining points
(purple and red) are in deeper sectors, so three and five spikes are
produced, respectively [purple and red curves in panel (b)].

This analysis is extended into the full 3D phase space of the
basic model in Fig. 8(c). Other than the yellow trajectory, each tra-
jectory enters the twisted separating surface at least once, resulting
in the production of additional spikes in a burst. The resulting time
courses shown in Fig. 8(d) are very similar to those when c was
clamped [Fig. 8(b)], except that the red time course has four spikes
instead of five. Although the trajectory started in a sector in which
five oscillations were expected, as c increased during the burst the
sectors changed and the trajectory entered a sector in which only
four oscillations are produced.

Figure 9(a) is an example, shown in 3D phase space, of a very
long burst produced with highly variable spike amplitudes. The first
few spikes of the burst enter an outer sector, each leading to an addi-
tional spike. However, later stochastic BK channel openings inject
the trajectory into deeper sectors, leading to a sequence of smaller
spikes. Eventually, it fails to re-enter, and the burst terminates. The
result is a time course in which the burst duration is very long, and
in which the Ca2+ concentration rises to an unusually large value
[Fig. 9(b)]. In physiological terms, a burst of activity like this would
be very effective at releasing hormone.

IV. DISCUSSION

Most mathematical analyses of bursting have been applied to
deterministic systems of equations.25–27 However, in small cells, such
as most endocrine cells, stochasticity plays an important role. The
more stochastic nature of the electrical activity is evident from the
voltage time courses in these cells, which are noisier than what is typ-
ically observed in the larger neurons.10,20 As we have demonstrated
in this study, stochastic channel openings can be a key ingredient
to bursting in models of these cells, and their contribution can be
understood using a fast-slow analysis. Unlike deterministic bursting,
fast-subsystem bistability or the interaction of multiple slow vari-
ables is not required for bursting in this case. Instead, bursting was
achieved through the actions of the spiral flow near a fast-subsystem
unstable equilibrium.

In recent studies of model cerebellar stellate cells and fish ker-
atocytes, it was demonstrated that the stable manifold of a saddle
point can act as a threshold for spike initiation that can lead to tran-
sient oscillations in noisy systems. This was referred to as “type IV
excitability.”28–30 This has similarities to our case when c is beyond
the SNIC bifurcation and where one branch of the stable manifold
of the saddle point organizes the behavior of the system. In our case,
the spiral nature of the manifold provides the possibility of several
spikes (Fig. 8). Also, as c varies during a burst, the fast-subsystem
structure evolves from one containing limit cycle oscillations to one
allowing only transient oscillations.

Our model included two isoforms of BK channels, STREX and
ZERO, based on experimental evidence for both in corticotrophs.31–33

In this report, we did not investigate the differential roles played by
these two isoforms in burst production. However, in another report
we investigate this in the context of how the chronic stress affects the
corticotroph electrical activity (Fazli et al., submitted). The model
also partitions the BK channels into populations that are close to
Ca2+ channels and those that are far away. Although this partition-
ing is not based on imaging of the channel location, it is consistent
with the finding in other cell types that some BK channels form
complexes with Ca2+-permeable channels.34 Also, the effective half-
activation point of BK channels at a voltage of 30 mV is greater than
10 µM,35 which is a level only achieved in a Ca2+ nanodomain that
forms at the mouth of an open Ca2+ channel.18

Pituitary corticotrophs display several different electrical pat-
terns when stimulated by the neurohormone CRH. These patterns
include tonic spiking, plateau bursting with relatively large spikes,
and pseudo-plateau bursting with very small spikes.8,9,12 The current
study focused on plateau bursting. Models of a different pituitary cell
type, the lactotroph, produce pseudo-plateau bursting in which the
small spikes are induced by canards.27,36 It is not evident how replac-
ing the deterministic BK current with a stochastic current would
affect pseudo-plateau bursting in such models, particularly since the
existence of canards is influenced by this current.37 It is possible that
the folded node singularity that gives rise to the canards persists,
and the primary effect of the stochastic BK channel openings is to
perturb the trajectory into the funnel, which would ensure the gen-
eration of one or more small spikes during a burst active phase.
This question, and the general effects of stochasticity on canard-
induced bursting, is a topic requiring further investigation. Pituitary
cells are typically studied in vitro as dispersed cells. Indeed, the vast
majority of electrical recordings and Ca2+ time courses are obtained
from dispersed cells. However, in situ, the cells form networks in
which cells of the same type are electrically coupled through gap
junctions.38,39 This coupling effectively increases the area of the cel-
lular membrane, which decreases the effects of stochastic channel
openings.40 The effects of electrical coupling on the stochastic burst-
ing described herein would depend on the extent of coupling and the
overall network structure. This is the focus of current investigation
by our group.
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APPENDIX: TIME SCALE ANALYSIS

Time derivatives of the three variables reveal that V and n vary
most rapidly (Fig. 10). The c variable has derivative two orders of
magnitude smaller than n. This difference in time scale motivates
the separation of the model equations into a fast subsystem contain-
ing V and n and a slow subsystem containing c. This separation is
sufficient for understanding the dynamics of the full system, in spite
of the difference in time scales of V and n variables.
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FIG. 10. Magnitudes of the time derivatives of the variables in the basic model. (a) Time derivative of V , (b) n, and (c) c.
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