
Understanding insulin secretion’s dynam-
ic response to meals, short-term cycles of 
feasting and fasting, and lifelong variations 
in body weight is therefore crucial for dia-
betes treatment. Mathematical modeling has 
addressed two key questions in this research 
space: How do beta cells secrete the appro-
priate amount of insulin to keep glucose 
in the healthy range? And how does the 
pancreas generate the observed five-minute 
pulses of insulin secretion?

Experimental studies in the 1970s and 
1980s revealed that beta cells respond to 
elevated glucose levels with bursts of action 
potentials: periods of spiking that alter-
nate with periods of silence. The action 
potentials bring in calcium, which triggers 
insulin secretion. As glucose increases, the 
bursts become longer and the silent periods 
become shorter (i.e., the plateau fraction 
increases). But how does glucose exert 
this effect, and how does the increased pla-
teau fraction lead to the secretion of more 
insulin? Experiments demonstrated that the 
regulation of electrical activity depends on 
the rate of glucose metabolism in the beta 
cell, which acts as a surrogate for blood 
glucose concentration. However, the link 
from metabolism to electrical activity and 
secretion remained unknown.

In 1983, the Chay-Keizer model attempt-
ed to assemble the experimental observa-
tions into a coherent, quantitative frame-
work [1]. The voltage spikes in this model 
bring in calcium that slowly builds up and 
binds to calcium-activated potassium (KCa) 
channels; after many spikes, this binding 
process turns off the burst. Calcium pumps 
then reduce the calcium level once again, 
paving the way for the next burst. Calcium 
thus acts like a slow variable in a relaxation 
oscillator, gradually rising and falling with 
each period of oscillation. Researchers also 
determined that an adenosine triphosphate 
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See Pancreatic Beta Cell on page 4

Generalized Hypergraph Cut 
Algorithms and Their Applications
By Nate Veldt

In graph theory, “cuts” are sets of edges 
whose removal partitions a graph into 

disconnected clusters. One of the most 
fundamental cut problems is finding a mini-
mum s-t  cut, which separates two special 
nodes s and t  into different clusters while 
minimizing the number of edges between 
these clusters. Polynomial-time solutions 
for this problem (and its dual, the maximum 
s-t  flow problem) date back to the 1950s, 
and the search for increasingly faster algo-
rithms still continues today. Researchers 
frequently use minimum s-t  cut algorithms 
as subroutines for other graph problems and 
apply them to tasks like image segmenta-
tion, data clustering, and community detec-
tion in social networks.

2023 marks the 50th anniversary of 
Eugene Lawler’s proof that a hypergraph 
minimum s-t  cut problem is also polyno-
mial-time solvable [2]. In hypergraphs, 
nodes are organized into hyperedges that 
contain an arbitrary number of nodes and 
are useful for modeling multiway relation-
ships. The hypergraph minimum s-t  cut 
problem aims to separate special nodes s 

and t  while minimizing a hypergraph cut 
penalty. But what constitutes a hypergraph 
cut penalty? When it comes to graphs, the 
only way to cut an edge is to separate its 
two nodes into different clusters. However, 
there are many ways to partition a hyper-
edge’s nodes across two clusters. Lawler’s 
algorithm applies to the standard hyper-
graph cut penalty, which simply counts 

the number of hyperedges that are cut (i.e., 
that span both clusters).

The standard hypergraph cut penalty 
arises naturally in a variety of settings, but 
there are also multiple applications where 
certain ways of cutting a hyperedge are 
more desirable than others [3, 4]. My col-
leagues and I recently revisited the hyper-
graph s-t  cut problem with a renewed inter-

est in what it means—in both theory and 
practice—to cut a hyperedge [8]. We found 
that even a seemingly minor generaliza-
tion of the standard hypergraph cut penalty 
yields a rich space of theoretical questions, 
complexity results, and algorithmic primi-
tives for many applications in hypergraph-
based data analysis.

Figure 1. The cardinality-based s-t cut problem aims to separate special nodes s and t into two different clusters (shown here with differently 
colored nodes) while minimizing a generalized hypergraph cut penalty. A hyperedge is cut if it spans both clusters. A four-node hyperedge has 
a cut penalty of w

1
1=  if exactly one of its nodes is contained in one of the clusters (green hyperedges). It receives a cut penalty of w

2
 if it has 

two nodes in each cluster (blue hyperedges). The optimal solution depends on the choice of w2 . Figure courtesy of the author.

The Pancreatic Beta Cell: Biology                    
and Mathematics Advance Together
By Arthur S. Sherman, Patrick      
A. Fletcher, Richard Bertram,     
and Leslie S. Satin

The human pancreas contains roughly 
one gram of beta cells, which secrete 

the hormone insulin when glucose levels 
rise after a meal; the insulin then returns 
glucose back to baseline over the course 
of several hours. Upon reaching baseline, 
insulin secretion ceases. This process is a 
classic example of a homeostatic negative 
feedback loop. In the absence of beta cells, 
blood glucose would fluctuate wildly with 
each meal and damage the body’s tissues — 

as is the case with type 1 diabetes, wherein 
the immune system kills almost all beta 
cells. Type 2 diabetes is more common and 
results from a deficiency in insulin secre-
tion relative to the necessary amount for 
glucose control; this deficiency generally 
comes with age and weight gain and can 
potentially cause heart disease, dementia, 
blindness, peripheral neuropathy, and kid-
ney failure. For most people, the beta cells 
compensate for reduced insulin efficiency 
by increasing insulin secretion. But when 
such compensation is inadequate, blood 
glucose levels slowly increase over many 
years until they reach a critical threshold 
and rise dramatically.

Figure 1. Simulations with the original and augmented Chay-Keizer models compared to data. 
1a. In the original model, increasing glucose at t = 30 seconds (dashed line)—represented by 
reduced conductance of adenosine triphosphate (ATP)-sensitive K+ (KATP) channels—increases 
plateau fraction and calcium. 1b. Experimentally measured calcium is a square wave, not a saw-
tooth wave. 1c. Augmented model where the endoplasmic reticulum (ER) and ATP/adenosine 
diphosphate (ADP) oscillate in phase with calcium. ATP/ADP does not increase when glucose 
increases at t = 15 minutes, in agreement with experiments [5]. 1d. In the augmented model, 
oscillations persist when ER calcium uptake is blocked at t = 15 minutes, in agreement with 
experiments. Figures 1a, 1c, and 1d courtesy of the authors, and 1b courtesy of [6].

See Hypergraph on page 3
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(ATP)-sensitive K+ (KATP) channel—
which is closed by ATP and opened by 
adenosine diphosphate (ADP)—serves 
as the link between beta cell metabolism 
and increased plateau fraction. As glucose 
increases, KATP channel activity decreases, 
thus requiring more KCa channel activation 
and hence more calcium to terminate the 
bursts (see Figure 1a, on page 1). The beta 
cell’s metabolism, which acts as a measure 
of blood glucose concentration, therefore 
increases calcium and insulin secretion by 
way of increased plateau fraction.

In 1987, John Rinzel demonstrated that 
the pattern of spikes superimposed on a pla-
teau arises from bistability between silent 
and spiking states in the fast subsystem; 
the slow variable (calcium) carries the sys-
tem cyclically between the two states (see 
Figures 2a and 2b). This phenomenon is 
called fold/homoclinic bursting because 
each active phase begins at a saddle node 
(fold) and ends at a homoclinic bifurcation. 
Rinzel’s work also laid the foundation for a 
general theory of the many types of burst-
ing—characterized by various sets of bifur-
cations—that occur in different cells [9]. 
Eugene Izhikevich later identified over 100 
distinct types of bursts, including some that 
had not yet been observed experimentally 
[4]. Additional work found that bursting 
in certain pituitary cells—which resembles 
beta cell bursting—is better fit by one of 
these predicted types, which is delineated 
by saddle node and subcritical Hopf bifur-
cations (see Figures 2c and 2d).

One can derive the bifurcations that are 
traversed during bursting—as well as their 
topological arrangement—by unfolding a 
higher codimension bifurcation [3]. Fold/
homoclinic and fold/sub-Hopf bursting, 
along with almost all other known types, 
result from a codimension-four doubly-
degenerate Bogdanov-Takens point [7].

Though the Chay-Keizer beta cell model 
is quite beautiful, it is wrong in several 
respects. When technology to measure cal-
cium dynamics in cells became available, 
biologists learned that calcium acts like a 
fast variable (rather than a slow variable) 
in a relaxation oscillator (see Figure 1b, 
on page 1). The Chay-Keizer model also 
does not account for the wide range of 
periods—from seconds to minutes—that are 
present in beta cells. Cytosolic calcium is 
slow compared to spike generation, but not 
slow enough to account for the five-minute 
pulses of insulin secretion.

To address these issues, researchers 
added two new mechanisms to the Chay-
Keizer model. The first is the endoplasmic 
reticulum (ER): an internal reservoir of 
calcium that has much slower kinetics than 
the cytosolic calcium, thus slowing calcium 

oscillations and giving them the correct 
shape. Second, KATP channel activity was 
assumed not only to set the plateau fraction, 
but also to oscillate slowly due to oscilla-
tions in the ATP/ADP ratio (see Figure 1c, 
on page 1). These metabolic oscillations 
provide another form of negative calcium 
feedback; when calcium levels are high, 
ATP is consumed to pump calcium out of 
the cell or into the ER, which reopens some 
KATP channels and subsequently termi-
nates calcium entry.

Although glucose generally raises ATP/
ADP, the mean ATP/ADP level paradoxi-
cally does not increase with glucose when 
the system is bursting [5]. This counterin-
tuitive model property holds because the 
increased ATP production is balanced by 
the rise in ATP consumption to handle 
the larger calcium influx. The bifurcation 
diagram (like the one in Figure 2b but with 
ATP/ADP in place of calcium) reflects 
this effect, as the saddle-node and homo-
clinic bifurcations are invariant with respect 
to glucose. Further experimental advances 
eventually confirmed the predictions of 
the augmented Chay-Keizer model. This 
improved model can also accommodate the 
wide range of oscillation periods by vary-
ing the proportion of slow and very slow 
components. At last, the calcium exhibits 
very slow oscillations that account for the 
five-minute pulses of insulin secretion.

However, Sandra Postić and her col-
leagues recently challenged this hard-won 
synthesis of experimentation and modeling 
with new data and proposed an alternative 
mechanism in which beta cell oscillations 
are governed by the release of calcium from 
the ER — not by outside entry through 
plasma membrane ion channels [8]. In their 
study, the stimulation of calcium release 
triggered oscillations in basal glucose, while 
the inhibition of release suppressed oscil-
lations when glucose was just above the 
threshold. The authors concluded that cal-
cium release is both necessary and sufficient 
for oscillations, and relegated calcium entry 
to a subordinate role of refilling the ER.

Utilizing the long history of oscillation 
modeling based on calcium release, we 
rebutted this recent work and argued that the 
calcium release mechanism is at odds with 
existing data [2]. If the calcium that raises 
cytosolic calcium levels comes from the 
ER, then the two calcium pools would be 
out of phase (contrary to experiments). The 
canonical calcium entry model exhibits the 
correct behavior (see Figure 1c, on page 1). 
The release model in [8] also predicts that 
depletion of the ER will terminate oscilla-
tions, which does not occur experimentally. 
However, the canonical model again gets 
this right due to the redundancy of ER 
and ATP/ADP mechanisms (see Figure 
1d, on page 1). We also confirmed that 

the canonical model can 
account for the new data.

To its credit, Postić’s 
recent study drew atten-
tion to the range of glu-
cose where most of life 
is spent: just below and 
above the threshold [8]. 
But as a corollary, small 
ionic currents cause 
major effects in that 
regime. Though such cur-
rents can shift the thresh-
old for electrical activity, 
this threshold is primarily 
set by the KATP chan-
nels that act as gatekeep-
ers for calcium entry. We 
hence concluded that cal-
cium release is neither 
necessary nor sufficient 
for calcium oscillations 
(see Figure 3).

A combination of 
mathematics and biologi-
cal experimentation has 
successfully addressed 
a plethora of specific 
problems that pertain 
to beta cell oscillations. 
Moreover, the stunning 
diversity of oscillation 
patterns derives from a simple, unified 
framework in which a relatively small num-
ber of mechanisms quantitatively combine 
in different proportions. We believe that the 
pleasing concordance between the model 
and various phenomena arises because cells 
encounter the previously identified bifur-
cations as they randomly mutate, and the 
bifurcations that prove useful are fixed by 
natural selection.
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Figure 3. In model simulations, small currents that are activated 
when the endoplasmic reticulum (ER) empties shift the thresh-
old for oscillations (colored region) but are neither necessary nor 
sufficient. In five mM glucose, increasing ER leak fails to trigger 
oscillations (see line A). Increasing the leak triggers oscillations 
in six mM glucose, but increased leak is not necessary in eight 
mM glucose (see line B). Reducing the leak in eight mM glucose 
stops oscillations, but raising glucose to 11 mM restores them 
(see line C). Figure courtesy of the authors.

Pancreatic Beta Cell
Continued from page 1


	SIAM_News_23_pap1
	SIAM_News_23_pap4

