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uantify any complex system, e.g., in social sciences, biology or technology, that
can be abstractly described as a set of nodes and links. Here we derived human brain functional networks
from fMRI measurements of endogenous, low frequency, correlated oscillations in 90 cortical and subcortical
regions for two groups of healthy (young and older) participants. We investigated the modular structure of
these networks and tested the hypothesis that normal brain aging might be associated with changes in
modularity of sparse networks. Newman's modularity metric was maximised and topological roles were
assigned to brain regions depending on their specific contributions to intra- and inter-modular connectivity.
Both young and older brain networks demonstrated significantly non-random modularity. The young brain
network was decomposed into 3 major modules: central and posterior modules, which comprised mainly
nodes with few inter-modular connections, and a dorsal fronto-cingulo-parietal module, which comprised
mainly nodes with extensive inter-modular connections. The mean network in the older group also included
posterior, superior central and dorsal fronto-striato-thalamic modules but the number of intermodular
connections to frontal modular regions was significantly reduced, whereas the number of connector nodes in
posterior and central modules was increased.

Crown Copyright © 2008 Published by Elsevier Inc. All rights reserved.
Introduction
Modularity is a word with many meanings in neuroscience (Fodor,
1983; Zeki and Bartels, 1998; Redies and Puelles, 2001; Callebaut and
Rasskin-Gutman, 2005). Here we are concerned with the topological
organization of whole human brain functional networks and the
partitioning of these networks into a set of modules, each module
being defined by dense internal or intra-modular connectivity and
relatively sparse external or inter-modular connectivity (Newman and
Girvan, 2004); see Fig. 1. This pattern of complex network organiza-
tion, also sometimes described as a community structure, is wide-
spread in biochemical, social and infrastructural networks (Guimerà
et al., 2005). A key advantage of modular organization, which may
explain its ubiquity in diverse systems, is that it favours evolutionary
and developmental optimization of multiple or changing selection
criteria (Redies and Puelles, 2001; Slotine and Lohmiller, 2001;
Kashtan and Alon, 2005; Pan and Sinha, 2007): a modular network
can evolve or grow one module at a time, without risking loss of
function in other modules.

Mathematical tools have recently been developed to quantify the
modularity of any network that can be abstractly described as a set of
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nodes and links (Newman and Girvan, 2004; Newman, 2004a; Danon
et al., 2005; Newman, 2006). Once the modules have been identified,
this information can be further used to refine the definition of the
topological role of any particular node. For example, the global air
transportation network has a modular organization (Guimerà and
Amaral, 2005b), broadly conforming to geopolitical constraints, which
informed the assignment of distinct roles to the component nodes
(cities) based on the ratio of intra- and inter-modular links (flights)
connecting each node to the rest of the network. Thus a highly-
connected city, like London, with many long-haul flights to other
modules (different continents), was designated a connector hub;
whereas a regionally important city, like Barcelona, with relatively few
long-haul flights outside Europe and North Africa, was designated a
provincial hub.

Here we extend the analysis of modularity and topological roles in
functional brain networks, using tools drawn from the literature on
physics of complex networks (Newman and Girvan, 2004; Guimerà
and Amaral, 2005b) that have not been previously applied to analysis
of human functional neuroimaging data. However, we note that there
have been several prior studies using conceptually related multi-
variate or graph theoretical methods to explore the clustered or
modular organization of mammalian cortex. Young (1992) applied
non-metric multidimensional scaling (MDS) to anatomical connectiv-
ity matrices to demonstrate dorsal and ventral “streams” of inter-
regional connectivity, and a predominance of local neighbourhood
hts reserved.

mailto:etb23@cam.ac.uk
http://dx.doi.org/10.1016/j.neuroimage.2008.09.062
http://www.sciencedirect.com/science/journal/10538119


Fig. 1. (a) Schematic illustration of modularity. By definition, modules have relatively sparse external or intermodular connectivity. (b) Modularity optimization process for group
mean young (red), groupmean older (green) and example random (blue) networks with 200 links. (c) The maximummodularity achieved for young (red), older (green) and random
(blue) networks, with number of links between 150 and 400. The maximum modularity was estimated for each individual network and the 95% confidence intervals therefore
represent the variability between subjects with respect to the mean in each age group. (d) Number of links between the three main modules obtained for individually estimated
young and older networks with 200 links: F = fronto-cingulo-parietal (young) or dorsal fronto-striato-thalamic (older); C = central (young) or superior central (older); P = posterior.
Error bars are 95% confidence intervals for the mean number of links in each age group.
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connections, in primate visual cortex. Scannell et al. (1995, 1999) and
Hilgetag et al. (2000) applied non-metric MDS, non-parametric cluster
analysis (NPCA), and a novel evolutionary algorithm called optimal set
analysis (OSA), to show that the anatomical connectivity of the cat and
macaque cortices demonstrated relatively dense connections within
groups of functionally related regions and much sparser connections
between different groups of regions. Stephan et al. (2000) investigated
neuronographic data, which mapped the propagation of epileptiform
activity following local disinhibition of areas of the macaque cortex by
topical application of strychnine, and showed that functionally
connected regions of cortex tended to co-segregate in one of three
major sub-systems (visual, somatomotor, or orbito-temporo-insular).
Various forms of hierarchical cluster analysis were subsequently
applied to human functional MRI data acquired in a no-task or resting
state (Cordes et al., 2002; Salvador et al., 2005). For example, Salvador
et al. (2005) showed that 90 cortical and subcortical regions defined
by an anatomically parcellated template image were aggregated by
cluster analysis into 6 major systems of anatomically and functionally
related regions. More recently, using graph theoretical tools, the
community structure of human brain networks has been investigated
using structural MRI to infer anatomical connectivity between major
cortical and subcortical regions (Chen et al., 2008). This study
confirmed that the human brain anatomical network, derived from
analysis of MRI data on a large group of healthy volunteers, had a
modular organization which broadly conformed to known functional
specialisations and the hierarchical cluster solution reported by
Salvador et al. (2005); for example, many occipital regions specialised
for visual processing were identified as members of the same
anatomical module. There have also been a few recent graph
theoretical studies of modularity of functional networks inferred
from fMRI measurements on rodents (Schwarz et al., 2008) and
healthy human adults (Ferrarini et al., in press).

In this context, the distinctive contributions of this paper are to
apply a graph-theoretical measure of modularity (Newman and
Girvan, 2004), and related concepts of the topological roles of
individual nodes (Guimerà and Amaral, 2005b), to the analysis of
human functional MRI data, with two main objectives: i) to further
investigate the modular organization and topological roles of each
regional node comprising large-scale human brain functional net-
works; and ii) to test the hypothesis that normal aging is associated
with changes in the community structure of whole human brain
functional networks.

Materials and methods

Sample

Thirty healthy human volunteers were recruited in two age
groups: 17 younger participants aged 18–33 years, mean
age=24.3 years, nine male; and 13 older participants aged 62–
76 years, mean age=67.3 years, six male. Recruitment was via local
advertising followed by telephone screening using a standard
questionnaire. Exclusion criteria included a history of neurological
or psychiatric disorder, current treatment with vasoactive or psycho-
tropic medication, or any contraindication to MRI. Prior to functional
MRI, each participant had an electrocardiogram and a structural MRI
examination reviewed as normal by a physician.

The two age groups were matched on education and crystallised
IQ, as estimated by the National Adult Reading Test (NART; (Nelson,
1982)). Older volunteers also completed the Mini Mental State
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Examination (Folstein et al., 1975) and scored ≥28 (maximum
score=30) to be eligible for participation.

All participants gave informed consent in writing. The study was
approved by the Addenbrooke's NHS Trust Local Research Ethics
Committee, Cambridge, UK.

A different analysis of data acquired on this sample has been
previously reported (Achard and Bullmore, 2007).

Functional MRI data acquisition and pre-processing

Each participant was scanned lying quietly at rest with eyes closed
for 9min, 37.5 s. Gradient echo, ecoplanar imaging (EPI) data depicting
BOLD contrast were acquired using a Medspec S300 scanner (Bruker
Medical, http://bruker-medical.de) operating at 3.0 T in the Wolfson
Brain Imaging Centre, Cambridge, UK. We acquired 525 volumes with
the following parameters: number of slices, 21 (interleaved); slice
thickness, 4 mm; interslice gap, 1 mm; matrix size, 64×64; flip angle,
90; repetition time (TR), 1100 ms; echo time, 27.5 ms; in-plane
resolution, 3.125 mm. The first seven volumes were discarded to allow
for T1 saturation effects, leaving 518 volumes available for analysis of
endogenous, low frequency brain dynamics recorded in a no-task or
resting state condition.

Each dataset was corrected initially for geometric displacements
due to head movement and co-registered with the Montreal
Neurological Institute EPI template image, using an affine transform
implemented in SPM2 software (http://www.fil.ion.ucl.ac.uk). Four
datasets (two young, two old) that had been affected by head
movement in excess of 3 mm translation or 0.3 rotation in any
dimension were discarded. The remaining data were not spatially
smoothed before regional parcellation using a previously validated,
anatomically labelled template image (Tzourio-Mazoyer et al., 2002).
This parcellation divides each cerebral hemisphere into 45 anatomical
regions. Regional mean time series were estimated for each individual
by averaging the fMRI time series over all voxels in each of 90 regions.
Each regional mean time series was further corrected for the effects of
head movement by regression on the time series of translations and
rotations of the head estimated in the course of initial movement
correction by image registration. The residuals of these regressions
constituted the set of regional mean time series used for wavelet
correlation analysis.

Wavelet correlation analysis and network construction

Frequency-dependent functional connectivity between each pair
of regional time series was estimated using wavelet correlations, as
previously described (Whitcher et al., 2000; Achard et al., 2006;
Bassett et al., 2006; Achard et al., 2008). In brief, we used the maximal
overlap discrete wavelet transform (MODWT) to decompose each
regional mean time series into wavelet coefficients at four scales or
frequency intervals. Then we estimated the pairwise inter-regional
correlations between wavelet coefficients at each scale. This resulted
in a set of four {90×90} scale-specific wavelet correlation matrices for
each of the m=1,2,3,…, M subjects in the sample. To summarize
functional connectivity maps on average over all subjects within each
group, we also computed the group mean wavelet correlation matrix
at each scale for the young and older participants. Because of prior
data indicating that correlated endogenous dynamics in resting state
fMRI data are particularly salient at frequencies below 0.1 Hz (Lowe et
al., 1998; Cordes et al., 2000), we restricted our attention to the scale 3
wavelet correlation matrices representing functional connectivity in
the frequency interval 0.06–0.11 Hz.

To analyse graphical properties of brain functional networks, each
wavelet correlation matrix (whether estimated for a single subject or
averaged over a group of subjects) must be thresholded to create an
adjacencymatrix A, the aijth element of which is either 1, if the absolute
value of the wavelet correlation between nodes i and j exceeds a
threshold value τ; or 0, if it does not. For this purpose, we defined a
range of thresholds to satisfy two opposing constraints. First, we
confirmed by preliminary analysis the theoretically expected result
that low thresholds, with high connection densities, would generate
graphs with low modularity equivalent to a random graph. This
typically occurred when the total number of edges in the graph
exceeded 400, which was therefore used to define the lower limit of
the threshold range. However, we also observed that very high
thresholds, with low connection densities, could generate discon-
nected graphs in which some regions were not linked to any other
brain region. Theoretically (Bollobas, 1985), fragmentation of a
random network is likely to occur when the connection density of
the graph, i.e. the number of links divided by the maximum possible
number of links, is greater than 1/N, where N is the number of nodes
in the network. In our case, N=90, thus the number of links must be
greater than 1/N⁎N(N−1)/2=(N−1)/2∼50. To ensure that all net-
works were fully connected, we conservatively defined the upper limit
of the threshold range as equivalent to a minimum of 100 edges in the
thresholded graph. In short, we investigated network modularity over
a range of thresholds designed to focus on fully-connected but non-
random aspects of brain network organization.

Topological properties of brain networks such as modularity can be
quantitatively compared to the equivalent properties of comparable
random networks. Such networks were generated by starting with a
set of unconnected nodes the same size as the brain network (N=90)
and randomly adding edges or links between pairs of nodes under a
uniform probability distribution (the probability of adding an edge is
equal for all possible pairs) until the number of edges in the random
network was within the range L=100–400 links or edges.

Modularity and role assignment

Amodule can be generally defined as a subset of nodes in the graph
which are more densely connected to the other nodes in the same
module than to nodes outside the module (Radicchi et al., 2004); see
Fig.1(a). Several algorithms have been proposed to define themodular
decomposition of an undirected graph (Newman and Girvan, 2004;
Newman, 2004b; Clauset et al., 2004; Guimerá et al., 2004; Guimerà
and Amaral, 2005a,b; Reichardt and Bornholdt, 2006). Here we have
adopted Newman's metric as a measure of modularity (Newman and
Girvan, 2004; Guimerá et al., 2004; Danon et al., 2005) andmaximised
this measure by a “greedy” search algorithm (Clauset et al., 2004).

First we define the degree of the ith node, ki, as the number of links
or edges connecting it to all other nodes in the network. Then, for a set
of NM modules in a graph defined by a particular threshold, the
modularity measure is

M = ∑
NM

s = 1

ls
L
−

ds
2L

� �2
" #

ð1Þ

where NM is the number of modules, L is the total number of links or
edges in the network, ls is the total number of links between nodes in
module s, and ds is the sum of the degrees of the nodes in module s.

The modularity of the network will be low before addition of any
links, when each node is isolated (equivalent to very high thresholds);
it will be zerowhen all possible connections between nodes have been
made and all nodes are part of a single module (equivalent to very low
thresholds); and for some intermediate number of links, the
modularity will have a maximum value. It is generally accepted that
maximal values of M≥ 0.3 are indicative of non-random community
structure (Newman and Girvan, 2004). However, random networks
can demonstrate considerable degrees of modularity especially when
they are sparsely connected (Guimerá et al., 2004). In term of
computational complexity, rigorous optimization of modularity is a
so-called “NP-hard” problem (Brandes et al., 2006). Various methods
have been proposed to find the optimally modular decomposition of a
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complex network in a computationally feasible way. Some algorithms
use the concept of link centrality to incrementally increase network
modularity to a maximum (Newman and Girvan, 2004); alternatively
it is possible to search directly for the global maximum modularity
using standard numerical optimization algorithms such as the
“greedy” algorithm (Newman, 2004a,b; Clauset et al., 2004) or
simulated annealing (Guimerà et al., 2005; Massen and Doye, 2005).

The greedy algorithm involves rebuilding the network by serially
adding links in order tomaximise, at each step, the value ofmodularity.
Its basic assumption is that finding the local maximum at each step is
an heuristic to find the global maximum. This assumption is not
entirely reliable, so other optimization algorithms, such as simulated
annealing, are more likely to find the true global maximum but are
correspondingly more costly in terms of computational time. The
greedy algorithm was used here because it provides a reasonable
trade-off between global optimality and expediency (Boccaletti et al.,
2007). Fig. 1 in Supplementary material shows that results with
Newman and Girvanmethod, andwith simulated annealing algorithm
are very close to those obtained with greedy algorithm. The results of
applying this algorithm to analysis of the community structure in
representative individual (young and older) brain functional networks,
and a comparable random network, are shown in Fig. 1(b).

Once a maximally modular partition of the network has been
identified, it is possible to assign topological roles to each node based
on its density of intra- and inter-modular connections (Guimerà et al.,
2005; Guimerà and Amaral, 2005a,b; Sales-Pardo et al., 2007). Intra-
modular connectivity is measured by the normalized intra-modular
degree:

zi =
κni−κ n

σκn

ð2Þ

where κnt is the intra-modular degree of the ith node, i.e., it is the
number of links connecting the ith node in the nth module to other
nodes in the same module; κ n is the average intra-modular degree
over all nodes in the nth module; and σκn is the standard deviation of
the intra-modular degrees in the nth module. Thus ziwill be large for a
node that has a large number of intra-modular connections relative to
other nodes in the same module.

Inter-modular connectivity is measured by the participation
coefficient:

Pi = 1− ∑
NM

n = 1

κni

ki

� �2

ð3Þ

where κni is the intra-modular degree as previously defined, and ki is
the total degree of the ith node. Thus Pi will be close to one if it is
extensively linked to all other modules in the community and zero if it
is linked exclusively to other nodes in its own module.

The two-dimensional space defined by these parameters, the z-P
plane, can be arbitrarily partitioned to assign categorical roles to the
nodes of the network. Thus for large networks, 7 different categorical
roles were assigned (Guimerà et al., 2005); but for the smaller brain
networks considered here we partitioned the plane into four domains
and assigned roles according to the following criteria:

• If PiN0.05, node iwas defined as a connector node; otherwise, it was
defined as a provincial node. Note that this criterion simply
segregates (provincial) nodes with no inter-modular connections
from (connector) nodeswith one ormore intermodular connections.

• If ziN1.0, node i was defined as a hub; otherwise, it is defined as a
non-hub. Note that this criterion segregates nodes with somewhat
greater than average intramodular degree from nodes with
intramodular degree close to or less than the modular average.

Thus the four possible roles were connector hub, connector non-
hub, provincial hub and provincial non-hub. Likewise, the topological
role of each module can be defined in terms of the proportion of
connector nodes it contains and the number of links that connect it to
each other module in the network.

Statistical testing of differences between brain network para-
meters and comparable random network parameters, and of differ-
ences between young and older brain network parameters, was
conducted using standard parametric models (analysis of variance,
ANOVA) after establishing by Kolmgorov–Smirnov tests that all the
test statistics considered had an approximately Normal distribution.

Results

Human brain functional networks are modular

Brain functional networks were consistently modular in both age
groups and over a range of different thresholds or connection
densities; see Fig. 1(c). For both age groups, as well as for comparable
random networks, maximum modularity declined monotonically as a
function of increasing connection density, i.e., maximum modularity
was greatest for the sparsest networks considered. However, over the
entire range of connection densities, the modularity of both the young
and older brain networks was significantly greater than random: for
young brain networks versus random networks, ANOVA, F(1,28)=
48.41, pb10−6; for older brain networks versus random networks,
ANOVA, F(1,24)=19.732, p=0.0002. Therewas no significant difference
in modularity of young and older brain networks, ANOVA, F(1:24)=
2.54, p=0.124. There was also no significant interaction between age
and connection density (ANOVA, F(5:20)=1.385, p=0.272), indicating
that the modularity of young and older brain networks can be
compared at any connection density.

More fine-grained analysis was subsequently focused on the
community structure arising in young and older brain networks
with 200 links, i.e. thresholded at a sparse connection density
equivalent to about 5% of the total number of possible links (4005)
in a network of 90 nodes; see Fig. 1(b). The maximum modularity of
this network was M(Y)=0.61 for the young group and M(O)=0.55 for
the older group; the maximum modularity of a comparable random
graph was M(R)=0.4; see Fig. 1(b). For both young and older brain
networks, maximum modularity at this connection density was
significantly greater than the modularity of the random graphs: for
young brain networks versus random networks, ANOVA, F(1,28)=
37.248, p=1.39×10−6; for older brain networks versus random
networks, F(1,24)=10.981, p=0.0029.

Modules and node roles in young brain functional networks

The young brain functional network comprised 5 connected
modules,which varied in size from24 to 2 regional nodes; see Fig. 2(a).

The largest module (24 regions) included bilateral pre- and post-
central gyri and supplementary motor area, as well as several regions
of lateral temporal cortex and insula, andwas therefore designated the
“central” or C module. The second largest module (22 regions)
included bilateral and medial dorsal prefrontal cortex; anterior, dorsal
and posterior cingulate cortex; medial posterior parietal cortex; a few
regions of temporal cortex; caudate nucleus and thalamus, and was
designated the “fronto-cingulo-parietal” or Fmodule. The third largest
module (18 regions) included bilateral calcarine cortex and all other
regions of occipital cortex and was designated the “posterior” or P
module. Relatively minor modules included a ventral frontal module,
comprising 6 regions of bilateral inferior frontal gyrus and orbito-
frontal cortex, and a medial temporal module composed of left
amygdala and left hippocampus. See Fig. 2 for representations of the
community structure in anatomical (c and d) and topological spaces (e
and f). The topological representation uses the Kamada–Kawai
(Kamada and Kawai, 1989) algorithm, that minimizes the physical
distances between nodes according to their topological distances.
Basically, the free energy is based on the difference between physical



Fig. 2. Community structure for young and older brain functional networks. Upper: Histograms of the number of nodes in modules for average young (a) and older (b) networks
comprising 200 links each. Middle: Anatomical representations for average young (c) and older (d) population networks. Lower: Topological representation (minimizing free energy)
for average young (e) and older (f) brain networks.
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distance between a pair of nodes in the representation of the graph
and the shortest path between these pair of nodes. By minimising this
free energy, the physical representation will take into account the
topological distances existing between pairs of nodes.

Almost half (10/22) of the brain regions comprising the fronto-
cingulo-parietal module had numerous connections to other modules,
and were therefore categorised as connector nodes, i.e., the connector
coefficient for the F module was 10/22=45%; see Figs. 3 (a) and (c).
Five regions (left precuneus, right dorsal superior frontal gyrus, right
dorsal cingulate gyrus, and bilateral middle frontal gyri) were
categorised as connector hubs because they also had a high density
of intramodular connections. Overall, 22% (5/22) of F module nodes
were classified as hubs, and these were all connectors.

For regions comprising both the central and posterior modules, the
profile of topological roles was markedly different. For the central
module, most (17/24) regions did not have connections to regions in
differentmodules, andwere therefore categorised as provincial nodes,
including 4 provincial hubs with high intramodular degree; only 7/24
regions were categorised as connector nodes, including 1 connector
hub (right superior temporal gyrus), so the connector coefficient for
the C module was 7/24=29%. Likewise, for the posterior module, most
(11/15) regions were categorised as provincial nodes, including 2
provincial hubs (left middle and superior occipital gyrus); only 5/19
regions were categorised as connector nodes, with no connector hubs,
so the connector coefficient for the P module was 26%, i.e., much
smaller than for the F module.

In short, we found 3 major modules (see Table 1 in Supplementary
material) in the young brain functional networkwhich could be clearly
distinguished by their profile of intermodular connectivity. The fronto-
cingulo-parietalmodulewasmore highly connected externally – itwas



Fig. 3. Brain modules and regional node roles for young and older brain functional networks. Upper: Within-module degree as described by Eq. (2) (y-axis) versus participation
coefficient as described by Eq. (3) (x-axis) for each of the regional nodes comprising the three main (F, C, P) modules in young (a) and older (b) brain networks. The solid vertical line
divides the plane into connector nodes (right; anatomically labelled) and provincial nodes (left); the solid horizontal line divides the plane into hubs (above) and non-hubs (below).
Lower: Topological representation of the average young (c) and older (d) brain networks with connector nodes located in a central ring to highlight intermodular connections.
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a connectormodule –whereas the central and posteriormoduleswere
more highly connected internally — they were provincial modules.

Modules and node roles in older brain functional networks

By comparison to the community structure of the young brain
network, there were clear differences in relative size and topological
role profile of most of the modules in the mean brain network for the
older group. The network for the older group comprised 6 connected
modules, which varied in size from 15 to 6 regional nodes; see Fig. 2
(b). The largest module (15 nodes) comprised bilateral regions of
precentral, premotor, somatosensory and parietal association cortex
and was designated “superior central”. The second largest module (14
nodes) comprised almost exactly the same set of regions of occipital
cortex as the young posterior module and was therefore also
designated “posterior”. The third largest module (12 regions)
comprised regions of lateral temporal cortex and insula and was
designated “temporal”. The fourth largest module (10 nodes)
comprised dorsal and medial prefrontal cortex, caudate and thalamus
and was therefore designated “fronto-striato-thalamic”. The fifth
largest module (7 nodes) comprised regions of medial posterior
parietal cortex, dorsal and posterior cingulate cortex, and was
therefore designated “medial posterior”. The smallest module (6
nodes) comprised the same set of ventral prefrontal and orbitofrontal
cortex as in the young network and was therefore also designated
“ventral frontal”.

In short, the regions comprising the large dorsal fronto-cingulo-
parietal module of the young brain network had segregated into
two smaller and more local modules in the older group's mean
network — a dorsal prefronto-striato-thalamic module and a medial
posterior module. Likewise the regions comprising the large central
module of the young brain network had segregated into two smaller
and more local modules in the older group's mean network — a
lateral temporo-insular module and a superior central module. In
contrast, the posterior and ventral frontal modules of the young
brain network were conserved almost identically in the older
group's mean network.

In addition to these differences in module size and composition,
there were also changes in the topological roles of regions and
modules (see Table 2 in Supplementary material). The fronto-striato-
thalamic module included a smaller proportion of connector nodes
(1/10; and no connector hubs) so its connector coefficient was only
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10%, i.e., about 78% smaller than that of the fronto-cingulo-parietal
module in young people; see Figs. 3(b) and (d). On the other hand,
both posterior and superior central modules had greater intermod-
ular connectivity than the comparable (posterior and central)
modules in the young brain network. Thus the connector coefficient
was 71% for the posterior module, and 66% for the superior central
module, in the older group's mean network (see Tables 3 and 4 in
Supplementary material).

By inspection of Fig. 3, it is clear that the young brain network was
characterised by a lack of direct intermodular (P-C) connections
between posterior and central modules, with relatively dense inter-
modular connections between the fronto-cingulo-parietal module
and both posterior (F-P) and central (F-C) modules. Whereas, in the
older group's mean network, there was relatively dense intermodular
connectivity between posterior and superior central or medial
posterior modules, and a relative paucity of intermodular connections
to the dorsal fronto-striato-thalamic module. Noting that superior
central and dorsal fronto-striato-thalamic modules in the older
group's mean brain network represent subsets of the central and
fronto-cingulo-parietal network in the young brain network, and that
the posterior module was almost identical in the two groups, we
calculated the number of links between these three modules in the
network for each subject separately; see Fig. 1 (d). There was a
significant interaction between age and intermodular connection
profile (ANOVA, F(1,24)=10.42, p=0.0006). Post-hoc tests demon-
strated significant between-group differences in the number of links
or edges between all possible pairs of modules: links between
posterior and central modules were increased in older people
(ANOVA, F(1,24)=5.94, p=0.022) whereas links between frontal and
posterior modules (ANOVA, F(1,24) =23.82, p=5.62×10−5) and
between frontal and central modules (ANOVA, F(1,24) =4.72,
p=0.039), were significantly reduced in older people.

Discussion

These results illustrate how graph theoretical techniques from the
statistical physics literature can be used to characterise the modular
organization of human brain functional networks. For both young and
older brain networks, maximum modularity, as defined by the
Newman and Girvan (2004) algorithm, was significantly greater
than in comparable random graphs. Although technically novel, this
observation is arguably not too surprising when we recall the long-
standing arguments and evidence in favour ofmodular organization of
brain function; and, more specifically, that (non-random Newman's)
modularity of whole brain networks has been previously reported on
the basis of human structural MRI (Chen et al., 2008) and rat
functional MRI (Schwarz et al., 2008) studies, using similar mathe-
matical tools from graph theory. Modular systems generally have the
advantage of allowing evolutionary or developmental adaptation of
one functional module, without risking loss of function in other
modules, and have been shown to represent an efficient solution to
multiple selection pressures on network evolution (Kashtan and Alon,
2005). It is also recognised that modular systems will often have
small-world properties of high clustering and short path length at a
global level of description, and there is increasing evidence for small-
world organization of human brain networks; see Bassett and
Bullmore (2006) for review. For all of these reasons, modularity of
large-scale human fMRI networks was theoretically expected. How-
ever, we have taken the investigation of brain functional modularity
further in two main ways.

First, we have considered the topological roles of the brain regions
comprising different modules. Using an approach drawn from analysis
of the (modular) global air transportation network (Guimerà et al.,
2005), we classified every region in the brain networks as a connector
node (having one or more inter-modular connections to nodes in
other modules) or a provincial node (having only intra-modular
connections to other nodes in the same module). We could then
define a topological role for each module based on the proportion of
connector nodes it contained. This showed that the three largest
modules of the young brain network had rather different connector
coefficients: posterior and central modules had relatively low inter-
modular connectivity, and no direct connections between them;
whereas almost half of the regions comprising a fronto-cingulo-
parietal module had connector status. This suggests that, in the young
brain at least, the dorsal fronto-cingulo-parietal module, which also
included striatal and thalamic regions, plays a critical role in
coordinating activity across the brain network as a whole, and in
mediating interactions between posterior (putatively visual) and
central (putatively motor and auditory/verbal) modules. Thus the
connector status of the fronto-cingulo-parietal module could be
related to executive or attentional functions that are already known to
depend on many of its component regions, such as dorsolateral
prefrontal and medial posterior parietal cortex. It is also notable that
regional components of the young fronto-cingulo-parietal module
include medial frontal and posterior regions that have been identified
as part of the “default mode” functional network (Greicius et al., 2003,
Buckner et al. 2008) and that are known to be anatomically connected
(Hagmann et al. 2008).

Second, we have directly compared the community structure of
the large-scale functional networks of young adults to that of older
healthy adults in an initial effort to characterise age-related changes in
brain modularity. We found no significant difference between the two
groups in terms of maximal modularity of the global network,
implying that modular organization is conserved over the adult age
range considered; but there were marked differences in the composi-
tion and topological roles of modules. Although some modules were
almost identically composed in both age groups, notably the posterior
and ventral frontal modules, the two largest modules in the young
brain network were each represented by two smaller and more local
modules in the older group's mean brain network. For example, the
regions comprising the extensive fronto-cingulo-parietal network in
the young brain network were segregated between a fronto-striato-
thalamic and a medial posterior module in the older group's mean
brain network. This more localized community structure was
associated with significant changes in the distribution of intra- and
inter-modular links in the older group's mean brain network. In
particular, there were fewer intermodular connections to the fronto-
striato-thalamic module from any posterior module, and there were
more direct intermodular connections between posterior modules.
The reduced connector status of the dorsal fronto-striatal module
suggests that this system will not play a critical role in whole brain
coordination, which is more likely to depend on the enhanced
connector status of posterior modules, in the older group's mean brain
network. This may have a bearing on cognitive changes linked to
prefrontal dysfunction (West, 1996). There has been variable support
for this hypothesis from functional neuroimaging studies, and mean
activity in frontal regions can be increased or decreased in older adults
(Grady et al., 1994, 1995). An intriguing and testable possibility
attributes impairments in cognitive control not to changes in overall
activity in frontostriatal regions but to qualitatively altered patterns of
connectivity to other regions, as seen here.

The general notion that modularity of brain organization might
change as a function of aging or maturation – a process sometimes
described as modularization – has previously been proposed in the
context of early (post-natal or childhood) brain development
(Paterson et al., 1999). There have also been some interesting recent
reports to suggest that topological reorganization of resting-state
networks, specifically default mode components, may be ongoing and
functionally important during the course of normal development from
childhood to adulthood (Fair et al. 2007, 2008). However, to the best of
our knowledge, these data provide the first empirical support for the
hypothesis that maturational processes of brain modularization need
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not be restricted to pre-adult life but might be ongoing as part of
normal senescence. It is notable that some aspects of our results have
been anticipated by prior imaging studies of aging. For example, the
segregation of medial posterior and dorsal fronto-striatal modules in
the older group's mean brain network is entirely in keeping with
previous observations that functional connectivity between posterior
cingulate and medial frontal cortical components of the “default
mode” network is impaired in older subjects (Andrews-Hanna et al.,
2007). There is also considerable, albeit less directly supportive,
evidence from structural neuroimaging studies for attenuated white
matter density or integrity in major axonal tracts subserving some of
the long distance connections, e.g., between frontal and parietal
cortex, included in the extensive fronto-cingulo-parietal module of
the young brain network (O' Sullivan et al., 2001). However, there are
also some limitations of the study which should inform interpreta-
tions of the observed differences. In general, the sample size is small
thereby limiting power to detect group mean differences as well as
possible group differences in variability (which would be expected
theoretically to be greater in the older group). A more specific
limitation is that we did not simultaneously monitor cardiac and
respiratory cycles during fMRI data acquisition in these subjects. The
use of wavelet filtering to restrict analysis of functional connectivity to
a frequency interval of 0.06–0.11 Hz will have excluded very slow
trends and higher frequencies directly corresponding to average
cardiorespiratory cycles but we are limited in our capacity to exclude
the possibility that observed differences in correlation between fMRI
time series might reflect age-related differences in systemic blood
flow, oxygenation or carbon dioxide levels. Likewise, there is some
prior evidence for age-related differences in the form of the
hemodynamic response function mediating the BOLD response in
fMRI (D'Esposito et al. 2003) and this could conceivably have affected
our results.

In conclusion, we have shown that human brain functional
networks, derived from a connectivity analysis of fMRI data acquired
in a no-task state, have a non-random modular organization or
community structure. The topological roles of specific regions, defined
in terms of the proportion of inter-modular connections each region
makes with other regions outside its ownmodule, were shown to vary
between modules and in relation to normal aging. In young brain
networks, most inter-modular connections involved regions of a
fronto-cingulo-parieral module; whereas, in older adults, there were
more numerous inter-modular connections to central and posterior
modules. These observations are considered to be compatiblewith the
hypothesis that developmental modularization – or maturational
change in community structure of functional networks – may be an
aspect of normal human adult brain aging.
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