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Abstract. The equivariant motivic Chern class of a Schubert cell in a complete flag
manifold X = G/B is an element in the equivariant K-theory ring of X to which one
adjoins a formal parameter y. In this paper we prove several folklore results about motivic
Chern classes, including finding specializations at y = −1 and y = 0; the coefficient of
the top power of y; how to obtain Chern-Schwartz-MacPherson (CSM) classes as leading
terms of motivic classes; divisibility properties of the Schubert expansion of motivic Chern
classes. We collect several conjectures on the positivity, unimodality, and log concavity
of CSM and motivic Chern classes of Schubert cells, including a conjectural positivity of
structure constants of the multiplication of Poincaré duals of CSM classes. In addition, we
prove a ‘star duality’ for the motivic Chern classes, showing how they behave under the
involution taking a vector bundle to its dual. We use the motivic Chern transformation to
define two equivariant variants of the Hirzebruch transformation, which appear naturally in
the Grothendieck-Hirzebruch-Riemann-Roch formalism. We utilize the Demazure-Lusztig
recursions from the motivic Chern class theory to find similar recursions giving the Hirze-
bruch classes of Schubert cells, their Poincaré duals, and their Segre versions. We explain
the functoriality properties needed to extend the results to partial flag manifolds G/P .
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1. Introduction

Let X be a quasi-projective complex algebraic variety and denote by K0(var/X) the
Grothendieck motivic group consisting of equivalence classes of morphisms [f : Z → X]
modulo the usual additivity relations. Also, denote by K(X) the Grothendieck ring of
vector bundles on X. The motivic Chern transformation defined by Brasselet, Schürmann
and Yokura [BSY10] is the assignment for every such X of a group homomorphism

MCy : K0(var/X)→ K(X)[y],

uniquely determined by the fact that it commutes with proper push-forwards and that it
satisfies the normalization condition

MCy[idX : X → X] = λy(T
∗
X) =

∑
yi[∧iT ∗X] ∈ K(X)[y]

if X is nonsingular. If Z ↪→ X is a locally closed subset, the motivic Chern class of Z
(regarded in X) is defined by

MCy(Z) := MCy[Z ↪→ X] ∈ K(X)[y];

here y is a formal indeterminate.
If X admits a torus action, there is an equivariant version MCT

y : KT
0 (var/X)→ KT (X)[y]

defined in [FRW21, AMSS19]. We will work in this context, and omit the superscript T
from the notation to increase legibility.

Our main object of study in this paper will be the classes MCy(X(w)◦), the (torus
equivariant) motivic Chern classes of Schubert cells X(w)◦ in the flag manifolds G/B, for
G a complex, semisimple, Lie group, and B ⊆ G a Borel subgroup. By functoriality, these
determine the motivic Chern classes in the ‘partial’ flag manifolds G/P , with P ⊇ B a
standard parabolic subgroup.

The motivic classes MCy(X(w)◦) are closely related to the study of representation the-
ory of the Hecke algebra of G, and through this connection they play a prominent role
in several related topics: (K-theoretic) stable envelopes and integrable systems [RTV15,
AMSS19, FRW21], Whittaker functions from p-adic representation theory [MS22], charac-
teristic classes of singular varieties [FRW17]. In interesting situations they recover point
counting over finite fields [MS22] (see also §4.3 below), and are closely related to the study
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of the intersection (co)homology and the Riemann-Hilbert correspondence for arbitrary
complex projective manifolds [Sch09]. In Schubert Calculus, the motivic Chern classes, and
their (co)homological counterparts, the Chern-Schwartz-MacPherson (CSM) classes, pro-
vide deformations of the usual Schubert classes, which, provably or conjecturally, satisfy
remarkable positivity, unimodality, and log-concavity properties; see §8 below.

Among the main goals of this paper is to gather in a single place several folklore results
concerning properties of (torus equivariant) motivic classes MCy(X(w)◦). These include
results on the specializations at y = −1 and y = 0 of the parameter y; the coefficient
of ydimX(w) in MCy(X(w)◦); how to recover the CSM classes as the initial terms of the
motivic Chern classes; divisibility properties of Schubert expansions. We also state several
conjectures and prove a new duality for motivic Chern classes.

Our main new contribution is a treatment of the (torus equivariant) Hirzebruch transfor-
mation TdTy,∗, and in particular a study of the Hirzebruch classes TdTy,∗(X(w)◦) of Schubert
cells, as an application of properties of motivic Chern classes. Similarly to the motivic

Chern transformation, the Hirzebruch transformation TdTy,∗ : KT
0 (var/X)→ ĤT

∗ (X;Q[y]) is
a functorial transformation defined uniquely by a normalization property, with values in a
completed (Borel-Moore or Chow) homology group; see §6. In the non-equivariant context
this transformation was defined in [BSY10], and it arises naturally in the context of the
Grothendieck-Hirzebruch-Riemann-Roch (GHRR) formalism. The ‘unnormalized’ variant
of this transformation was studied by Weber [Web16, Web17]. As in the case of MC, we
will omit the superscript T from the notation, since all the classes considered in this paper
are equivariant by default.

In this paper we extend the definition of the Hirzebruch transformation to the equivariant
context, for arbitrary quasi-projective complex algebraic varieties X with a torus action. As
hinted above, there are two variants of the Hirzebruch transformation. The ‘unnormalized’
variant is defined in Theorem 6.1 as the composition

T̃dy,∗ := td∗ ◦MCy : KT
0 (var/X)→ ĤT

∗ (X;Q[y])

of the (equivariant) Todd transformation td∗ constructed by Edidin and Graham [EG00]
with the motivic Chern transformation. The ‘normalized’ version of Definition 6.4 is the
composition

Tdy,∗ := ψ1+y
∗ ◦ T̃dy,∗ : KT

0 (var/X)→ ĤT
∗ (X;Q[y]) ⊆ ĤT

∗ (X;Q[y, (1 + y)−1])

of a certain Adams operator with the unnormalized transformation. The Adams operator
acts by multiplying by powers of 1 + y (see §6). A technical subtlety is that a priori
Tdy,∗ requires coefficients in Q[y, (1 + y)−1], but it can be shown that Q[y] suffices. In
fact, an important property of Tdy,∗ is that the specialization at y = −1 is well-defined.
This specialization recovers the (equivariant) MacPherson’s transformation [Mac74, Ohm06]
cT∗ : FT (X)→ HT

∗ (X) from the group of (equivariant) constructible functions to homology;
see Corollary 6.6 and also [AMSS17, §3.2] for a summary of Ohmoto’s definition and a
discussion of alternative (equivalent) definitions.

We cover general preliminaries in §2 and then focus on the case of flag manifolds. In §3
we recall the definition of the Demazure-Lusztig (DL) operators determining recursively the
motivic Chern classes MCy(X(w)◦) of Schubert cells in flag manifolds. We show (Proposi-
tion 3.5) how one can recover the cohomological DL operators as initial terms of the Chern
character applied to the K-theoretic DL operators; in other words, how one recovers the
action of the degenerate Hecke algebra as a limit of the action of the Hecke algebra. In §4 we
investigate several properties of the motivic Chern classes, including a divisibility property
by powers of 1 + y of the coefficients arising in their Schubert expansions (illustrated in
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Example 4.10), and the fact that the integral of a motivic Chern class of a Schubert cell
is equal to the number of points over the finite field Fq with q = −y elements, see Propo-
sition 4.13 and Remark 4.14. In §5 we study the effect of specializing the parameter y on
motivic Chern classes. In a nutshell, y = −1 recovers the fixed point classes, and y = 0 the
ideal sheaf classes, see Theorem 5.1.

In §6 we obtain ‘Hirzebruch operators’ calculating recursively the (equivariant) Hirze-

bruch classes T̃dy,∗(X(w)◦) and Tdy,∗(X(w)◦) (see Theorem 6.11), their Poincaré duals
(see Theorem 6.12), and the Segre-Hirzebruch classes (see Theorem 6.13). Our treatment
in §6 is particularly extensive, so we summarize some of our results here for the convenience
of the reader.

Let Pi be the minimal parabolic group associated to the i-th simple root, and denote by
pi : G/B → G/Pi the natural projection. The BGG operator ∂Hi is defined as (pi)

∗(pi)∗.
Define the unnormalized and the normalized variants of the Hirzebruch operators

T̃ Hir
i , T Hir

i : Ĥ∗T (X,Q)[y]→ Ĥ∗T (X,Q)[y]

by

T̃ Hir
i := T̃dy(Tpi)∂

H
i − id; T Hir

i := Tdy(Tpi)∂
H
i − id .

We prove in Theorem 6.11 that these operators determine recursively the (un)normalized

Hirzebruch classes of Schubert cells. More precisely, T̃dy,∗(X(id)◦) = Tdy,∗(X(id)◦) =
[X(id)]T and

T̃ Hir
i (T̃dy,∗(X(w)◦)) = T̃dy,∗(X(wsi)

◦) , T Hir
i (Tdy,∗(X(w)◦)) = Tdy,∗(X(wsi)

◦)

for all w ∈ W and all simple reflections si such that wsi > w in the Bruhat ordering. In

Theorem 6.13 we prove analogous statements for the ‘Segre-Hirzebruch classes’
T̃dy∗(X(w)◦)

T̃dy(TX)

and
Tdy∗(X(w)◦)
Tdy(TX) . We find the Poincaré duals of these classes, along with the appropriate

version of the DL operators which determine them; see Theorem 6.12. Perhaps not sur-
prisingly, the theory we find is essentially equivalent to that of motivic Chern classes. For
instance, the Hirzebruch operators are images of the DL operators in K-theory via a Todd
transformation. In particular, the Hirzebruch operators satisfy the same relations as the
DL operators in K-theory (see Lemma 6.9 and Remark 6.10), implying that they give an
action of the Hecke algebra on the equivariant (co)homology of G/B.

In §6.3 we study the specializations at y = 0 and y = −1 of the Hirzebruch classes and
operators, and we recover from this point of view the Todd transformation td∗(ITw ) of the
boundary ideal sheaves ITw of Schubert varieties, respectively the CSM classes cSM(X(w)◦)
of Schubert cells. Furthermore, we recover the DL operators giving recursions for these
classes. To illustrate, the Grothendieck-Hirzebruch- Riemann-Roch implies that

〈td∗(ITu ), ch(Ov,T )〉 = δu,v,

where ch denotes the (equivariant) Chern character. The specialization y = 0 in Theo-
rem 6.12 gives the operators, listed in Proposition 6.14, which determine the classes td∗(ITu )
and ch(Ov,T ) recursively.

In §7 we revisit the procedure giving the degenerate Hecke algebra action as a limit, in
order to explain how CSM classes may be computed directly as the leading terms of the
motivic Chern classes, in the case of Schubert cells; see Theorem 7.1. The CSM and motivic
classes give bases of the (equivariant) cohomology and K theory rings of flag manifolds.
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Based on computational evidence, in §8 we discuss several conjectural properties of CSM
and motivic classes, concerning positivity and log-concavity of the coefficients of their Schu-
bert expansions and the positivity of their structure constants.

Finally, in §9 we prove a new ‘star duality’ for motivic Chern classes, for the duality ? :
KT (X)→ KT (X) which sends the class [E] of a vector bundle to [E∨] = [HomOX (E,OX)].
The duality for the motivic classes, stated in Theorem 9.1, generalizes a known relation
between ideal sheaves and duals of structure sheaves of Schubert varieties proved by Brion
[Bri05, Prop. 4.3.4].

Acknowledgments. We would like to thank Mahir Can and Jörg Feldvoss for organizing
the AMS Special Session on ‘Combinatorial and Geometric Representation Theory’, and
for their interest in this work. This material is partly based upon work supported by the
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well as under Germany’s Excellence Strategy EXC 2044 390685587, Mathematics Münster:
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written by Anders Buch.1

2. Preliminaries

2.1. Equivariant (co)homology. Let X be a quasi-projective complex algebraic variety.
In this paper we will deal with the Borel-Moore homology group H∗(X) of X and the
cohomology ring H∗(X), with rational coefficients. As an alternative, one could use Chow
(co)homology; there is a homology degree-doubling cycle map from Chow to Borel-Moore,
and our constructions are compatible with this map. This map is an isomorphism in some
important situations, such as the complex flag manifolds studied later in this note. We
refer to [Ful84, §19.1] and [Gin98, §2.6] for more details about Borel-Moore homology and
its relation to the Chow group. In case we speak of (co)dimension we always assume that
our spaces are pure dimensional; in addition, by (co)dimension we will mean the complex
(co)dimension. Any subvariety Y ⊆ X of (complex) dimension k has a fundamental class
[Y ] ∈ H2k(X). Whenever X is smooth, we can and will identify the Borel-Moore homology
and cohomology via Poincaré duality.

Let T be a torus and let X be a variety with a T -action. Then the equivariant coho-
mology H∗T (X) is the ordinary cohomology of the Borel mixing space XT := (ET ×X)/T ,
where ET is the universal T -bundle and T acts by t · (e, x) = (et−1, tx). The ring H∗T (X)
is an algebra over H∗T (pt), the polynomial ring SymQX(T ) ' Q[t1, . . . , ts] in the character

group X(T ) (written additively) and with ti ∈ H2
T (pt); see e.g., [Kum02, §11.3.5]. One may

also define T -equivariant Borel-Moore homology and Chow groups, related by an equivari-
ant cycle map; see e.g., [EG98]. Every k-dimensional subvariety Y ⊆ X that is stable under
the T action determines an equivariant fundamental class [Y ]T in HT

2k(X).

As in the non-equivariant case, wheneverX is smooth, we will identifyHT
∗ (X) andH∗T (X).

In particular, when X = pt is a point, the identification sends a ∈ H∗T (pt) to a ∩ [pt]T . If

1The package is available at https://sites.math.rutgers.edu/∼asbuch/equivcalc/
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X is smooth and proper, then there is an H∗T (pt)-bilinear Poincaré (or intersection) pairing
H∗T (X)⊗H∗T (X)→ H∗T (pt) defined by

〈a, b〉 =

∫
X
a · b ,

where the integral stands for the push-forward to a point. Equivariant vector bundles have
equivariant Chern classes cTi (−), such that cTj (E) ∩ − is an operator HT

i (X)→ HT
i−2j(X);

see [And12, §1.3], [EG98, §2.4].
We address the reader to [And12, Knu, AF23] for background on equivariant cohomology

and homology.

2.2. Equivariant K theory. For any T -variety X, the equivariant K theory ring KT (X)
is the Grothendieck ring generated by symbols [E], where E → X is a T -equivariant vector
bundle, modulo the relations [E] = [E1] + [E2] for any short exact sequence 0 → E1 →
E → E2 → 0 of equivariant vector bundles. For any proper morphism f : X → Y there
is a functorial push-forward f∗ : KT (X) → KT (Y ) defined by f∗([E]) =

∑
(−1)i[Rif∗(E)].

The ring KT (X) is an algebra over KT (pt) = R(T ), the representation ring of T . This may
be identified with the Laurent polynomial ring Z[e±t1 , . . . , e±tr ] where eti are characters
corresponding to a basis of the character lattice in the Lie algebra of T . We will often denote
the tuple (e±t1 , . . . , e±tr) simply by et. An introduction to equivariant K theory may be
found in [CG09, Chapter 5]. The equivariant K ring of X admits a ‘vector bundle duality’
involution ? : KT (X)→ KT (X) mapping the class [E] of a vector bundle to the class [E∨] of
its dual. This is not an involution of KT (pt)-algebras; it satisfies (eλ)∨ = e−λ. Under mild
hypotheses (e.g., X projective) there is also a ‘Serre duality’ involutionD : KT (X)→ KT (X)
inherited from (equivariant) Grothendieck-Serre duality and defined by

D([F ]) := [RHom(F, ω•X)] = [ω•X ]⊗ [F ]∨ ∈ KT (X)

for [F ] ∈ KT (X), where ω•X ' ωX [dimX] is the (equivariant) dualizing complex of X. Thus

if X is nonsingular, [ω•X ] = (−1)dimX [ωX ] with ωX the equivariant canonical bundle of X.
Observe the multiplicativity

D([E]⊗ [F ]) = D([E])⊗ [F ]∨.

In later sections of this paper we will primarily be concerned with flag manifolds X =
G/B, with T acting on X by left multiplication. In this case X is a smooth projective variety
and the ring KT (X) is naturally isomorphic to the Grothendieck group K0(coh

T (OX)) of
T -linearized coherent sheaves on X. This follows from the fact that every such coherent
sheaf has a finite resolution by T -equivariant vector bundles. There is a KT (pt)-bilinear
pairing

〈−,−〉 : KT (X)⊗KT (X)→ KT (pt) = R(T ); 〈[E], [F ]〉 :=

∫
X
E ⊗ F = χ(X;E ⊗ F ),

where χ(X;E) is the (equivariant) Euler characteristic, i.e., the virtual representation

χ(X;E) =

∫
X

[E] =
∑
i

(−1)iH i(X;E).

Note that

〈D[E], [F ]∨〉 =

∫
X
D([E ⊗ F ]) = χ(X;E ⊗ F )∨ = (〈[E], [F ]〉)∨ ,
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by equivariant Grothendieck-Serre duality (the corresponding result [Har77, Chapter III,
Theorem 7.6] also holds equivariantly, e.g. as a very special case of [LH09, Part II, Theo-
rem 25.2 and Theorem 28.11]).

Let y be an indeterminate. The Hirzebruch λy-class of an equivariant vector bundle E
is the class

λy(E) :=
∑
k

[∧kE]yk ∈ KT (X)[y].

The λy-class is multiplicative, i.e., for any short exact sequence 0 → E1 → E → E2 → 0
of equivariant vector bundles there is an equality λy(E) = λy(E1)λy(E2) in KT (X)[y]. (As
pointed out in [Nie74, §1.2], this is part of the λ-ring structure of KT (X), cf. [SGA71,
6.V.2.4].)

2.3. The Chern character. For a pure-dimensional T -variety X, Edidin and Graham
[EG00] defined an equivariant Chern character

chT : KT (X)→ ĤT
∗ (X) :=

∏
i≤dimX

HT
2i(X)

such that:

• If V ⊆ X is a T -invariant subvariety, then chT [OV ] = [V ]T+l.o.t. (lower order
terms). (Non-equivariantly, see [Ful84, Theorem 18.3(5)].)

• If L is an equivariant line bundle with first Chern class cT1 (L), then chT [L] = ec
T
1 (L)∩

[X]T . In particular, chT (eλ) = eλ ∈ ĤC∗
∗ (pt) for all characters λ.

• chT commutes with pull-backs.
• If X is smooth, then after identifying HT

∗ (X) ' H∗T (X) via Poincaré duality, chT is
a ring homomorphism.

We will generally omit the subscript T in the notation, since the equivariant context
is assumed throughout the paper. A fundamental result is the Grothendieck-Hirzebruch-
Riemann-Roch (GHRR) theorem. In the equivariant case, this was proved in [EG00]. For
now we state the following particular form; in §6 below we will need more general versions.
Let f : X → Y be a smooth proper T -equivariant morphism of smooth T -varieties, and let
a ∈ KT (X). Then

ch f∗(a) = f∗(ch(a) · Td(Tf )).

where Td(Tf ) is the equivariant Todd class of the relative tangent bundle of f . Recall that
if E → X is an equivariant vector bundle with Chern roots x1, . . . , xe, then

Td(E) =
e∏
i=1

xi
1− e−xi

=
e∏
i=1

(1 +
1

2
xi + . . .);

see e.g., [Ful84, Example 3.2.4].

3. Operators in equivariant cohomology and K-theory of flag manifolds

The goal of this section is to introduce the Schubert basis in the equivariant K ring of
flag manifolds and recall the definition and basic properties of the Demazure and (coho-
mological and K-theoretic) Demazure-Lusztig (DL) operators acting on the K-theory ring.
An important fact which we will use later, and for which we could not find a reference,
is that the cohomological DL operators may be recovered from certain initial terms of the
K-theoretic ones; cf. Proposition 3.5.
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3.1. Schubert data. Let G be a complex semisimple, simply connected, Lie group, and
fix a Borel subgroup B with a maximal torus T ⊆ B. Let B− denote the opposite Borel
subgroup. Let W := NG(T )/T be the Weyl group, and ` : W → N the associated length
function. Denote by w0 the longest element in W ; then B− = w0Bw0. Let also ∆ :=
{α1, . . . , αr} ⊆ R+ denote the set of simple roots included in the set of positive roots for
(G,B). Let ρ denote the half sum of the positive roots. The simple reflection for the root
αi ∈ ∆ is denoted by si and the corresponding minimal parabolic subgroup is denoted
by Pi, containing the Borel subgroup B.

Let X := G/B be the (complete) flag variety. It has a stratification by Schubert cells
X(w)◦ := BwB/B and opposite Schubert cells Y (w)◦ := B−wB/B. The closures X(w) :=

X(w)◦ and Y (w) := Y (w)◦ are the Schubert varieties. With these definitions, dimCX(w) =
codimC Y (w) = `(w). The Weyl group W admits a partial ordering, called the Bruhat
ordering, defined by u ≤ v if and only if X(u) ⊆ X(v).

Let OTw := [OX(w)] ∈ KT (G/B) be the Grothendieck class determined by the structure

sheaf of X(w) (a coherent sheaf), and similarly Ow,T := [OY (w)]. The equivariant K-theory

ring has KT (pt)-bases {OTw}w∈W and {Ow,T }w∈W for w ∈W . Let ∂X(w) := X(w)rX(w)◦

be the boundary of the Schubert variety X(w), and similarly ∂Y (w) the boundary of Y (w).
It is known that the dual bases of {OTw} and {Ow,T } are given by the classes of the ideal
sheaves Iw,T := [OY (w)(−∂Y (w))], respectively ITw := [OX(w)(−∂X(w))]. I.e.,

(1) 〈OTu , Iv,T 〉 = 〈Ou,T , ITv 〉 = δu,v.

See e.g., [Bri05, Proposition 4.3.2] for the non-equivariant case; the same proof works equiv-
ariantly. See also [GK08, Proposition 2.1]. It is also shown in [Bri05] that

(2) OTw =
∑
v≤w
ITv and ITw =

∑
v≤w

(−1)`(w)−`(v)OTv .

(Again, Brion’s argument also works in the equivariant context.) For any weight (character)
λ of T , we denote by Lλ the G-homogeneous line bundle

Lλ = G×B Cλ.

Let P be a standard parabolic subgroup of G, i.e., B ⊆ P ⊆ G. Such a subgroup is
determined by a subset ∆P ⊆ ∆; for instance, ∆B = ∅. Denote by WP the subgroup of W
generated by the simple reflections si such that αi ∈ ∆ r ∆P . Let WP denote the subset
of minimal length representatives of W/WP . By definition, `(wWP ) = `(w) for w ∈ WP .
Similarly to G/B, the partial flag manifold G/P has finitely B and B− many orbits – the
Schubert cells – indexed by the elements w ∈WP :

X(wWP )◦ = BwP/P ; Y (wWP )◦ = B−wP/P ;

as before dimX(wWP )◦ = codim Y (wWP )◦ = `(wWP ). The Schubert varieties X(wWP ),
Y (wWP ) in G/P are the closures of the corresponding Schubert cells.

3.2. BGG, Demazure, and Demazure-Lusztig operators. Fix a simple root αi ∈ ∆
and denote by Pi ⊆ G the corresponding minimal parabolic subgroup. Consider the fiber
diagram:

FP := G/B ×G/Pi G/B
pr1 //

pr2

��

G/B

pi

��
G/B

pi // G/Pi
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The Bernstein-Gelfand-Gelfand (BGG) operator [BGG73] is the H∗T (pt)-linear mor-

phism ∂Hi : H i
T (X)→ H i+2

T (X) defined by ∂Hi := (pi)
∗(pi)∗. The same geometric definition

gives the Demazure operator ∂i : KT (X) → KT (X) in the (equivariant) K-theory, linear
over KT (pt); see [Dem74]. These operators satisfy

(3) ∂Hi [X(w)]T =

{
[X(wsi)]T if wsi > w;

0 otherwise .
∂i(OTw) =

{
OTwsi if wsi > w;

OTw otherwise .

From this, one deduces that both operators satisfy the same commutation and braid rela-
tions as those for the elements of W . In cohomology, (∂Hi )2 = 0, while in K-theory ∂2i = ∂i.

The relative cotangent bundle of the projection pi is T ∗pi = Lαi . Define the H∗T (pt)-algebra
automorphism si : H∗T (G/B)→ H∗T (pt) by

(4) si = id +cT1 (T ∗pi)∂
H
i = id +cT1 (Lαi)∂Hi .

It was proved by Knutson [Knu] that this is an automorphism induced by the right Weyl
group action on G/B; see [AM16] and also [MNS22], where both left and right actions
are studied. Using this automorphism, the cohomological Demazure-Lusztig (DL)
operators are H∗T (pt)-linear endomorphism of H∗T (G/B) defined by

(5) T Hi = ∂Hi − si; T H,∨i = ∂Hi + si.

These operators satisfy the same braid and commutation relations as the BGG operators,

and, in addition (T Hi )2 = (T H,∨i )2 = id; see [AM16, Proposition 4.1]. In other words,
these give a twisted representation of the Weyl group W on H∗T (G/B). This representation
was studied earlier by Lascoux, Leclerc and Thibon [LLT96], and by Ginzburg [Gin98] in
relation to the degenerate Hecke algebra. The operators are adjoint to each other, in the
sense that for any a, b ∈ H∗T (G/B),

〈T Hi (a), b〉 = 〈a, T H,∨i (b)〉.
It is convenient to consider a homogenized version of this operator. Add a formal variable ~
of cohomological complex degree 1. Then the homogenized operators are

(6) T H,~i = ~∂Hi − si; T H,∨,~i = ~∂Hi + si.

The variable ~ will arise geometrically from the C∗-action by dilation on T ∗(G/B). The
restriction of this action to the zero-section G/B ↪→ T ∗(G/B) is trivial, and H∗T×C∗(G/B) =

H∗T (G/B)[~], where ~ is interpreted as a generator of H2
C∗(pt).

We define next the K-theoretic version of the DL operator. Fix an indeterminate y; later,
we will set y = −e−~. Define the K-theoretic Demazure-Lusztig (DL) operators

(7) Ti := λy(T
∗
pi)∂i − id; T ∨i := ∂iλy(T

∗
pi)− id .

The operators Ti and Ti∨ are KT (pt)[y]-module endomorphisms of KT (X)[y].

Remark 3.1. The operator Ti∨ was defined by Lusztig [Lus85, Eq. (4.2)] in relation to
affine Hecke algebras and equivariant K theory of flag varieties. The ‘dual’ operator Ti
arises naturally in the study of motivic Chern classes of Schubert cells [AMSS19] (where
the operators are denoted Ri,R

∨
i ). In an algebraic form, Ti appeared recently in [BBL15,

LLL17, MS22], in relation to Whittaker functions. The left versions of these operators are
studied in [MNS22]. y

As in the cohomological case, the Demazure and Demazure-Lusztig (DL) operators are
adjoint to each other and ∂i is self-adjoint: for any a, b ∈ KT (X),

〈Ti(a), b〉 = 〈a, Ti∨(b)〉 and 〈∂i(a), b〉 = 〈a, ∂i(b)〉.
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See [AMSS19, Lemma 3.3] for a proof.

Proposition 3.2 ([Lus85]). The operators Ti and T ∨i satisfy the usual commutation and
braid relations for the group W . For each simple root αi ∈ ∆ the following quadratic formula
holds:

(Ti + id)(Ti + y) = (Ti∨ + id)(Ti∨ + y) = 0.

An immediate corollary of the quadratic formula is that for y 6= 0, the operators Ti
and Ti∨ are invertible. In fact,

T −1i = −1

y
Ti −

1 + y

y
id

as operators on KT (X)[y, y−1]. The same formula holds when Ti is exchanged with T ∨i .
Consider next the localized equivariant K theory ring

KT (G/B)loc := KT (G/B)⊗KT (pt) Frac(KT (pt))

where Frac denotes the fraction field. The Weyl group elements w ∈ W are in bijection
with the torus fixed points ew ∈ G/B. Let ιw := [Oew ] ∈ KT (G/B)loc be the class of
the structure sheaf of ew. By the localization theorem, the classes ιw form a basis for the
localized equivariant K theory ring; we call this basis the fixed point basis.

We need the following lemma, whose proof can be found e.g., in [AMSS19, Lemma 3.7].

Lemma 3.3. The following formulas hold in KT (G/B)loc:
(a) For any weight λ, Lλ · ιw = ewλιw;
(b) For any simple root αi,

∂i(ιw) =
1

1− ewαi
ιw +

1

1− e−wαi
ιwsi ;

(c) The action of the operator Ti on the fixed point basis is given by the following formula

Ti(ιw) = − 1 + y

1− e−wαi
ιw +

1 + ye−wαi

1− e−wαi
ιwsi .

(d) The action of the adjoint operator T ∨i is given by

T ∨i (ιw) = − 1 + y

1− e−wαi
ιw +

1 + yewαi

1− e−wαi
ιwsi .

(e) The action of the inverse operator (T ∨i )−1is given by

(T ∨i )−1(ιw) = − 1 + y−1

1− ewαi
ιw −

y−1 + ewαi

1− e−wαi
ιwsαi .

We also record the action of several specializations of the Demazure-Lusztig operators,
see [AMSS19, Lemma 3.8].

Lemma 3.4. (a) The following specializations hold:

(Ti)y=0 = ∂i − id; (T ∨i )y=0 = ∂i − id;

Further, for any w ∈W , the following hold:

(∂i − id)(ITw ) =

{
ITwsi if wsi > w;

−ITw if wsi < w.
∂i(OTw) =

{
OTwsi if wsi > w;

OTw if wsi < w.

(b) Let w ∈W . Then the specializations at y = −1 satisfy

(Ti)y=−1(ιw) = ιwsi .

In other words, this specialization is compatible with the right Weyl group multiplication.
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3.3. Leading terms of DL operators. Next we use the grading induced by the equivari-
ant Chern character to identify the ‘initial terms’ of the Demazure-Lusztig operators as cer-
tain operators on equivariant (co)homology related to the degenerate Hecke algebra. These
operators appear as convolution operators in [Gin98] and determine the Chern-Schwartz-
MacPherson classes of Schubert cells [AM16].

As usual, X = G/B but we consider the extended torus A := T × C∗ where C∗ acts
trivially. (This is the restriction of the action of A on T ∗(X), where C∗ acts by dilation. The
CSM and motivic Chern classes considered later in this paper are naturally C∗-equivariant;
this justifies the use of the extended torus.) We now set y = −e−~, and therefore (cf. §2.3)

chC∗(y) = −e−~ = −1 + ~ +O(~2) ∈ Ĥ∗C∗(pt).

We analyze the relation between the cohomological and K-theoretic DL operators.

Proposition 3.5. Let w ∈ W and consider the Grothendieck class OAw ∈ KA(X) for the
Schubert variety X(w). Then

chA(Ti(OAw)) = T H,~i [X(w)]A + l.o.t.

and

chA(T ∨i (OAw)) = T H,∨,~i [X(w)]A + l.o.t.,

where l.o.t. are terms in
∏
i<`(w)H

A
2i(X).

Proof. Since X = G/B is non-singular, the Chern character is a ring homomorphism, thus
for any invariant subvariety Z ⊆ X and any equivariant line bundle L,

chA([OZ ]A · L) = [Z]A + cA1 (L) · [Z]A + l.o.t.

We take Z = X(w), and we have two cases: either w < wsi or w > wsi. If w < wsi then
∂i(OAw) = OAwsi . Using this, we obtain

chA(Ti(OAw)) = chA(OAwsi + yLαi · OAwsi −O
A
w)

= chA(OAwsi)− e
−~ec

A
1 (Lαi ) chA(OAwsi)− [X(w)]A + l.o.t.

= chA(OAwsi)− (1− ~)(1 + cA1 (Lαi)) chA(OAwsi)− [X(w)]A + l.o.t.

=~[X(wsi)]A − cA1 (Lαi)[X(wsi)]A − [X(w)]A + l.o.t.

=~∂Hi [X(w)]A − (id +cA1 (Lαi)∂Hi )[X(w)]A + l.o.t.

where l.o.t. ∈
∏
i<`(w)H

A
i (X). By [AM16, (3)] (which uses a different sign convention) the

last expression equals

(~∂Hi − si)[X(w)]A + l.o.t. = T H,~i [X(w)]A + l.o.t.

and we are done in this case. If w > wsi then ∂i(OAw) = OAw , ∂i[X(w)]A = 0 and si[X(w)]A =
[X(w)]A by [AM16, (4)]. Then a similar, but simpler calculation proves the first part of the
proposition.

For the second statement we start by observing that for a ∈ KT (X), by the Grothendieck-
Hirzebruch-Riemann-Roch (GHRR)

(8) chA ∂i(a) = chA p
∗
i (pi)∗(a) = p∗i chA((pi)∗(a)) = ∂Hi (chA(a) TdA(Tpi)).
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Then the second statement can be proved as follows. By the GHRR theorem,

chA(T ∨i (OAw)) = chA ∂i(OAw + yLαi · OAw)− chA(OAw)

=∂Hi

(
chA(OAw + yLαi · OAw) TdA(Tpi)

)
− chA(OAw)

=∂Hi

(
chA(OAw) TdA(Tpi)(1− e−~+c

A
1 (Lαi ))

)
− chA(OAw)

Observe that TdA(Tpi)(1 − e−~+c
A
1 (Lαi )) = ~ + cA1 (L−αi)+ (terms of degree ≥ 2) in coho-

mology. Then the last expression equals

∂Hi

(
(~ + cA1 (L−αi)[X(w)]A

)
− [X(w)]A + l.o.t

=~∂Hi [X(w)]A + (id +cA1 (Lαi)∂Hi )[X(w)]A + l.o.t.

=(~∂Hi + si)[X(w)]A + l.o.t.

=T H,∨,~i [X(w)]A + l.o.t.

Here the third equation follows from the definition of si from (4), and the second from the
general fact that for every weight λ, cA1 (Lλ)∂Hi = ∂Hi c

A
1 (Lsiλ)−〈λ, α∨i 〉. This can be proved

by e.g., adapting parts (a) and (b) of Lemma 3.3 to the cohomological context. �

4. Equivariant motivic Chern classes

The aim of this section is to introduce and recall the basic properties of the motivic
Chern classes - one of the main objects in this note. In the second part of the section we
focus on the motivic Chern classes of Schubert cells in flag manifolds. Aside from recalling
results proved in e.g., [AMSS19], we prove a new divisibility property of the coefficients in
the transition matrix from motivic classes to the Schubert basis (Proposition 4.15). In §4.3
we discuss the relation to point counting over finite fields; this was mentioned briefly in
[AMSS19] and [MS22].

4.1. Preliminaries about motivic Chern classes. We recall the definition of the mo-
tivic Chern classes, following [BSY10]. For now let X be a quasi-projective, complex alge-
braic variety, with an action of T . First we recall the definition of the (relative) motivic
Grothendieck group KT

0 (var/X) of varieties over X, mostly following Looijenga’s notes
[Loo02]; see also Bittner [Bit04]. For simplicity, we only consider the T -equivariant quasi-
projective context (replacing the ‘goodness’ assumption in [Bit04]), which is enough for all
applications in this paper. The group KT

0 (var/X) is the quotient of the free abelian group
generated by symbols [f : Z → X] where Z is a quasi-projective T -variety and f : Z → X
is a T -equivariant morphism modulo the additivity relations

[f : Z → X] = [f : U → X] + [f : Z r U → X]

for U ⊆ Z an open invariant subvariety. For every equivariant morphism g : X → Y of quasi-
projective T -varieties there are well-defined push-forwards g! : KT

0 (var/X) → KT
0 (var/Y )

(given by composition) and pull-backs g∗ : KT
0 (var/Y )→ KT

0 (var/X) (given by fiber prod-
uct); see [Bit04, §6]. There are also external products

× : KT
0 (var/X)×KT

0 (var/X ′)→ KT
0 (var/X ×X ′); [f ]× [f ′] 7→ [f × f ′],

which are KT
0 (var/pt)-bilinear and commute with push-forward and pull-back. If X = pt,

then KT
0 (var/pt) is a ring with this external product, and the groups KT

0 (var/X) also acquire
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by the external product a module structure over KT
0 (var/pt) such that push-forward g! and

pull-back g∗ are KT
0 (var/pt)-linear.

Remark 4.1. For any variety X, similar functors can be defined on the ring of constructible
functions F(X), and the Grothendieck group K0(var/X) may be regarded as a motivic
version of F(X). In fact, there is a map e : K0(var/X) → F(X) sending [f : Y → X] 7→
f!(11Y ), where f!(11Y ) is defined using compactly supported Euler characteristic of the fibers.
The map e is a group homomorphism, and if X = pt then e is a ring homomorphism.
The constructions extend equivariantly, with FT (X) ⊆ F(X) the subgroup of T -invariant
constructible functions. y

The following theorem was proved in the non-equivariant case by Brasselet, Schürmann
and Yokura [BSY10, Theorem 2.1]. Minor changes in the argument are needed in the
equivariant case – see also [FRW21, AMSS19]. In future work we will reprove the theorem
below and relate equivariant motivic Chern classes to certain classes in the equivariant K-
theory of the cotangent bundle as defined by Tanisaki [Tan87] with the help of equivariant
mixed Hodge modules.

Theorem 4.2. [AMSS19, Theorem 4.2] Let X be a quasi-projective, non-singular, complex
algebraic variety with an action of the torus T . There exists a unique natural transformation
MCy : KT

0 (var/X)→ KT (X)[y] satisfying the following properties:

(1) It is functorial with respect to push-forwards via T -equivariant proper morphisms of
non-singular, quasi-projective varieties.

(2) It satisfies the normalization condition

MCy[idX : X → X] = λy(T
∗X) =

∑
yi[∧iT ∗X] ∈ KT (X)[y].

The transformation MCy satisfies the following properties:

(3) It is determined by its image on classes [f : Z → X] = f![idZ ] where Z is a
non-singular, irreducible, quasi-projective algebraic variety and f is a T -equivariant
proper morphism.

(4) It satisfies a Verdier-Riemann-Roch (VRR) formula: for every smooth, T -equivariant
morphism π : X → Y of quasi-projective and non-singular algebraic varieties, and
every [f : Z → Y ] ∈ KT

0 (var/Y ), the following holds:

MCy[π
∗f : Z ×Y X → X] = λy(T

∗
π ) ∩ π∗MCy[f : Z → Y ].

If one forgets the T -action, then the equivariant motivic Chern class above recovers the
non-equivariant motivic Chern class from [BSY10] (either by its construction, or by the
properties (1)-(3) from Theorem 4.2 and the corresponding results from [BSY10]).

Remark 4.3. Theorem 4.2 and its proof work more generally for a possibly singular, quasi-
projective T -equivariant base variety X, using the Grothendieck group of T -equivariant
coherent OX -sheaves in the target (cf. [FRW21, Remark 2.2]), i.e.,

MCy : KT
0 (var/X)→ K0(coh

T (OX))[y] .

Moreover, MCy commutes with exterior products:

MCy[f × f ′ : Z × Z ′ → X ×X ′] = MCy[f : Z → X]�MCy[f
′ : Z ′ → X ′] .

This follows as in the non-equivariant context [BSY10, Corollary 2.1] from part (3) of
Theorem 4.2 and the multiplicativity of the equivariant λy-class for smooth and quasi-
projective T -varieties X,X ′:

λy(T
∗(X ×X ′)) = λy(T

∗X)� λy(T
∗X ′) ∈ KT (X ×X ′)[y] . y
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Remark 4.4. The equivariant χy-genus of a T -variety Z is by definition

χy(Z) := MCy([Z → pt]) ∈ KT (pt)[y] .

By rigidity of the χy-genus (see [FRW21, §2.5] and [Web16, Theorem 7.2]), it contains no
information about the action of T ; it is equal to the non-equivariant χy-genus under the
embedding Z[y]→ KT (pt)[y]. y

In what follows, the variety X will usually be understood from the context. If Y ⊆ X is
a T -invariant subvariety, not necessarily closed, we set

MCy(Y ) := MCy[Y ↪→ X].

If i : Y ⊆ X is closed nonsingular subvariety and Y ′ ⊆ Y , then by functoriality

MCy[Y
′ ↪→ X] = i∗MCy[Y

′ ↪→ Y ]

(K-theoretic push-forward). For instance if Y ′ = Y then

MCy[i : Y → X] = i∗(λy(T
∗Y )⊗ [OY ])

as an element in KT (X). We will often abuse notation and suppress the push-forward
notation. Similarly for the other transformations discussed in later sections.

4.2. Motivic Chern classes of Schubert cells. Assume now that X = G/B. The follow-
ing result from [AMSS19, Corollary 5.2, cf. Remark 5.4], allows us to calculate recursively
the motivic Chern classes of Schubert cells.

Theorem 4.5. Let w ∈W . Then the motivic Chern class MCy(X(w)◦) is given by

MCy(X(w)◦) = Tw−1(OTid).

Here, Tw−1 = Tik · · · Ti1 if w = si1 · · · sik is a reduced decomposition. This operator is
well-defined by Proposition 3.2.

Following [AMSS19, Remark 6.4], we introduce an operator which will yield the (Poincaré)
duals of motivic Chern classes. For each simple root αi ∈ ∆, define

(9) Li = ∂i + y(∂iLαi + id) = −y(T ∨i )−1 = T ∨i + (1 + y) id .

Since T ∨i satisfy the usual braid and commutativity relations, so do these operators. Hence,
Lw is well-defined for all w ∈ W , where Lw = Li1 · · ·Lik if w = si1 · · · sik is a reduced
decomposition. Define the following elements in the equivariant K theory ring:

M̃Cy(Y (w)◦)) := Lw−1w0
(Ow0,T ); M̃Cy(X(w)◦) = Lw−1(OTid).

By definition M̃Cy(Y (w)◦)) and M̃Cy(X(w)◦) are elements in KT (X)[y].2

Theorem 4.6. [AMSS19, Theorem 6.2] The classes M̃Cy(Y (w)◦)) are orthogonal to the
motivic Chern classes: for any u, v ∈W ,

〈MCy(X(u)◦), M̃Cy(Y (v)◦)〉 = δu,v
∏
α>0

(1 + ye−α),

where the pairing on the left hand side is the intersection pairing defined in §2.2.

Note that
∏
α>0(1 + ye−α) = λy(T

∗
w0
X).

2If wL0 denotes the left Weyl group action by w0, as in [MNS22], then wL0 .M̃Cy(X(w)◦) = M̃Cy(Y (w0w)◦).
This generalizes the more familiar formula from Schubert calculus: wL0 .[X(w)]T = [Y (w0w)]T .
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Remark 4.7. Another family of classes dual to motivic Chern classes is given by a cer-
tain Serre dual variant of Segre motivic classes. Combining [AMSS19, Theorem 8.11] and
[MNS22, Theorem 7.1]) (see also [FRW21]), one obtains the remarkable equality:

M̃Cy(Y (v)◦)∏
α>0(1 + ye−α)

= (−y)dimG/B−`(v)D(MCy(Y (v)◦))

λy(T ∗X)
∈ KT (X)[y]S [y−1].

Here D denotes the (Grothendieck-Serre) duality, extended to the parameter y via yn 7→
y−n, and KT (X)[y]S is appropriately localized so that λy(T

∗X) is invertible (see [AMSS19,
Remark 8.9]). We note that one may define these ‘Serre-Segre’ motivic classes for any
partial flag manifold G/P , and they are always dual to motivic Chern classes of Schubert
cells; see [MNS22, Theorem 7.2]. Geometrically, the duality above is expected to arise from
a transversality formula, generalizing to K-theory the results from [Sch17]. In cohomology,
this is explained in [AMSS17, §7]. y

Consider the expansions of the equivariant motivic Chern classes,

(10) MCy(X(w)◦) =
∑
u≤w

cu,w(y; et)OTu .

The equivariant K-Chevalley formula, used to multiply a Schubert class by the line bun-
dle Lαi [LP07, PR99], and Theorem 4.5, gives a recursive procedure to calculate the motivic
Chern classes of Schubert cells. The recursion also implies that the coefficients are poly-
nomials cu,w(y; et) ∈ Z[e±α1 , . . . , e±αr ][y] ⊆ KT (pt)[y] in the characters associated to the
simple roots. Note that the inclusion may be strict, reflecting the fact that the root lat-
tice is in general strictly included in the weight lattice. Also, recall that et stands for the
tuple (e±t1 , . . . , e±tr).

We provide next a few calculations for the motivic Chern classes of the flag manifolds P1

and Fl(3).

Example 4.8 (Fl(2) = P1). The equivariant motivic Chern classes for P1 are :

MCy(X(id)) = OTid; MCy(X(s)◦) = (1 + e−α1y)OTs − (1 + (1 + e−α1)y)OTid. y

Example 4.9 (The Schubert cell X(s1s2)
◦). The equivariant motivic Chern classes for larger

flag manifolds are much more complicated. For instance, the equivariant motivic Chern class
of the Schubert cell X(s1s2)

◦ ⊆ Fl(3) is

MCy(X(s1s2)
◦) =(1 + e−α1y)(1 + e−(α1+α2)y)OTs1s2−

(1 + e−α1y)(1 + (1 + e−(α1+α2))y)OTs1−
(1 + (1 + e−α1)(1 + e−α2)y + e−α2(1 + e−α1 + e−2α1)y2)OTs2+

(1 + (2 + e−α1 + e−α2 + e−(α1+α2))y)OTid+

(1 + e−α1 + e−α2 + e−(α1+α2) + e−(2α1+α2))y2OTid. y

The expressions above encode a remarkable amount of information. For instance, a
simple verification in Example 4.9 shows that the expression for the sum of the coefficients
simplifies dramatically and equals y2, reflecting the geometric fact that we deal with a cell
of dimension 2. We will prove this and more in Proposition 4.13 and Theorem 5.1 below.
For now, we also provide some examples of non-equivariant motivic Chern classes. These
are obtained from the equivariant ones by making the substitution eλ 7→ 1 for each weight λ.



16 PAOLO ALUFFI, LEONARDO C. MIHALCEA, JÖRG SCHÜRMANN, AND CHANGJIAN SU

Example 4.10. The following are the non-equivariant motivic Chern classes of Schubert
cells in Fl(3). (Recall that we use the notation MCy for both the notion in ordinary and in
equivariant K-theory.)

MCy(X(id)) =Oid;

MCy(X(s1)◦) =(1 + y)Os1 − (1 + 2y)Oid;

MCy(X(s2)◦) =(1 + y)Os2 − (1 + 2y)Oid;

MCy(X(s1s2)◦) =(1 + y)2Os1s2 − (1 + y)(1 + 2y)Os1 − (1 + y)(1 + 3y)Os2 + (5y2 + 5y + 1)Oid;

MCy(X(s2s1)◦) =(1 + y)2Os2s1 − (1 + y)(1 + 2y)Os2 − (1 + y)(1 + 3y)Os1 + (5y2 + 5y + 1)Oid;

MCy(X(w0)◦) =(1 + y)3Ow0 − (1 + y)2(1 + 2y)(Os1s2 +Os2s1)+

(1 + y)(5y2 + 4y + 1)(Os1 +Os2)− (8y3 + 11y2 + 5y + 1)Oid.

The classes M̃Cy(Y (w)◦) for the Schubert cells in Fl(3) are:

M̃Cy(Y (w0)) =Ow0 ;

M̃Cy(Y (s1s2)
◦) =(1 + y)Os1s2 + yOw0 ;

M̃Cy(Y (s2s1)
◦) =(1 + y)Os2s1 + yOw0 ;

M̃Cy(Y (s1)
◦) =(1 + y)2Os1 + y(1 + y)Os1s2 + 2y(1 + y)Os2s1 + y2Ow0 ;

M̃Cy(Y (s2)
◦) =(1 + y)2Os2 + 2y(1 + y)Os1s2 + y(1 + y)Os2s1 + y2Ow0 ;

M̃Cy(Y (id)◦) =(1 + y)3Oid + y(1 + y)2(Os1 +Os2)+

2y2(1 + y)(Os1s2 +Os2s1) + y3Ow0 .

An algebra check together with fact that 〈Ou,Ov〉 = 1 if and only if u ≥ v, shows that

〈MCy(X(u)◦), M̃Cy(Y (v)◦)〉 = (1 + y)3δu,v

as stated in Theorem 4.6. y

On the basis of these (and other) examples, we can conjecture that the motivic Chern
classes and their duals satisfy a certain positivity property. This is discussed in section 8.
At this time we note that the positivity of the dual classes in Example 4.10 does not
extend beyond small cases. For instance, the coefficient of Os3s1s2 in the expansion of

M̃Cy(Y (id)◦) ∈ K(Fl(4)) equals y2(4y − 1)(1 + y)3.
The ‘top’ Schubert coefficient is calculated in the following result.

Lemma 4.11. The coefficient cw,w(y; et) is given by

cw,w(y, et) =
∏

α>0,wα<0

(1 + yewα) = λy(T
∗
ewX(w)).

Proof. The localization MCy(X(w)◦)|w equals cw,w(y, et)(OTw)|w. By Lemma 3.3(c) and The-
orem 4.5, we get

MCy(X(w)◦)|w =
∏

α>0,wα<0

1 + yewα

1− ewα
ιw|w.

However, (OTw)|w = ιw|w
λ−1(T ∗

wX(w)) = ιw|w∏
α>0,wα<0(1−ewα)

. The claim follows. �

We end this section with an analogue of Theorem 4.5 for the Segre motivic classes

SMCy(X(w)◦, X) :=
MCy(X(w)◦)

λy(T ∗X)
.
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These classes live in a localization KT (X)S where the element
∏
α>0(1 + yeα)(1 + ye−α) ∈

KT (pt)[y] is invertible; see [AMSS19, Remark 8.9]. We recall [MS22, Theorem 4.2], which
will be used below when discussing the Hirzebruch version of the Segre classes.

Theorem 4.12. For any w ∈W one has in KT (X)[y]S:

MCy(X(w)◦)

λy(T ∗X)
=

T ∨w−1(OTid)∏
α>0(1 + yeα)

= T ∨w−1

(
OTid∏

α>0(1 + yeα)

)
and

(11)
MCy(Y (w)◦)

λy(T ∗X)
=
T ∨(w0w)−1(Ow0,T )∏
α>0(1 + ye−α)

= T ∨(w0w)−1

(
Ow0,T∏

α>0(1 + ye−α)

)
.

Note that
∏
α>0(1 + yeα) = λy(T

∗
eid
X) and

∏
α>0(1 + ye−α) = λy(T

∗
ew0

X).

4.3. Integrals of motivic Chern classes and point counting. By functoriality of mo-
tivic Chern classes, the integral of the motivic Chern class of a Schubert cell equals∫

G/B
MCy(X(w)◦) := MCy[X(w)◦ → pt] = MCy[A`(w) → pt] = MCy[A1 → pt]`(w).

The last equality uses the fact the the map MCy : KT
0 (var/pt)→ KT

0 (pt) is a ring homomor-
phism, with the product given by exterior product of varieties; see [BSY10, Corollary 2.1]
extended equivariantly in [AMSS19, Theorem 4.2]. One can calculate MCy[A1 → pt] di-
rectly from Example 4.8:

MCy[A1 → pt] =

∫
P1

MCy(A1) = −y.

Combining all these, we deduce:

Proposition 4.13. Recall the Schubert expansion (10). Then the following hold:

(a)
∫
G/B MCy(X(w)◦) =

∑
cw,u(y, et) = (−y)`(w).

(b) The χy-genus of G/B equals

χy(G/B) =

∫
G/B

λy(T
∗(G/B)) =

∑
w∈W

(−y)`(w).

Proof. Part (a) follows from the considerations above and because
∫
G/B O

T
w = 1, since

H i(X(w),OG/B) = 0 for i > 0, as Schubert varieties are rational with rational singulari-
ties. Part (b) follows from (a), using the fact that λy(T

∗(G/B)) ⊗ OG/B = MCy(G/B) =∑
w∈W MCy(X(w)◦). �

If one specializes y = −q, this proposition shows that the χy-genus of a Schubert va-
riety X(w) is equal to the number of points of X(w) over Fq, the field with q elements.
This type of arguments are discussed more generally for any G/P , or for smooth, projective
T -varieties with finitely many fixed points in [MS22, Theorem A.1]; see Remark 4.14 below
for a further generalization.

Utilizing again the specialization y = −q and taking G/B = Fl(n), one recovers in a
natural way q-analogues of classical formulae. In this case, W = Sn (the symmetric group)
and

χ−q(Fl(n)) =
∑
w∈Sn

q`(w).
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It is known that this sum equals the q-analogue of the factorial,∑
w∈Sn

q`(w) = [n]q! = (1 + q)(1 + q + q2) · . . . · (1 + q + . . .+ qn−1).

In fact, it is fun to work out a geometric interpretation of this formula. The natural pro-
jection pn : Fl(n) → Gr(n − 1, n) sending a flag (F1 ⊆ . . . ⊆ Fn = Cn) to Fn−1 ⊆ Cn
is a G-equivariant Zariski locally trivial fibration, with fiber isomorphic to Fl(n − 1). By
additivity and multiplicativity of motivic Chern classes over a point, it follows that

χ−q(Fl(n)) = χ−q(Fl(n−1))·χ−q(Gr(n−1, n)) = χ−q(Fl(n−1))·(1+q+q2+q3+. . .+qn−1).

The last equality follows from the fact that the (dual) projective space Gr(n− 1, n) is the

disjoint union of Schubert cells, each of which with contribution qdim(cell) to the χ−q genus.
Then the equality follows by induction on n. A more detailed analysis of this geometric
argument is carried out in §4.5.

Remark 4.14. This relation between Fq point count and the χy-genus of a complex algebraic
variety X holds more generally for X of strongly polynomial-count in the sense of Katz
[HRV08, 6 Appendix]. By Theorem 6.1.2 in loc. cit. one obtains the relation PX(q) = E(x, y)
for q = xy, with PX(q) the polynomial point count over Fq and E the corresponding E-
polynomial of X defined in terms of the mixed Hodge numbers of the compactly supported
cohomology of X. By forgetting the weight filtration one gets in these cases E(y, 1) =
χ−y(X) by [BSY10, (5.3) and (5.5), p. 43-44]. y

4.4. Divisibility properties. Consider now the expansions of the non-equivariant motivic
Chern classes,

(12) MCy(X(w)◦) =
∑
u≤w

cu,w(y)Ou ∈ K(X)[y].

The coefficients cu,w(y) from (12) are polynomials in Z[y]. Example 4.10 suggests a divisi-
bility property of these coefficients.

Proposition 4.15. The coefficient cu,w(y) is divisible by (1 + y)`(u).

Proof. We prove the statement by induction on `(u). If u = w, Lemma 4.11 gives cw,w(y) =

(1+y)`(w). Now assume u < w and that the statement is true for any v ≤ w with `(v) > `(u).
Arguing by contradiction, suppose that (1 + y)` | cu,w(y) and (1 + y)`+1 - cu,w(y) for some
` < `(u). We use the hypotheses of Proposition 3.5, where we only keep the action of C∗.
In particular y = −e−~, therefore the initial term of 1 + y is ~. Consider the expansion:

chC∗(MC−e−~(X(w)◦)) =
∑

z≤w,`(z)<`(u)

cz,w(−e−~) chC∗(Oz)(13)

+
∑

z≤w,`(z)>`(u)

cz,w(−e−~) chC∗(Oz) +
∑

z≤w,`(z)=`(u)

cz,w(−e−~) chC∗(Oz).

Theorem 4.5 and Proposition 3.5 imply that the part with the highest homological degree
in chC∗(MC−e−~(X(w)◦)) lies in HC∗

0 (X). (In Theorem 7.1 below we will show this is the

homogenized Chern-Schwartz-MacPherson class c~SM(X(w)◦), in particular it is nonzero.)

Since ` < `(u), it follows that the coefficient of ~`[X(u)] ∈ HC∗

2`(u)−2`(X) in the left-hand side

of (13) is equal to 0. We analyze this coefficient on the right-hand side. The first summand
has no contribution because `(z) < `(u). By induction, every term in the second summand

is divisible by ~`(u)+1, thus again it does not contribute to the coefficient of ~`[X(u)]. In
the last summand, only the term with z = u can contribute. Its contribution equals the



MC, HIRZEBRUCH, AND CSM CLASSES OF SCHUBERT CELLS 19

coefficient of ~` in cu,w(−e−~). This coefficient is non-zero, by the hypothesis on `, and it

gives a non-zero coefficient of ~`[X(u)], contradicting the previous conclusion. �

We end with the following corollary.

Corollary 4.16. Consider the non-equivariant motivic Chern class

MCy(X(w)◦) =
∑

cu,w(y)Ou.

Then cid,w(−1) = 1.

Proof. By the divisibility property, cu,w(−1) = 0 for `(u) > 0. Then

1 =

∫
G/B

MC−1(X(w)◦) = cid,w(−1)

by Proposition 4.13. �

We invite the reader to verify this corollary for the motivic Chern classes in Fl(3) from
Example 4.10 above.

4.5. The parabolic case. Consider the (generalized) partial flag manifold G/P , and let
π : G/B → G/P be the natural projection. This is a G-equivariant locally trivial fibration
in the Zariski topology, with fiber F := π−1(1.P ) = P/B. This fiber is the flag manifold
L/(B∩L), where L is the Levi subgroup of P . The Schubert varieties in F are indexed by the
elements in WP . Furthermore, the image π(X(w)◦) equals X(wWP )◦, and the restriction
of π to X(w)◦ is a trivial fibration, showing that X(w)◦ ' X(wWP )◦ × (w.F ∩X(w)◦). It
follows that in the Grothendieck group K0(var/(G/P )),

(14) [X(w)◦ → G/P ] = [w.F ∩X(w)◦ → wP ]� [X(wWP )◦ → G/P ].

The intersection w.F ∩ X(w)◦ is the Schubert cell in w.F indexed by w2 ∈ WP , where
w = w1w2 is the parabolic factorization of w with respect to P ; cf. [BCMP22, Theorem 2.8].
This argument allows us calculate the push-forwards of motivic Chern classes.

Proposition 4.17. The following hold:
(a) π∗MCy(X(w)◦) = (−y)`(w)−`(wWP )MCy(X(wWP )◦) in KT (G/P ).
(b) More generally, let P ⊆ Q be two standard parabolic subgroups, and π′ : G/P → G/Q

the natural projection. Then

π′∗MCy(X(wWP )◦) = (−y)`(wWP )−`(wWQ)MCy(X(wWQ)◦).

Proof. Equation (14) and functoriality of motivic Chern classes imply that

π∗MCy(X(w)◦) = MCy[w.F ∩X(w)◦ → wP ] ·MCy(X(wWP )◦),

Then the claim follows from Proposition 4.13(a). Part (b) may be obtained by applying (a)
to the composition of projections G/B → G/Q→ G/P . �

We end this section by pointing out that the argument from Proposition 4.13 extends
verbatim to the parabolic case. One obtains:

Proposition 4.18. Let w ∈ WP and consider the Schubert expansion MCy(X(wWP )◦) =∑
u∈WP ,u≤w cu,w(y, et)MCy(X(uWP )◦). Then the following hold:

(a)
∫
G/P MC(X(wWP )◦) =

∑
cw,u(y, et) = (−y)`(w).

(b) The χy-genus of G/P equals χy(G/P ) =
∑

w∈WP (−y)`(w).
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To illustrate, let G/P = Gr(k, n) be the Grassmann manifold of subspaces of dimension
k in Cn. The set WP corresponds to partitions λ = (λ1, . . . , λk) included in the k× (n− k)
rectangle such that dimX(λ) = |λ| = λ1 + . . .+ λk. For q = −y, the χ−q genus is

χ−q(Gr(k, n)) =
∑
λ

q|λ| =

(
n

k

)
q

,

the q-analogue of the binomial coefficient.

5. The parameter y in motivic Chern classes

In this section we discuss some key combinatorial properties of the Schubert expansion of
the motivic Chern classes, including specializations of the parameter y and their geometric
interpretation.

Theorem 5.1. Let P be a parabolic subgroup of G, X = G/P , and w ∈ WP . Then the
following hold:

(a) The specialization y = −1 gives MC−1(X(wWP )◦) = ιwWP
, the equivariant class of

the unique torus fixed point in X(wWP )◦.
(b) The specialization y = 0 gives MC0(X(wWP )◦) = ITwWP

, the class of the ideal sheaf

OX(wWP )(−∂X(wWP )).
(c) The degree of MCy(X(wWP )◦) with respect to y is equal to `(w), and the coefficient

of y`(w) in MCy(X(wWP )◦) is the class of ωX(wWP ), the dualizing sheaf on X(wWP ).

Proof. We first prove all the statements for P = B. Parts (a) and (b) follow from Theo-
rem 4.5 and the specializations at y = −1 and y = 0 of the operator Ti, from Lemma 3.4.
Let θ : Z → X(w) denote the Bott-Samelson resolution of the Schubert variety X(w) used,
e.g., in [AM16]. By functoriality,

MCy[X(w)◦ → G/B] = θ∗MCy[X(w)◦ → Z].

The restriction of θ to θ−1(X(w)◦) is an isomorphism, and it is known that the com-
plement of θ−1(X(w)◦) in Z is a simple normal crossing divisor. Since Z is smooth, by
inclusion-exclusion it follows that the term with highest power of y in MCy(Zrθ−1(X(w)◦))

is the same as the one in MCy(Z) = λy(T
∗(Z)), namely y`(w) ∧dimZ T ∗(Z) = y`(w)ωZ , a

multiple of the canonical bundle of Z. This finishes the proof of (c), since θ∗(ωZ) = ωX(w)

as X(w) has rational singularities; see e.g., [BK05].
We now turn to the general G/P situation. Since w ∈ WP , the projection π : G/B →

G/P restricts to a birational map π : X(w)→ X(wWP ) which is an isomorphism over the
Schubert cell X(wWP )◦. By Proposition 4.17, π∗MCy(X(w)◦) = MCy(X(wWP )◦). Then
each claim follows from the corresponding statement for G/B, taking into consideration that
π∗(ιw) = ιwWP

, π∗ITw = ITwWP
(cf. [Bri02, Proof of Lemma 4]), and π∗ωX(w) = ωX(wWP )

(since X(wWP ) has rational singularities; see [BK05]). �

Remark 5.2. In the non-equivariant case, the result in (b) can also be proved using the
fact that, for the Schubert variety, we have MC0(X(w)) = OTw since X(w) has rational,
hence DuBois, singularities [BSY10, Example 3.2]. The equivariant generalization of this
argument would use either an equivariant version of the DuBois complex, which is not
available at this time in the literature, or a corresponding equality in K0(coh

T (OX)). y

The duality in Theorem 4.6 allows us to calculate the specializations of M̃Cy(Y (w)◦).
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Corollary 5.3. Let w ∈W . Then the following hold:
(a) The specialization y = −1 gives

M̃C−1(Y (w)◦) =
λ−1(T

∗
w0

(G/B))

λ−1(T ∗w(G/B))
ιw =

∏
α>0(1− e−α)∏
α>0(1− ewα)

ιw.

(b) The specialization y = 0 gives M̃C0(Y (w)◦) = Ow,T .

Proof. Theorem 4.6 and Theorem 5.1 imply that κ := M̃C−1(Y (w)◦) is a class in KT (G/B)
with localizations

κ|u = δu,wλ−1(T
∗
w0

(G/B)).

Then (a) follows from the injectivity of the localization map, see [Nie74, Theorem 3.2], and
the fact that 〈ιw, ιu〉 = δu,wλ−1(T

∗
w(G/B)). Part (b) is a consequence of the duality between

the ideal sheaves and structure sheaves recalled in (1), combined with Theorem 5.1(b). �

6. Equivariant Hirzebruch classes

6.1. The equivariant Hirzebruch transformation. In the non-equivariant case, it is
useful to define and study several transformations associated with motivic Chern classes.
These transformations provide a unified point of view from which, for instance, the classical
Chern-Schwartz-MacPherson (CSM) classes may be obtained as a subproduct of a ‘nor-
malized’ Todd transformation together with Grothendieck-Riemann-Roch. This process
is explained in [BSY10, §0 and §3]. In this paper we use the equivariant Riemann-Roch
theorem proved by Edidin and Graham [EG00, Theorem 3.1] to explain the equivariant
counterparts of these ‘unnormalized’ and ‘normalized’ transformations. We note that We-
ber [Web16, Web17] first studied the equivariant unnormalized Hirzebruch class we will
consider below.

Since many of the results explained here are not available in this generality in the litera-
ture, we find it useful to recall the precise hypotheses we utilize. We hope this section may
be used as a reference in the future. We will consider more in detail the case of (equivariant)
CSM classes in §7. There we will also provide an alternative way to obtain CSM classes
from motivic Chern classes.

By X we denote a complex algebraic variety. For a commutative ring R, the completions

ÂT∗ (X,R), ĤT
∗ (X,R) denote the product of the equivariant Chow groups [EG98], respec-

tively the equivariant Borel-Moore homology groups (where the degree is doubled), with
coefficients in R:

ÂT∗ (X,R) :=
∏

i≤dimX

ATi (X)⊗R or ĤT
∗ (X,R) :=

∏
i≤dimX

HT
2i(X)⊗R .

The Chow and Borel-Moore homology are related by a cycle map cl : ATi (X) → HT
2i(X),

and one may work directly in the Chow context, or in the image under this map; cf. [EG98,
§2.8]. In what follows we have chosen to work in the Borel-Moore context. The coefficients
ring R will be mostly Z,Q,Q[y] or Q[y, (1 + y)−1]. In case no coefficients are mentioned, we
are using R = Q (as before).

For a T -variety X let

td∗ : K0(coh
T (OX))→ ĤT

∗ (X)

be the equivariant Todd class transformation to the completion ĤT
∗ (X), constructed in

[EG00, §3.2]. Then td∗ is covariant for proper T -equivariant morphisms. Also note that

(15) td∗(OX) = Td(TX) ∩ [X]T
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for X smooth by [EG00, Theorem 3.1(d)(i)] and [EG05, Remark 6.10 and Lemma A.1], since
T is abelian so that the adjoint action of T on its Lie algebra is trivial (see also [MS15,
p. 2218-2219] and compare with [AMSS17, Proof of Theorem 3.3] for the counterpart of
Ohmoto’s equivariant Chern class transformation). We also have the equivariant Chern
character (§2.3)

ch : KT (X)→ Ĥ∗T (X).

This is a contravariant ring homomorphism for T -equivariant morphisms. Then the Todd
transformation satisfies the module property

(16) td∗([E]T ⊗ [F ]T ) = ch([E]T ) ∩ td∗([F ]T )

for [E]T ∈ KT (X) and [F ]T ∈ K0(coh
T (OX)) ([EG00, Theorem 3.1]). Recall that for

a T -equivariant vector bundle E, the cohomological Todd class Td(E) := Td([E]T ) is
multiplicative in short exact sequences, and for an equivariant line bundle L it is defined by

Td(L) :=
cT1 (L)

1− e−cT1 (L)
= 1 +

1

2
cT1 (L) + . . .

Define the unnormalized (respectively normalized) cohomological Hirzebruch class

T̃dy (resp., Tdy) by

T̃dy(L) := ch(λy(L∨)) Td(L) =
cT1 (L)(1 + ye−c

T
1 (L))

1− e−cT1 (L)

and

Tdy(L) :=
T̃dy((1 + y)[L]T )

1 + y
=
cT1 (L)(1 + ye−c

T
1 (L)(1+y))

1− e−cT1 (L)(1+y)

Then extend these definitions to any equivariant vector bundle using the splitting principle,
by requiring that they be multiplicative on short exact sequences. Note the specializations:

(17) T̃dy=0(L) = Tdy=0(L) = Td(L),

and

(18) T̃dy=−1(L) = cT1 (L) , Tdy=−1(L) = cT (L) = 1 + cT1 (L).

The power series Tdy(L) = 1 + . . . has constant coefficient 1, whereas T̃dy(L) = 1 + y+ . . .
has constant coefficient 1 + y, explaining the name ‘unnormalized’.

Combining Theorem 4.2 with the equivariant Riemann-Roch theorem proved by Edidin
and Graham [EG00, Theorem 3.1] one obtains the following results about the unnormalized
equivariant Hirzebruch class transformation.

Theorem 6.1. Let X be a quasi-projective, non-singular, complex algebraic variety with
an action of the torus T . The unnormalized (equivariant) Hirzebruch transformation

T̃dy,∗ := td∗ ◦MCy : KT
0 (var/X)→ ĤT

∗ (X)[y] ⊆ ĤT
∗ (X;Q[y, (1 + y)−1])

is the unique natural transformation satisfying the following properties:

(a) It is functorial with respect to T -equivariant proper morphisms of non-singular,
quasi-projective varieties.

(b) It satisfies the normalization condition

T̃dy,∗([idX ]) = T̃dy(TX) ∩ [X]T .

(c) It is determined by its image on classes [f : Z → X] = f![idZ ] where Z is a
non-singular, irreducible, quasi-projective algebraic variety and f is a T -equivariant
proper morphism.
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(d) It satisfies a Verdier-Riemann-Roch (VRR) formula: for any smooth, T -equivariant
morphism θ : X → Y of quasi-projective and non-singular algebraic varieties, and
any [f : Z → Y ] ∈ KT

0 (var/Y ),

T̃dy(T
∗
θ ) ∩ θ∗ T̃dy,∗[f : Z → Y ] = T̃dy,∗[θ

∗f : Z ×Y X → X].

If one forgets the T -action, then the unnormalized equivariant Hirzebruch transformation

above recovers the corresponding non-equivariant transformation T̃y,∗ from [BSY10] (either
by its construction, or by the properties (a)-(c) from Theorem 6.1 and the corresponding
results from [BSY10].)

Remark 6.2. Theorem 6.1 and its proof work more generally for a possibly singular, quasi-

projective T -equivariant base variety X. Moreover, T̃dy,∗ commutes with exterior products:

T̃dy,∗[f × f ′ : Z × Z ′ → X ×X ′] = T̃dy,∗[f : Z → X]� T̃dy,∗[f
′ : Z ′ → X ′] .

This follows as in the non-equivariant context [BSY10, Corollary 3.1] from part (3) of
Theorem 6.1 and the multiplicativity of the corresponding equivariant cohomological class
for smooth and quasi-projective T -varieties X,X ′:

T̃dy(T
∗(X ×X ′)) = T̃dy(T

∗X)� T̃dy(T
∗X ′) ∈ Ĥ∗T (X ×X ′)[y] . y

One can also define a normalized equivariant Hirzebruch class transformation. With this
aim, we introduce the following functorial (co)homological Adams operations:

ψ∗1+y : Ĥ∗T (X,Q[y])→ Ĥ∗T (X,Q[y]) and ψ1+y
∗ : ĤT

∗ (X,Q[y])→ ĤT
∗ (X,Q[y, (1 + y)−1])

given by multiplication with (1+y)i on H2i
T (X,Q[y]) respectively (1+y)−j on HT

2j(X,Q[y]),
and satisfying the module and ring properties

(19) ψ1+y
∗ (− ∩−) = ψ∗1+y(−) ∩ ψ1+y

∗ (−) and ψ∗1+y(− ∪−) = ψ∗1+y(−) ∪ ψ∗1+y(−) .

(In the Chow context, the (co)homological grading will not be doubled.)

Remark 6.3. These module and ring properties also hold for the functorial (co)homological
duality transformations

ψ∗−1 : Ĥ∗T (X,Q)→ Ĥ∗T (X,Q) and ψ−1∗ : ĤT
∗ (X,Q)→ ĤT

∗ (X,Q)

given by multiplication with (−1)i on H2i
T (X,Q) resp. (−1)j on HT

2j(X,Q). If X is smooth,
these are consistent with the corresponding duality involutions in K-theory:

ch ◦(−)∨ = ψ∗−1 ◦ ch(−) : KT (X)→ Ĥ∗T (X,Q) ,

since cT1 (L∨) = −cT1 (L) for a T -equivariant line bundle L. Similarly, for the Grothendieck-
Serre duality D,

td∗ ◦D(−) = ψ−1∗ ◦ td∗(−) : KT (X)→ ĤT
∗ (X,Q) ,

since

td∗(ωX) = ch(ωX) Td(TX) ∩ [X]T = Td(T ∗X) ∩ [X]T

= (−1)dimXψ−1∗ (Td(TX) ∩ [X]T ) . y

By definition, the (co)homological Adams operations satisfy

ψ∗1+y(c
T
1 (L)) = (1 + y)cT1 (L); ψ∗1+y(T̃dy(L)) = (1 + y) Tdy(L)

and ψ1+y
∗ ([X]T ) = (1 + y)−d[X]T for X of pure dimension d. It follows that

(20) ψ1+y
∗ (T̃dy(TX) ∩ [X]T ) = ψ∗1+y(T̃dy(TX)) ∩ ψ1+y

∗ ([X]T ) = Tdy(TX) ∩ [X]T
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for X smooth and pure dimensional. In particular,

(21) ψ1+y
∗ (T̃dy(TX) ∩ [X]T ) ∈ ĤT

∗ (X,Q[y]) ⊆ ĤT
∗ (X,Q[y, (1 + y)−1]).

This motivates the following:

Definition 6.4. The normalized equivariant Hirzebruch transformation Tdy,∗ is
defined by:

(22) Tdy,∗ := ψ1+y
∗ ◦ T̃dy,∗ : KT

0 (var/X)→ ĤT
∗ (X,Q[y]) ⊆ ĤT

∗ (X,Q[y, (1 + y)−1]) . y

This transformation satisfies the same properties listed in Theorem 6.1 and Remark 6.2,
with unnormalized classes replaced throughout by normalized classes. Furthermore, the

normalized transformation has values in ĤT
∗ (X,Q[y]), by Theorem 6.1(c) and Equation (20)

above, cf. (21).

Remark 6.5. The equivariant χy-genus of a T -variety Z may be calculated by

χy(Z) = T̃dy([Z → pt]) ∈ Ĥ∗T (pt)[y] .

By rigidity of the χy-genus (see [Web16, Theorem 7.2]), these quantities contain no infor-
mation about the action of T , i.e., both are equal to the non-equivariant χy-genus under

the embedding Z[y] → Q[y] → Ĥ∗T (pt)[y]. (Cf. Remark 4.4, where the same conclusion is
reached in K-theory.) In particular one also gets

χy(Z) = Tdy([Z → pt]) ∈ Ĥ∗T (pt)[y] . y

The definition of the Hirzebruch classes implies that

Tdy=−1(TX) ∩ [X]T = cT (TX) ∩ [X]T and Tdy=0(TX) ∩ [X]T = Td(TX) ∩ [X]T

for X smooth and pure dimensional. As in the non-equivariant context of [BSY10] (for the
non-equivariant normalized Hirzebruch class Ty,∗) this implies the following:

Corollary 6.6. The equivariant Hirzebruch transformation Tdy,∗ fits into the following
commutative diagram of natural transformations:

FT (X)
e←−−−− KT

0 (var/X)
MCy=0−−−−→ K0(coh

T (OX))

cT∗ ⊗Q
y Tdy,∗

y ytd∗

ĤT
∗ (X)

y=−1←−−−− ĤT
∗ (X,Q[y])

y=0−−−−→ ĤT
∗ (X) .

Here cT∗ is the equivariant Chern class transformation defined by Ohmoto [Ohm06],
cf. §7.1. We note that cT∗ has values in the integral homology, and also the completion

is not needed, i.e., cT∗ : FT (X) → HT
∗ (X,Z) ⊆ ĤT

∗ (X,Z). The rational coefficients are
needed due to the use of the Chern character. Finally e([idX ]) = 11X even for X singular,
so that the equivariant normalized Hirzebruch class Tdy,∗(X) := Tdy,∗([idX ]) specializes for
y = −1 also for a singular X to the (rationalized) equivariant Chern-Schwartz-MacPherson
(CSM) class cT∗ (X) := cT∗ (11X) of X, and similarly for a locally closed T -invariant subvariety
Z ⊆ X:

(23) Tdy=−1,∗[Z ↪→ X] = cT∗ (11Z)⊗Q .

Note that if HT
∗ (X,Z) is torsion free, no information about cT∗ (11Z) is lost by switching to

rational coefficients; this is the case for the flag manifolds X = G/P . In §7 we will explain a
more direct procedure yielding the equivariant CSM classes as the leading terms of motivic
Chern classes of Schubert cells.
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If Z ⊆ X we will refer to the classes T̃dy,∗[Z ↪→ X] and Tdy,∗[Z ↪→ X] in ĤT
∗ (X,Q[y])

as the unnormalized, respectively the normalized Hirzebruch class of Z in X.

6.2. Hirzebruch classes for flag manifolds. We turn now to the study of the Hirzebruch
transformation in the case when X = G/B. There is the following commutative diagram:

KT (X)×K0(coh
T (OX))

⊗−−−−→ K0(coh
T (OX))

∫
X−−−−→ KT (pt)

ch⊗td∗
y td∗

y ych=td∗

Ĥ∗T (X)× ĤT
∗ (X)

∩−−−−→ ĤT
∗ (X)

∫
X−−−−→ Ĥ∗T (pt) .

Since X is smooth, from (15) and (16) we have that td∗(−) = ch(−) Td(TX) ∩ [X]T . The
functoriality of td∗ gives the equivariant Grothendieck-Hirzebruch-Riemann-Roch theorem
for an equivariant morphism of smooth T -varieties; cf. [EG00, Theorem 3.1]. In particular,
the GHRR theorem and (1) imply that

(24) 〈td∗(OTu ), ch(Iv,T )〉 = δu,v = 〈td∗(ITu ), ch(Ov,T )〉 .

As a consequence of the fact that {[X(w)]T }w∈W is a H∗T (pt)-basis of H∗T (X), it is not
difficult to show that the Todd classes td∗(X(w)) := td∗(OTw) of the Schubert varietiesX(w),
respectively the Todd classes of the corresponding ideal sheaves td∗(Iw), give two bases

of ĤT
∗ (X) as a Ĥ∗T (pt)-module. The key point is that the corresponding coefficient matrix

is triangular with respect to the Bruhat ordering, with units on the diagonal; this follows
from the functoriality of td∗ for a closed inclusion X(w) ↪→ X. The corresponding dual
bases are given by the Chern characters ch(Iv,T ), respectively ch(Ov,T ) of the opposite
Schubert varieties for v ∈W . Specializing all the equivariant parameters to 0, one recovers

the natural map ĤT
∗ (X) → H∗(X) forgetting the T -action and mapping the equivariant

Todd transformation to the ordinary one. In this case td∗(Ow) = [X(w)] + l.o.t. and
td∗(Iw) = [X(w)] + l.o.t. (lower order terms).

Recall from Equation (8) that the Demazure and BGG operators are related by

(25) ch(∂i(−)) = ∂Hi (Td(Tpi) ch(−)) : KT (X)→ Ĥ∗T (X) .

Similarly, the equivariant Verdier-Riemann-Roch theorem (VRR) of [EG00, Theorem 3.1(d)]
implies

(26) td∗(∂i(−)) = Td(Tpi)∂
H
i (td∗(−)) : K0(coh

T (OX))→ ĤT
∗ (X) .

Then identities (25) and (26), combined with (3), translate into

(27) ∂Hi (Td(Tpi) ch(OTw)) =

{
ch(OTwsi) if wsi > w;

ch(OTw) otherwise.

and

Td(Tpi)∂
H
i (td∗(OTw)) =

{
td∗(OTwsi) if wsi > w;

td∗(OTw) otherwise

Similarly, Lemma 3.4(a) translates into

(28) (∂Hi Td(Tpi)− id)(ch(ITw )) =

{
ch(ITwsi) if wsi > w;

− ch(ITw ) otherwise.
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and

(29) (Td(Tpi)∂
H
i − id)(td∗(ITw )) =

{
td∗(ITwsi) if wsi > w;

− td∗(ITw ) otherwise

The specializations from Corollary 6.6 and the last two equations motivate the defini-

tion of the unnormalized (ordinary and dual) Hirzebruch operators T̃ Hir
i , T̃ Hir,∨

i :

Ĥ∗T (X,Q)[y]→ Ĥ∗T (X,Q)[y] by

T̃ Hir
i := T̃dy(Tpi)∂

H
i − id; T̃ Hir,∨

i = ∂Hi ◦ (T̃dy(Tpi) ∪ (−))− id .

Similarly we define the normalized Hirzebruch operators T Hir
i , T Hir,∨

i : Ĥ∗T (X,Q)[y]→
Ĥ∗T (X,Q)[y] by

T Hir
i := Tdy(Tpi)∂

H
i − id; T Hir,∨

i = ∂Hi ◦ (Tdy(Tpi) ∪ (−))− id .

All these operators are Ĥ∗T (pt)-linear. In the statements that follow we explain in detail
their relation to the K-theoretic Demazure-Lusztig operators Ti, T ∨i .

Lemma 6.7. The Hirzebruch operators satisfy the following commutativity relations:

(a) As operators KT (X)[y]→ Ĥ∗T (X,Q)[y],

(30) td∗ Ti = T̃ Hir
i td∗ and ch T ∨i = T̃ Hir,∨

i ch .

(b) As operators KT (X)[y]→ Ĥ∗T (X,Q[y, (1 + y)−1]),

(31) ψ1+y
∗ td∗ Ti = T Hir

i ψ1+y
∗ td∗ and ψ∗1+y ch T ∨i = T Hir,∨

i ψ∗1+y ch .

Proof. The first commutativity relation in part (a) follows from the following sequence of
equalities:

T̃ Hir
i td∗ = T̃dy(Tpi)∂

H
i td∗− td∗

= ch(λy(T
∗
pi)) Td(Tpi)∂

H
i td∗− td∗

= ch(λy(T
∗
pi)) td∗ ∂i − td∗

= td∗(λy(T
∗
pi)∂i − id)

= td∗ Ti.

Here the third equality follows from (26), and the fourth from the module property (16) of
the Todd transformation. The second commutativity relation in (a) follows from

T̃ Hir,∨
i ch = ∂Hi (T̃dy(Tpi) ch)− ch

= ∂Hi (Td(Tpi) ch(λy(T
∗
pi) ∪ (−)))− ch

= ch ∂i(λy(T
∗
pi) ∪ (−))− ch

= ch(∂iλy(T
∗
pi)− id)

= ch T ∨i .

In this case, the second equality follows since ch is a ring homomorphism, the third from
(25), and the rest from the definitions. Part (b) follows from (a) and the identities in
Lemma 6.8 below. �

Lemma 6.8. As operators Ĥ∗T (X)[y]→ Ĥ∗T (X,Q[y, (1 + y)−1]),

ψ1+y
∗ T̃ Hir

i = T Hir
i ψ1+y

∗ and ψ∗1+yT̃
Hir,∨
i = T Hir,∨

i ψ∗1+y.



MC, HIRZEBRUCH, AND CSM CLASSES OF SCHUBERT CELLS 27

Proof. The first commutativity relation follows similarly to the proof of Lemma 6.7(a) above
from the following sequence of equalities:

ψ1+y
∗ T̃ Hir

i = ψ1+y
∗ (T̃dy(Tpi)∂

H
i − id)

= ψ∗1+y(T̃dy(T
∗
pi))ψ

1+y
∗ ∂Hi − ψ1+y

∗

=
ψ∗1+y(T̃dy(T

∗
pi))

1 + y
∂Hi ψ

1+y
∗ − ψ1+y

∗

= Tdy(T
∗
pi))∂

H
i ψ

1+y
∗ − ψ1+y

∗

= T Hir
i ψ1+y

∗ .

Here the second equality follows from the module property (19) of the Adams transforma-
tion, and the third uses the property

ψ1+y
∗ ◦ ∂Hi = (1 + y)−1∂Hi ◦ ψ1+y

∗ ,

since ∂Hi shifts the complex homological degree by one. The second commutativity relation
follows similarly from:

ψ∗1+yT̃
Hir,∨
i = ψ∗1+y(∂

H
i T̃dy(Tpi)− id)

= ∂Hi

(
ψ∗1+y
1 + y

(T̃dy(Tpi) ∪ (−))

)
− ψ∗1+y

= ∂Hi

(
ψ∗1+y T̃dy(Tpi)

1 + y
ψ∗1+y(−)

)
− ψ∗1+y

= ∂Hi (Tdy(T
∗
pi)ψ

∗
1+y(−))− ψ∗1+y

= T Hir,∨
i ψ∗1+y.

In this case, the second equality uses the property

ψ∗1+y ◦ ∂Hi = ∂Hi ◦ ((1 + y)−1ψ∗1+y) ,

since ∂Hi shifts the complex cohomological degree by minus one. The third equality follows
since ψ∗1+y is a ring homomorphism. �

Lemma 6.9. (a) The ordinary (normalized/unnormalized) Hirzebruch operators are adjoint

to the dual operators, i.e. for any a, b ∈ Ĥ∗T (X,Q)[y],

〈T Hir
i (a), b〉 = 〈a, T Hir,∨

i (b)〉; 〈T̃ Hir
i (a), b〉 = 〈a, T̃ Hir,∨

i (b)〉,
where the pairing is extended by Q[y]-linearity.3

(b) Each family of the Hirzebruch operators (ordinary / dual / (un)normalized) satisfies
the same relations as the K-theoretic Demazure-Lusztig operators; cf. Proposition 3.2.

Proof. Part (a) can be proved by using the self-adjointness of ∂Hi and the operators of
multiplication by Tdy(Tpi), as follows. By definition,

〈T Hir
i (a), b〉 =〈(Tdy(Tpi)∂

H
i − id)(a), b〉

=〈a, (∂Hi Tdy(Tpi)− id)b〉

=〈a, T Hir,∨
i (b)〉.

3Later in the context of Segre classes, we will tacitly extend this pairing by linearity from coefficients in
Q[y] to Q[y, (1 + y)−1].
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A similar proof works for the unnormalized operators.
We turn to the relations in (b). First, we deduce from (a) that it suffices to prove the

statements for the ordinary operators. Then we use Lemma 6.7(a) again to show that for
a′ ∈ KT (G/B),

T̃ Hir
i1 T̃

Hir
i2 . . . T̃ Hir

ik
(td∗(a

′)) = td∗ Ti1Ti2 . . . Tik(a′).

Since td∗ is surjective (after appropriately extending the coefficients via ch : KT (pt) →
Ĥ∗T (pt)), this implies the claim for the unnormalized Hirzebruch operators. The same proof

works for the normalized operators, using classes of the form ψ1+y
∗ td∗(a

′), Lemma 6.7(b) and
Lemma 6.8. We also note that in order to prove the statement for the dual operators, instead
of adjointness, one may alternatively work with classes of type ch(a′) and ψ∗1+y ch(a′). �

Remark 6.10. The results of Lemma 6.9(b) also follow from the following argument. Regard

Ĥ∗T (pt)[y] as a KT (pt)[y]-algebra via the (injective) equivariant Chern character map. Then
the transformations td∗ and ch induce injective homomorphisms of KT (pt)[y]-algebras

td∗, ch : EndKT (pt)[y](KT (X)[y])→ End
Ĥ∗
T (pt)[y]

(Ĥ∗T (X)[y]).

The injectivity part follows by using suitable bases, such as images of Schubert classes Ow
under the Todd or Chern character maps. Then Lemma 6.7 may be interpreted as giving
the identities

td∗(Ti) = T̃ Hir
i and ch(T ∨i ) = T̃ Hir,∨

i .

Since td∗, ch are algebra homomorphisms, they will preserve relations satisfied by Ti, T ∨i ,
proving the claim for the unnormalized operators.

One may argue similarly in the case of normalized operators. Start by changing the
coefficient ring using the algebra isomorphism

Ĥ∗T (X)[y]⊗
Ĥ∗
T (pt)[y]

Ĥ∗T (pt,Q[y, (1 + y)−1])
∼−−−−→ Ĥ∗T (X,Q[y, (1 + y)−1]).

Then the Adams operations

ψ∗1+y : Ĥ∗T (pt)[y]→ Ĥ∗T (pt)[y] and ψ1+y
∗ : ĤT

∗ (pt)[y]→ ĤT
∗ (pt,Q[y, (1 + y)−1])

induce algebra isomorphisms

ψ∗1+y : EndĤ∗
T (pt,Q[y,(1+y)−1](Ĥ

∗
T (X,Q[y, (1+y)−1]))→ EndĤ∗

T (pt,Q[y,(1+y)−1](Ĥ
∗
T (X,Q[y, (1+y)−1]))

and

ψ1+y
∗ : EndĤ∗

T (pt,Q[y,(1+y)−1])(Ĥ
T
∗ (X,Q[y, (1+y)−1]))→ EndĤ∗

T (pt,Q[y,(1+y)−1])(Ĥ
T
∗ (X,Q[y, (1+y)−1]))

which by Lemma 6.8 satisfy

ψ1+y
∗ (T̃ Hir

i ) = T Hir
i and ψ∗1+y(T̃

Hir,∨
i ) = T Hir,∨

i .

Therefore the relations satisfied by the unnormalized operators are the same as those for
the normalized ones. y

As a consequence of Lemma 6.9 (b), we can set T̃ Hir
w = T̃ Hir

i1
· · · T̃ Hir

ik
, T Hir

w = T Hir
i1
· · · T Hir

ik
for w = si1 · · · sik a reduced decomposition in W . We now come to the main results about
equivariant Hirzebruch classes of Schubert cells, starting with their recursion.

Theorem 6.11. Let w ∈W and si a simple reflection such that wsi > w.
(a) The unnormalized Hirzebruch operators satisfy:

T̃ Hir
i (T̃dy,∗(X(w)◦)) = T̃dy,∗(X(wsi)

◦);
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(b) The normalized Hirzebruch operators satisfy:

T Hir
i (TdTy,∗(X(w)◦)) = TdTy,∗(X(wsi)

◦).

(c) In particular, for w ∈W , the Hirzebruch classes of Schubert cells are given by:

T̃dy,∗(X(w)◦) = T̃ Hir
w−1 [eid]T and TdTy,∗(X(w)◦) = T Hir

w−1 [eid]T .

Proof. Part (a) follows from Theorem 4.5 (or more specifically [AMSS19, Corollary 5.2])
together with the commutation relations (30). The same argument applies to (b), using
the definition of the normalized Hirzebruch transformation from (22), Theorem 4.5 again,
and the commutation relations (31). Part (c) is a consequence of (a) and (b), taking into

account that, by functoriality, T̃dy,∗(eid) = Tdy,∗(eid) = [eid]T . �

Next we formulate the corresponding orthogonality results for the equivariant Hirzebruch
classes of Schubert cells. In analogy with the definition of the operators Li giving the dual

classes of the motivic Chern classes, define the operators LHir
i and L̃Hir

i by

LHir
i := −y(T Hir,∨

i )−1 = T Hir,∨
i +(1+y) id and L̃Hir

i := −y(T̃ Hir,∨
i )−1 = T̃ Hir,∨

i +(1+y) id .

Theorem 6.12. For any u, v ∈W ,

(32) 〈T̃dy∗(X(u)◦), L̃Hir
v−1w0

([ew0 ]T )〉H = δu,v T̃dy(Tw0X)

and

(33) 〈Tdy∗(X(u)◦),LHir
v−1w0

([ew0 ]T )〉H = δu,v Tdy(Tw0X) .

Proof. We apply the equivariant Todd class transformation to both sides in the expression
from Theorem 4.6 to obtain

δu,v td∗

(∏
α>0

(1 + ye−α)

)
= td∗

(
〈MCy(X(u)◦), M̃Cy(Y (v)◦)〉K

)
= td∗

(∫ K

X
MCy(X(u)◦) · M̃Cy(Y (v)◦)

)
=

∫ H∗

X
td∗(MCy(X(u)◦)) · ch(M̃Cy(Y (v)◦))

=

∫ H∗

X
T̃dy,∗(X(u)◦) · ch(Lv−1w0

(Ow0,T ))

=

∫ H∗

X
T̃dy,∗(X(u)◦) · L̃Hir

v−1w0
(ch(Ow0,T ))

=〈T̃dy,∗(X(u)◦), L̃Hir
v−1w0

(ch(Ow0,T ))〉H .

Here we use K and H∗ to indicate where the operation is taken, and the fifth equality
follows from Lemma 6.7. Given this, the claim in (32) follows because

ch(Ow0,T ) =
[ew0 ]T

Td(TX)
=

[ew0 ]T
Td(Tw0X])

,

T̃dy(Tw0X) = ch

(∏
α>0

(1 + ye−α)

)
Td(Tw0X),
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and the fact that L̃Hir
i is Ĥ∗T (pt)[y]-linear. The equality from (33) follows from (32) by

application of the Adams operation ψ1+y
∗ :

δu,vψ
∗
1+y

(
T̃dy(Tw0X)

)
=ψ1+y
∗

(
〈T̃dy∗(X(u)◦), L̃Hir

v−1w0
([ew0 ]T )〉H

)
=〈ψ1+y

∗

(
T̃dy∗(X(u)◦)

)
, ψ∗1+y

(
L̃Hir
v−1w0

([ew0 ]T )
)
〉H

=〈Tdy∗(X(u)◦),LHir
v−1w0

ψ∗1+y([ew0 ]T )〉H .

Then the claim follows because

ψ∗1+y

(
T̃dy(Tew0

X)
)

= (1 + y)dimX Tdy(Tew0
X) and ψ∗1+y([ew0 ]T ) = (1 + y)dimX [ew0 ]T ,

with [ew0 ]T viewed as an equivariant cohomology class of complex degree dimX (by equi-
variant Poincaré duality). �

We finish this section with the counterpart of Theorem 4.12, using now the (un)normalized
Segre version of the Hirzebruch classes:

T̃dy∗(X(w)◦)

T̃dy(TX)
and

Tdy∗(X(w)◦)

Tdy(TX)
.

Observe that for any smooth X, the class T̃dy(X) is invertible in the completed ring

Ĥ∗T (X,Q[y, (1 + y)−1]), since its leading term is the invertible element 1 + y. Similarly

Tdy(X) is invertible in Ĥ∗T (X,Q[y]), as its leading term is 1.

Theorem 6.13. For any w ∈W one has in Ĥ∗T (X,Q[y, (1 + y)−1]), resp., Ĥ∗T (X,Q[y]):

T̃dy∗(X(w)◦)

T̃dy(TX)
= T̃ Hir,∨

w−1

(
[eid]T

T̃dy(TeidX)

)
and

Tdy∗(X(w)◦)

Tdy(TX)
= T Hir,∨

w−1

(
[eid]T

Tdy(TeidX)

)
,

as well as

T̃dy∗(Y (w)◦)

T̃dy(TX)
= T̃ Hir,∨

(w0w)−1

(
[ew0 ]T

T̃dy(Tew0
X)

)
and

Tdy∗(Y (w)◦)

Tdy(TX)
= T Hir,∨

(w0w)−1

(
[ew0 ]T

Tdy(Tew0
X)

)
.

Proof. We only explain the proof for the opposite Schubert cells Y (w)◦, since the result for
the Schubert cells X(w)◦ are shown in exactly the same way. (Alternatively, one may apply
the automorphism wL0 obtained by left multiplication by the longest element w0 ∈ W ; see
[AMSS17, §5.2] or [MNS22, §3.1].) We start with the unnormalized classes. The application
of ch to (11) together with Lemma 6.7(a) imply:

ch(MCy(Y (w)◦))

ch(λyT ∗X)
=T̃ Hir,∨

(w0w)−1

(
ch(Ow0,T )

ch
(∏

α>0(1 + ye−α)
))

=T̃ Hir,∨
(w0w)−1

(
[ew0 ]T

T̃dy(Tew0
X)

)
,

with the last equality as in the proof of Theorem 6.12. Then the result follows from

T̃dy∗(Y (w)◦) = td∗(MCy(Y (w)◦)) = ch(MCy(Y (w)◦)) Td(TX)

and

T̃dy(TX) = ch(λyT
∗X) Td(TX) .
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To deduce the result for the normalized classes, we further apply the Adams transformation
ψ∗1+y, with td∗(MCy(Y (w)◦)) and [ee0 ]T viewed as an equivariant cohomology class as before

(by equivariant Poincaré duality, with [ew0 ]T of complex degree dimX):

ψ∗1+y

(
T̃dy,∗(Y (w)◦)

T̃dy(TX)

)
=
(
ψ∗1+yT̃

Hir,∨
(w0w)−1

)( [ew0 ]T

T̃dy(Tew0
X)

)

=
(
T̃ Hir,∨
(w0w)−1ψ

∗
1+y

)( [ew0 ]T

T̃dy(Tew0
X)

)

=T̃ Hir,∨
(w0w)−1

(
(1 + y)dimX [ew0 ]T

(1 + y)dimX Tdy(Tew0
X)

)
.

Then the result follows from

ψ∗1+y

(
T̃dy(TX)

)
= (1 + y)dimX Tdy(TX)

and

ψ∗1+y

(
T̃dy∗(Y (w)◦)

)
= (1 + y)dimX Tdy∗(Y (w)◦) ,

since

ψ∗1+y(−) ∩ [X]T = ψ∗1+y(−) ∩ ψ1+y
∗ ((1 + y)dimX [X]T ) = (1 + y)dimXψ1+y

∗ (− ∩ [X]T ) .

by the module property (19). �

6.3. Specializations of (dual) Hirzebruch operators and Hirzebruch classes of
Schubert cells. We take this opportunity to record the specializations at y = −1 and

y = 0 for the (un)normalized Hirzebruch operators T̃ Hir
i and T Hir

i and their (shifted) dual

operators T̃ Hir,∨
i , T Hir,∨

i and L̃Hir
i ,LHir

i . These follow from the definitions of these objects,
using the corresponding specializations of the Hirzebruch classes from (17) and (18), and
are stated in the next proposition.

Proposition 6.14. The following hold:
(a) The specializations at y = 0 of the (un)normalized Hirzebruch operators are given by

(T̃ Hir
i )y=0 = (T Hir

i )y=0 = Td(Tpi)∂
H
i − id,

and for their duals by

(T̃ Hir,∨
i )y=0 = (T Hir,∨

i )y=0 = ∂Hi Td(Tpi)− id

so that

(L̃Hir
i )y=0 = (LHir

i )y=0 = ∂Hi Td(Tpi) .

(b) The specializations at y = −1 of the (un)normalized Hirzebruch operators is given by:

(T̃ Hir
i )y=−1 = −si; (T Hir

i )y=−1 = T Hi ,

and for their (shifted) duals by

(T̃ Hir,∨
i )y=−1 = (L̃Hir

i )y=−1 = −s∨i = si; (T Hir,∨
i )y=−1 = (LHir

i )y=−1 = T H,∨i ,

where the operators si and T Hi , T H,∨i are defined in (4), respectively (5).
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Using these specializations of the (shifted dual) Hirzebruch operators, we can specialize
in a similar way the corresponding results from the Theorems 6.11, 6.12 and 6.13 to y = 0
and y = −1. First we consider the case y = 0. We obtain:

(34) Tdy=0,∗(X(w)◦) = T̃dy=0,∗(X(w)◦) = td∗(MC0(X(w)◦)) = td∗(ITw )

by Theorem 5.1(b). Then Theorem 6.11 specializes for y = 0 to the recursion

(Td(Tpi)∂
H
i − id)(td∗(ITw )) = td∗(ITwsi) for wsi > w

from (29) for w ∈W and si a simple reflection. Similarly Theorem 6.12 specializes for y = 0
to

(35) 〈Td∗(ITu ), (LHir
v−1w0

)y=0([ew0 ]T )〉H = δu,v Td(Tew0
X)

for u, v ∈W . Since ch(Ow0,T ) =
[ew0 ]T

Td(Tew0
X) , this translates into

〈Td∗(ITu ), (LHir
v−1w0

)y=0(ch(Ow0,T ))〉H = δu,v ,

from which we deduce by (24) (for v ∈W ) that:

(36) ch(Ov,T ) = (LHir
v−1w0

)y=0(ch(Ow0,T )) ,

with (LHir
i )y=0 = ∂Hi Td(Tpi). This recovers Equation (27).

Finally, since td∗(−) = ch(−) Td(TX) for y = 0, Theorem 6.13 specializes to

ch(ITw )) =
(
T Hir,∨
w−1

)
y=0

(ch(ITid)) and ch(Iw,T )) =
(
T Hir,∨
(w0w)−1

)
y=0

(ch(Iw0,T ))

for w ∈W , with (T Hir,∨
i )y=0 = ∂Hi Td(Tpi)− id, consistent with Equation (28).

Next we record the specializations of Theorems 6.11, 6.12 and 6.13 for y = −1. For
simplicity we only consider the more interesting case of normalized classes and operators.
Note that

Tdy=−1,∗(X(w)◦) = cT∗ (11X(w)◦) =: cTSM(X(w)◦) ∈ HT
∗ (G/B,Z)

by (23), since HT
∗ (G/B,Z) is torsion free. Recall that cTSM(X(w)◦) is Chern-Schwartz-

MacPherson (CSM) class of the Schubert cell X(w)◦; this class is discussed in more detail in
the next section. Theorem 6.11(b) for the normalized Hirzebruch classes implies for y = −1
the following recursion from [AM16, Theorem 6.4] (formulated in Equation (42) in the next
section in terms of homogenized classes):

(37) T Hi (cTSM(X(w)◦)) = (cT (Tpi)∂
H
i − id)(cTSM(X(w)◦)) = cTSM(X(wsi)

◦)

for w ∈W and si a simple reflection, with wsi > w.
Similarly, Theorem 6.12 for the normalized Hirzebruch classes implies for y = −1 the

corresponding Hecke orthogonality of [AMSS17, Theorem 7.2] (with their equivariant
parameter ~ ∈ H2

C∗(pt,Z) specialized here to ~ = 1):

(38) 〈cTSM(X(u)◦), (LHir
v−1w0

)y=−1([ew0 ]T )〉 = δu,vc
T (Tew0

X) = δu,v
∏
α>0

(1 + α)

for u, v ∈W . Here

(LHir
v−1w0

)y=−1([ew0 ]T ) = T H,∨
v−1w0

([ew0 ]T ) = cT,∨SM (Y (v)◦)
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is the dual Chern-Schwartz-MacPherson class from [AMSS17, Equation (14)]. Note that,
in terms of the duality operators from Remark 6.3,

cT,∨SM (Y (v)◦) = (−1)dimX−`(v)ψ−1∗ (cTSM(Y (v)◦) ,

since the homogenized operators satisfy

(39) T H,∨,~i = ~∂Hi + si = −(−~∂Hi − si) = −T H,~i |h7→−h.

Finally Theorem 6.13 for the normalized Hirzebruch classes implies for y = −1:

(40)
cTSM(X(w)◦)

cT (TX)
= T H,∨

w−1

(
[eid]T∏

α>0(1− α)

)
=
cT,∨SM (X(w)◦)∏
α>0(1− α)

and

cTSM(Y (w)◦)

cT (TX)
= T H,∨

(w0w)−1

(
[ew0 ]T∏

α>0(1 + α)

)
=

cT,∨SM (Y (w)◦)∏
α>0(1 + α)

.

This recovers [AMSS17, Theorem 7.5], which is one of the main results of that paper (again
with the equivariant parameter ~ ∈ H2

C∗(pt,Z) specialized to ~ = 1).

6.4. Parabolic Hirzebruch classes. We now consider the (generalized) partial flag man-
ifold G/P , and we let π : G/B → G/P be the natural projection. The Schubert varieties
X(wWP )◦ in G/P are indexed by the elements in w ∈ WP , with the image π(X(w)◦) =

X(wWP )◦ for w ∈ W . Applying td∗ and ψ1+y
∗ td∗ to the equalities from Proposition 4.17

implies by functoriality the following counterpart for the Hirzebruch classes.

Proposition 6.15. The following hold for w ∈W :
(a) For P parabolic:

π∗ T̃dy∗(X(w)◦) = (−y)`(w)−`(wWP ) T̃dy∗(X(wWP )◦) ∈ ĤT
∗ (G/P )[y]

and

π∗Tdy∗(X(w)◦) = (−y)`(w)−`(wWP ) Tdy∗(X(wWP )◦) ∈ ĤT
∗ (G/P )[y] .

(b) More generally, let P ⊆ Q be two standard parabolic subgroups, and π′ : G/P → G/Q
the natural projection. Then

π′∗ T̃dy∗(X(wWP )◦) = (−y)`(wWP )−`(wWQ)π∗ T̃dy∗(X(wWQ)◦) ∈ ĤT
∗ (G/Q)[y]

and

π′∗Tdy∗(X(wWP )◦) = (−y)`(wWP )−`(wWQ)π∗Tdy∗(X(wWQ)◦) ∈ ĤT
∗ (G/Q)[y].

Specializing to y = 0 (with the convention 00 = 1), we get by Theorem 5.1(b):

π∗Td∗(ITw ) =

{
Td∗(ITwWP

) if `(w) = `(wWP );

0 otherwise.

Similarly, specializing the normalized classes to y = −1, we get for w ∈W :

(41) π∗c
T
SM(X(w)◦) = cTSM(X(wWP )◦) and π′∗c

T
SM(X(wWP )◦) = cTSM(X(wWQ)◦).

These equalities hold in HT
∗ (G/P,Z) and HT

∗ (G/Q,Z), since these are torsion free.
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7. The Chern-Schwartz-MacPherson classes as leading terms

We have seen in the Corollary 6.6 that the Chern-Schwartz-MacPherson (CSM) classes
may be recovered from the Hirzebruch transformation by specializing at y = −1. In this
section we take a different route, and recover the CSM classes directly, by identifying them
as the leading terms of the motivic Chern classes; cf. Theorem 7.1. We will illustrate this
process for complete flag varieties, since these are the main object of study in this paper.

7.1. Chern-Schwartz-MacPherson classes. We first recall the context leading to the
definition of CSM classes. According to a conjecture attributed to Deligne and Grothendieck,
there is a unique natural transformation c∗ : F(−) → H∗(−,Z) from the functor of con-
structible functions on a complex algebraic variety X to homology (i.e., even degree Borel-
Moore homology, or Chow groups), where all morphisms are proper, such that if X is smooth
then c∗(11X) = c(TX)∩ [X]. This conjecture was proved by MacPherson [Mac74]; the class
c∗(11X) for possibly singular varieties X was shown to coincide via Alexander duality with a
class defined earlier by M.-H. Schwartz [Sch65a, Sch65b, BS81]. For any constructible subset
W ⊆ X, the class cSM(W ) := c∗(11W ) ∈ H∗(X,Z) is called the Chern-Schwartz-MacPherson
(CSM) class of W in X. If X is a T -variety, an equivariant version of the group of con-
structible functions FT (X) and a Chern class transformation cT∗ : FT (X)→ H∗(X;Z) were
defined by Ohmoto [Ohm06]; see [AMSS17, §3.2] for a summary of Ohmoto’s definition and
a discussion of alternative (equivalent) definitions. This is the notion we consider in this
paper.

7.2. The homogenized CSM class via the motivic Chern class. We now consider
the case of flag varieties, so X = G/B. If

cTSM(X(w)◦) =
∑
i

cTSM(X(w)◦)i ∈ HT
∗ (G/B,Z),

where cTSM(X(w)◦)i ∈ HT
2i(G/B,Z), the homogenized CSM class is defined to be

cT,~SM(X(w)◦) :=
∑
i

~icTSM(X(w)◦)i ∈ HT×C∗

0 (G/B,Z).

Here C∗ acts trivially on G/B and ~ ∈ H2
C∗(pt,Z) is a generator. Consider the Schubert

expansion of the homogenized CSM class:

cT,~SM(X(w)◦) =
∑
u≤w

c′u,w(~, t)[X(u)]T ∈ HT×C∗

0 (X),

where c′u,w(~, t) ∈ H∗T×C∗(pt,Z) is a homogeneous polynomial of degree `(u). As usual
t = (t1, . . . , ts) stands for a sequence of variables corresponding to a basis of the character
group of T ; see §2.1. We also recall that αi denote the simple roots, regarded as elements

of H2
T (pt). With T H,~i as in (6), we have

(42) T H,~i (cT,~SM(X(w)◦)) = cT,~SM(X(wsi)
◦) ;

this is the homogenized version of (37) above. We will now verify that, combined with
Proposition 3.5, (42) implies that the CSM class of the Schubert cell is the ‘initial term’ of
the motivic Chern class MCy(X(w)◦), where y = −e−~.

Theorem 7.1. Let w ∈W and consider the Schubert expansions

MCy(X(w)◦) =
∑
u≤w

cu,w(y, et)OTu ∈ KT (G/B)[y]
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and

cT,~SM(X(w)◦) =
∑
u≤w

c′u,w(~, t)[X(u)]T ∈ HT×C∗

0 (G/B,Z),

where c′u,w(~, t) ∈ H2`(u)
T×C∗(pt). With y = −e−~ (and hence chC∗(y) = −e−~ cf. §2.3), the

following hold:
(a) The image chT×C∗(cu,w(y, et)) of the coefficient cu,w(y, et) under the Chern character

belongs to
∏
i≥`(u)H

2i
T×C∗(pt).

(b) The coefficient c′u,w(~, t) equals the term of degree `(u) in cu,w(y, et), i.e.,

c′u,w(~, t) = (chT×C∗(cu,w(y, et)))`(u).

Equivalently,

cT,~SM(X(w)◦) = degree 0 component of ch(MCy(X(w)◦)).

Proof. Both parts follow by induction on `(w), using the recursion calculating MCy(X(w)◦)
from Theorem 4.5 combined with Proposition 3.5; in part (b) we utilize the recursion for

cT,~SM(X(w)◦) from (42). �

Example 7.2. Consider the equivariant motivic Chern class in KT (P1)[y]:

MCy(X(s1)
◦) = (1 + e−α1y)OTs1 − (1 + (1 + e−α1)y)OTid.

The specialization y = −e−~ in the coefficient cs1,s1(y, et) gives:

cs1,s1(−e−~, et) = 1− e−α1−~ = ~ + α1 + h.o.t.

(higher order terms). The term of degree 1 is c′s1,s1 = ~ + α1. Similarly, the specialization

of cid,s1(y, et) gives

cid,s1(y, et) = −(1− (1 + e−α1)e−~) = −1 + e−~ + e−~−α1 = −1 + 2 + h.o.t.

By Theorem 7.1,

cT,~SM(X(s1)
◦) = (~ + α1)[X(s1)]T + [X(id)]T ,

consistent with a positivity property from Conjecture 1 below. y

Consider now the non-equivariant case, i.e., in the expansions from Theorem 7.1 we
set α = 0, so eα 7→ 1. In this case we denote the coefficients in the two expansion by
cu,w(y) respectively c′u,w(~). Note that cu,w(y) ∈ Z[y] and c′u,w(~) ∈ Z[~]. Furthermore, by
homogeneity,

c′u,w(~) = cu,w~`(u),
where cu,w ∈ Z is an integer. Next we give a more direct relation between these coefficients,

using that the polynomial cu,w(y) is divisible by (1 + y)`(u) by Proposition 4.15.

Corollary 7.3. The coefficient cu,w equals the specialization at y = −1 of
cu,w(y)

(1+y)`(u)
:

cu,w =

(
cu,w(y)

(1 + y)`(u)

)
y 7→−1

.

Proof. Let Qu,w(y) :=
∑
aiy

i in Z[y] be the quotient
cu,w(y)

(1+y)`(u)
. By Theorem 7.1, the coeffi-

cient cu,w equals the term of degree 0 in the specialization Qu,w(−e−~). Since −e−~ = −1+
higher order terms, cu,w = Qu,w(−1) as claimed. �
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Example 7.4. Consider the non-equivariant version of Example 7.2 :

MCy(X(s1)
◦) = (1 + y)Os1 − (1 + 2y)Oid.

According to Corollary 7.3, we need to divide each coefficient cu,s1(y) by (1 + y)`(u) and
then specialize at y = −1. We obtain:

c~SM(X(s1)
◦) = ~[X(s1)] + [X(id)].

The non-homogenized class is obtained by setting ~ to 1. y

Example 7.5. Consider the motivic Chern class MCy(X(s1s2)
◦) ∈ K(Fl(3))[y]:

MCy(X(s1s2)
◦) = (1+y)2Os1s2−(1+y)(1+2y)Os1−(1+y)(1+3y)Os2 +(5y2+5y+1)Oid.

As before, we need to divide each coefficient cu,s1s2(y) by (1 + y)`(u) and then specialize at
y = −1. We obtain:

cSM(X(s1s2)
◦) = [X(s1s2)] + [X(s1)] + 2[X(s2)] + [X(id)]. y

8. Positivity, unimodality, and log-concavity conjectures

In this section we record several conjectures involving Schubert expansions of the motivic
Chern and CSM classes and about the structure constants of the CSM classes. Some of
these conjectures have been made by other authors; our goal is to collect all these statements
in a single place.

We start with the CSM classes, since this is the case when we have the most (partial)
results.

8.1. Positivity of Schubert expansions of CSM classes. Consider the (non-equivariant)
CSM class of a Schubert cells in a generalized flag manifolds G/P :

cSM(X(wWP )◦) =
∑

vWP≤wWP

cv,w[X(vWP )],

with cv,w ∈ Z. For G/P = Gr(k;n), it was conjectured in [AM09] that the coefficients
cv;w are nonnegative; this was proved in some special cases in loc.cit. and in [Mih15, Jon10,
Str11], and in full generality (for Grassmannians) by J. Huh [Huh16]. The recursive algo-
rithm from [AM16] yielded calculations of CSM classes of Schubert cells in any G/P , and
provided supporting evidence that the CSM classes of Schubert cells in all flag manifolds
are effective. This conjecture was proved in [AMSS17, Corollary 1.4].

Equivariantly, the numerical evidence supports the following conjecture.

Conjecture 1 (Equivariant Positivity). Let X(wWP )◦ ⊆ G/P be any Schubert cell and
consider the Schubert expansion of the equivariant CSM class:

cTSM(X(wWP )◦) =
∑
v≤w

cv,w(α)[X(vWP )]T ∈ HT
∗ (G/P ).

Then cv;w(α) is a polynomial in positive roots α with non-negative coefficients.

In the non-equivariant case, while we have proved that cv,w ≥ 0 in [AMSS17], the evidence
suggests a stronger result.

Conjecture 2 (Strong positivity). Let X(wWP )◦ ⊆ G/P be any Schubert cell and consider
the Schubert expansion:

cSM(X(wWP )◦) =
∑
v≤w

cv,w[X(vWP )] ∈ H∗(G/P ;Z).



MC, HIRZEBRUCH, AND CSM CLASSES OF SCHUBERT CELLS 37

Then cv,w > 0 for all v ≤ w.

Huh’s result for Grassmannians in [Huh16] shows that each homogeneous component
cSM(X(wWP )◦)k of the CSM class is represented by a non-empty irreducible variety. This
is slightly weaker than the requirement in Conjecture 2. On the other hand, if this variety
may be chosen to be T -stable, then Huh’s result and the positivity results of Graham [Gra01]
would imply Conjecture 1 for Grassmannians.

For any parabolic subgroup P , let π : G/B → G/P be the natural projection. Since
π∗(cSM(X(w)◦)) = cSM(X(wWP )◦) (see e.g., (41)) it follows that if Conjecture 1 or Conjec-
ture 2 holds for cells in G/B, then it also holds in G/P .

8.2. Positivity of CSM/SM structure constants. The CSM classes cSM(X(w)◦) may
be viewed as deformations of the fundamental classes [X(w)]; we consider analogues of
the Littlewood-Richardson coefficients in the context of these classes. Since cSM(X(w)◦) is
naturally a homology class, we focus on structure constants for their Poincaré duals, the
Segre-MacPherson (SM) classes. In this section we only consider the non-equivariant
context. In general, if Z is a subvariety of a nonsingular variety X, we set

sSM(Z,X) =
cSM(Z)

c(T (X))

in the homology or Chow group of Z; see e.g., [AMSS22]. We will implicitly push-forward
this class to H∗(X).

Since c(T (G/B)) · c(T ∗(G/B)) = 1, as proved in [AMSS17, Lemma 8.2], in G/B we have

sSM(Y (w)◦, G/B) =
cSM(Y (w)◦)

c(T (G/B))
= c(T ∗(G/B)) ∩ cSM(Y (w)◦) .

We also proved that

sSM(X(wsi)
◦, G/B) = T H,∨i sSM(X(w)◦, G/B)

(cf. (40) above for the equivariant version of this equality). Poincaré duality states that for
any parabolic P ⊃ B,

(43) 〈sSM(Y (vWP )◦, G/P ), cSM(X(wWP )◦)〉 = δv,w,

cf. [AMSS17, Theorem 7.1]. This can be proved using a transversality formula due to
Schürmann [Sch17], extended equivariantly in [AMSS17, Corollary 10.3].

As a consequence of (40) (cf. [AMSS17, Eq. (36)]), the Schubert expansions of cSM(X(w)◦)
and sSM(X(w)◦, G/B) in G/B are related by changing signs. More precisely, if

sSM(X(w)◦, G/B) =
∑

fv;w[X(v)] ∈ H∗(G/B),

then with notation as above fv;w = (−1)`(w)−`(v)cv;w. This follows because the homogenized

operator T H,~i = ~∂i − si, giving CSM classes, and its adjoint T H,∨,~i = ~∂i + si, giving SM
classes, differ by a sign; see also (39) for the more general equivariant statement.

Consider now the structure constants

(44) sSM(Y (u)◦, G/B) · sSM(Y (v)◦, G/B) =
∑

ewu,vsSM(Y (w)◦, G/B).

Schürmann’s transversality theorem [Sch17] shows that

ewu,v = χ(g1Y (u)◦ ∩ g2Y (v)◦ ∩ g3X(w)◦),

the topological Euler characteristic of the intersection of three Schubert cells translated in
general position via g1, g2, g3 ∈ G. This interpretation of the structure constants holds for
any G/P , although the relation between the Schubert expansions of CSM and SM classes
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does not extend beyond G/B. (Still, the SM classes are known to be Schubert alternating;
see [AMSS22].)

Due to its statement involving only ‘classical’ objects, perhaps the most remarkable
positivity conjecture in this paper is the next.

Conjecture 3 (Alternation of Euler characteristic). The Euler characteristic of the in-
tersection of three Schubert cells in general position in G/P is alternating, i.e., for any
u, v, w ∈WP ,

(−1)`(u)+`(v)+`(w)χ(g1Y (uWP )◦ ∩ g2Y (vWP )◦ ∩ g3X(wWP )◦) ≥ 0.

Utilizing deep connections between SM classes to the theory of integrable systems, this
was proved by Knutson and Zinn-Justin for d-step flag manifolds with d ≤ 3, and it was
conjectured to hold for d = 4; cf. [KZJ21, p. 43]. Independently, and based on multipli-
cations of SM classes from [AMSS17], the authors of this paper stated this conjecture in
several conference and seminar talks, for partial flag manifolds G/P in arbitrary Lie type4.

S. Kumar [Kum22] conjectured that the CSM class of the Richardson cells are Schubert
positive, that is, if

cSM(Y (u)◦ ∩X(v)◦) =
∑
w

fwu,v[Y (w)],

then fwu,v ≥ 0. (We also learned about this conjecture independently from Rui Xiong, and
it is now stated in [FGX22, Conjecture 9.2].) It is shown in [Kum22] that this implies
Conjecture 3. Note that the Segre class of the Richardson cell

sSM(Ru,◦v , G/B) = sSM(Y (u)◦ ∩X(v)◦, G/B)

is Schubert alternating by [AMSS22, Theorem 1.1], since the inclusion of Y (u)◦ ∩X(v)◦ is
an affine morphism.

For G/B, the absolute value of the structure constants ewu,v from (44) give the structure
constants to multiply CSM classes of Schubert cells. This generalizes the positivity in ordi-
nary Schubert Calculus: if `(uWP ) + `(vWP ) = `(wWP ), then the intersection in question
is 0 dimensional and reduced, and the Euler characteristic counts the number of points
in the intersection. A different algorithm to calculate the SM structure constants is given
in [Su21].

We end this section by proving a property of the sum of the coefficients ewu,v.

Proposition 8.1. Consider the multiplication

sSM(Y (uWP )◦, G/P ) · sSM(Y (vWP )◦, G/P ) =
∑
w

ewu,vsSM(Y (wWP )◦, G/P ).

Then
∑

w e
w
u,v = δw0uWP ,vWP

.

Proof. By the transversality formula from [Sch17], and omitting the ambient G/P for short,

sSM(Y (uWP )◦) · sSM(Y (vWP )◦) = sSM(X(w0uWP )◦) · sSM(Y (vWP )◦)

= sSM(X(w0uWP )◦ ∩ Y (vWP )◦).

4After this paper was submitted, a proof of the conjecture was given in [SSW23].
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By Poincaré duality (43) and the equality c(T (G/P )) =
∑

w cSM(X(wWP )◦), the sum of
the coefficients ewu,v equals∫

G/P
sSM(Y (uWP )◦) · sSM(Y (vWP )◦) · c(T (G/P ))

=

∫
G/P

sSM(X(w0uWP )◦ ∩ Y (vWP )◦) · c(T (G/P ))

=

∫
G/P

cSM(X(w0uWP )◦ ∩ Y (vWP )◦) = δw0uWP ,vWP
.

Here the last equality follows because the Richardson cell X(w0uWP )◦ ∩Y (vWP )◦ is torus-
stable, therefore its Euler characteristic equals the Euler characteristic of the fixed locus;
see [BB73, Corollary 2], applied for a general C∗ ⊆ T . In this case the fixed locus is empty
or one point, giving δw0uWP ,vWP

. �

Example 8.2. Take G is Lie type G2 and write sSM(−) for sSM(−, G/B). Then

sSM(Y (id)◦) · sSM(Y (id)◦) = sSM(Y (id)◦)− sSM(Y (s1)
◦)− sSM(Y (s2)

◦)

+ 2sSM(Y (s2s1)
◦) + 4sSM(Y (s1s2)

◦)

− 9sSM(Y (s1s2s1)
◦)− 11sSM(Y (s2s1s2)

◦)

+ 22sSM(Y (s2s1s2s1)
◦) + 34sSM(Y (s1s2s1s2)

◦)

− 57sSM(Y (s1s2s1s2s1)
◦)− 51sSM(Y (s2s1s2s1s2)

◦)

+ 67sSM(Y (s2s1s2s1s2s1)
◦).

Observe that these structure constants are alternating, and add up to 0, confirming Con-
jecture 3 and Proposition 8.1 in this case. y

8.3. Unimodality and log-concavity for CSM polynomials. Following [Sta89], a se-
quence a0, . . . , an is unimodal if there exists i0 such that

a0 ≤ a1 ≤ . . . ≤ ai0 ≥ ai0+1 ≥ . . . ≥ an.

The sequence is log-concave if for any 1 ≤ i ≤ n− 1,

a2i ≥ ai−1ai+1.

A log-concave sequence of nonnegative integers with no internal zeros is unimodal. A
polynomial P (x) =

∑
aix

i is unimodal, resp., log-concave, if its sequence of coefficients
satisfies the corresponding property.

Consider any class κ =
∑
cw[X(wWP )] in H∗(G/P ). We define the H-polynomial

associated to κ by

H(κ) :=
∑

cwx
`(w) =

∑
cix

i,

determining the coefficients ci. For w ∈WP we denote by Hw(x) := H(cSM(X(wWP ))) the
H-polynomial of the CSM class of the corresponding Schubert variety.

Conjecture 4 (Unimodality and log-concavity). Let X(w) ⊆ G/P be any Schubert variety.
Then the following hold:

(a) The polynomial Hw is unimodal with no internal zeros.
(b) If G is of Lie type A (i.e., G/P = Fl(i1, . . . , ik;n) is a partial flag manifold) then Hw

is log-concave.

A similar conjecture for Mather classes can be found in [MS20].
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Example 8.3. Consider the Grassmannian Gr(3, 6) and the Schubert variety X(2,1) of di-
mension 3. Then

cSM(X(2,1)) = [X(2,1)] + 3[X2] + 3[X1,1] + 8[X1] + 5[X0].

Its H-polynomial is
x3 + 6x2 + 8x+ 5,

which is log-concave.
For the 5-dimensional quadric Q5, the H-polynomial of c(TQ5) is

x5 + 5x4 + 11x3 + 26x2 + 18x+ 6

which is unimodal, but not log-concave. y

8.4. Conjectures about the motivic Chern classes. Given the (proved and conjec-
tural) positivity properties of the CSM classes of Schubert cells, it is natural to conjecture
analogous properties for the motivic Chern classes of Schubert cells. The following con-
jecture was stated by Fehér, Rimányi, and Weber [FRW17] in type A, and in [AMSS19,
Conjecture 1] for arbitrary Lie type.

Conjecture 5 (Positivity of MC classes). Consider the Schubert expansion:

MCy(X(w)◦) =
∑
u≤w

cu,w(y, et)OTu ∈ KT (G/B)[y].

Then for any u ≤ w ∈W , we have

(−1)`(w)−`(u)cw,u(y, et) ∈ Z≥0[y][e−α1 , . . . , e−αr ] ⊆ KT (pt)[y],

i.e., the coefficients (−1)`(w)−`(u)cu,w(y, et) are polynomials in the variables y and characters
e−α1 , . . . , e−αr in simple roots with non-negative coefficients.

The conjecture implies that the coefficients of the non-equivariant motivic Chern classes
of Schubert cells are sign-alternating: (−1)`(w)−`(u)cu,w(y) ∈ Z≥0[y]. Conjecture 5 holds
after specializing y = 0, as a consequence of Theorem 5.1(b) and the fact that the ideal
sheaves are alternating in Schubert classes; see (2) above, and e.g., [Bri05, Proposition 4.3.2].
More evidence for Conjecture 5 is available, since some particular coefficients cu,w(y, et) are
known to be positive. For instance, the coefficient

cw,w(y, et) =
∏

α>0,w(α)<0

(1 + yewα)

calculated in Lemma 4.11 is positive. The specialization at y = −1 gives the equivariant
class ιw of the structure sheaf of the fixed point of w as in Theorem 5.1 above (see Propo-
sition 5.1). This is consistent with the conjecture; the class ιw is known to be Schubert
alternating, by e.g., the positivity in equivariant K-theory proved by Anderson, Griffeth
and Miller [AGM11]. Finally, we verified Conjecture 5 for flag manifolds of type An for
n ≤ 5 (i.e., up to Fl(5)), and for the Lie types B2, C2, D3 and G2, by means of a computer
calculation.

Fehér, Rimányi, and Weber [FRW17] also observed a conjectural log-concavity property
for motivic Chern classes in Lie type A. We confirmed their observations in many examples,
and also checked additional examples in other Lie types.

Conjecture 6 (Log concavity for MC classes). Let X(w)◦ ⊆ G/B and consider the Schubert
expansion of the non-equivariant motivic Chern class:

MC(X(w)◦) =
∑
v≤w

cv;w(y)Ov.
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Then cv;w(y) is log-concave.

Example 8.4. Consider G of Lie type G2. The coefficient of Oid in the expansion of
MCy(X(w0)

◦) is

64y6 + 141y5 + 125y4 + 69y3 + 29y2 + 8y + 1.

This is a log-concave polynomial. Its specialization at y = −1 gives 1, reflecting the fact
that it calculates the Euler characteristic of the big cell in G2/B. y

Remark 8.5. To simplify the notation, we only stated Conjecture 6 in the non-equivariant
case. As pointed out in [FRW17], the conjecture has a natural extension to the equivariant
setting. y

8.5. An interpretation in the Hecke algebra. We can use Hecke algebra to give a
combinatorial interpretation of the coefficients cu,w(y) in Conjecture 5. For the cohomology
case, see [Lee18, Theorem 6.2].

Recall the K-theoretic BGG operator ∂i satisfies ∂2i = ∂i and the braid relations. The
operators Ti (and T ∨i ) satisfy the finite Hecke algebra relation, see Proposition 3.2. Besides,
we also have:

Lemma 8.6. For any simple root α and torus weight λ,

∂sαLλ − Lsαλ∂sα =
Lλ − Lsαλ

1− Lα
∈ EndKT (pt)[y] KT (G/B)[y],

TsαLλ − LsαλTsα = (1 + y)
Lsαλ − Lλ
1− L−α

∈ EndKT (pt)[y] KT (G/B)[y]

and

T ∨sαLλ − LsαλT
∨
sα = (1 + y)

Lsαλ − Lλ
1− L−α

∈ EndKT (pt)[y] KT (G/B)[y].

Here
Lλ−Lsαλ
1−Lα is defined as follows. Suppose eλ−esαλ

1−eα =
∑

µ e
µ, then

Lλ−Lsαλ
1−Lα :=

∑
µ Lµ.

Proof. We can check the equalities on the fixed point basis. Then all of them follow from
Lemma 3.3 and the equality Lλ ⊗ ιw = ewλιw. �

Let us recall the definition of the K-theoretic Kostant-Kumar Hecke algebra [KK90] and
the affine Hecke algebra. Let P denote the weight lattice of G.

Definition 8.7. (1) The Kostant-Kumar Hecke algebra H is a free Z module with basis
{Dwe

λ|w ∈W,λ ∈ P}, such that
• For any λ, µ ∈ P , eλeµ = eλ+µ.
• For any simple root α, D2

sα = Dsα.
• For any w, y ∈W such that `(wy) = `(w) + `(y), DwDy = Dwy

• For any simple root α and λ ∈ P ,

eλDi −Die
siλ =

eλ − esiλ

1− eαi
.

(2) The affine Hecke algebra H is a free Z[q, q−1] module with basis {Tweλ|w ∈ W,λ ∈
P}, such that
• For any λ, µ ∈ P , eλeµ = eλ+µ.
• For any simple root α, (Tsα + 1)(Tsα − q) = 0.
• For any w, y ∈W such that `(wy) = `(w) + `(y), TwTy = Twy
• For any simple root α and λ ∈ P ,

Tαe
sαλ − eλTα = (1− q)e

λ − esαλ

1− e−α
. y



42 PAOLO ALUFFI, LEONARDO C. MIHALCEA, JÖRG SCHÜRMANN, AND CHANGJIAN SU

It follows from Lemma 8.6 that the Kostant-Kumar Hecke algebraH acts on KT (G/B) by
sendingDi to ∂i and eλ to Lλ, see [KK90]; the affine Hecke algebra H acts on KT (G/B)[y, y−1]
by sending q to −y, Ti to Ti (or T ∨i ), and eλ to Lλ, see [Lus85]. In the rest of the section,
we always identify q with −y.

For any simple root αi, let

Ti := (1 + yeαi)Di − 1 = Di(1 + ye−αi)− (1 + y + ye−αi) ∈ H[y].

Then these Ti and eλ satisfies the relations in the affine Hecke algebra H. Therefore, Tw is
well-defined for all w ∈W .

For any w, we can expand Tw−1 as a linear combination of terms Du−1 ,

(45) Tw−1 :=
∑
u≤w

Du−1au,w(y; et),

for some au,w(y, et) ∈ C[T ][y]. It is easy to compute aw,w(y; et) =
∏
α>0,wα<0(1 + yewα),

which equals the coefficient cw,w(y; et) by Lemma 4.11. In fact, we have the following more
general relation.

Proposition 8.8. For any u ≤ w ∈W , we have

au,w(y; et) = cu,w(y; et).

Proof. Under the action of the Kostant-Kumar Hecke algebra H on KT (G/B), Ti is sent to
the DL operator Ti from (7). By Theorem 4.5, Equation (3) and the equality Lλ ⊗ OTid =

eλOTid, applying (45) to ιid ∈ KT (G/B) we get

MCy(X(w)◦) =
∑
u≤w

au,w(y, et)OTu .

Therefore, au,w(y; et) = cu,w(y; et). �

Proposition 8.8 provides a purely combinatorial way to compute the coefficients cu,w(y; et).
In particular, we can check Conjecture 5 in the case when `(w) ≤ 2 as follows:

(1) `(w) = 1. From Ti = Di(1+ye−αi)−(1+y+ye−αi), we get cid,si = −(1+y+ye−αi)
and csi,si = 1 + ye−αi . (This is consistent with Example 4.8.)

(2) `(w) = 2. Pick two simple roots αi, αj . We calculate

TiTj =
(
Di(1 + ye−αi)− (1 + y + ye−αi)

) (
Dj(1 + ye−αj )− (1 + y + ye−αj )

)
= DiDj(1 + ye−αj )(1 + ye−sjαi)−Dj(1 + ye−αj )(1 + y + ye−sjαi)

−Di

(
(1 + ye−αi)(1 + y + ye−αj )− y(1 + ye−αj )

e−αi − e−sjαi
1− eαj

)
+ (1 + y + ye−αj )(1 + y + ye−αi)− y(1 + ye−αj )

e−αi − e−sjαi
1− eαj

,

where

e−αi − e−sjαi
1− eαj

= −e−sjαi − e−sjαi+αj − · · · − e−αi−αj .

This verifies Conjecture 5 when `(w) = 2.
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To illustrate this, consider G = SL(3,C), i = 2, and j = 1. Then

T2T1 = D2D1(1 + ye−α1)(1 + ye−s1α2)−D1(1 + ye−α1)(1 + y + ye−s1α2)

−D2

(
(1 + ye−α2)(1 + y + ye−α1)− y(1 + ye−α1)

e−α2 − e−s1α2

1− eα1

)
+ (1 + y + ye−α1)(1 + y + ye−α2)− y(1 + ye−α1)

e−α2 − e−s1α2

1− eα1

= D2D1(1 + ye−α1)(1 + ye−α2−α1)−D1(1 + ye−α1)(1 + y + ye−α2−α1)

−D2

(
(1 + ye−α2)(1 + y + ye−α1) + y(1 + ye−α1)e−α1−α2

)
+ (1 + y + ye−α1)(1 + y + ye−α2) + y(1 + ye−α1)e−α1−α2 .

Under the above ‘dictionary’ between the Hecke algebra elements and operators, this recov-
ers Example 4.9.

9. Star duality

Recall that by ‘star duality’ we mean the involution ? : KT (X) → KT (X) which sends
(the class of) a vector bundle [E] to [E∨] = [HomOX (E,OX)]. This is not an involution
of KT (pt)-algebras, but it satisfies ?(Cλ) = C−λ, where Cλ denotes the trivial line bundle
with weight λ. We extend ? to KT (X)[y, y−1] by linearity, requiring ?(yi) = yi for i ∈ Z.

The goal of this section is to study the effect of this duality on the motivic Chern classes for
Schubert cells in X = G/B. We are motivated by a result of Brion [Bri05, Proposition 4.3.4]
who proved that in K(G/B),

L−ρ ⊗ Iw = (−1)codimX(w) ? (Ow).

where (recall) ρ denotes the half sum of the positive roots. (See also Proposition 9.2
below.) We will upgrade this to the (equivariant) motivic Chern classes MCy(X(w)◦) and

the (equivariant, normalized) classes M̃Cy(X(w)◦). The reason behind this choice is that
(non-equivariantly) the specialization y = 0 gives the ideal sheaves Iw, respectively the
structure sheaves Ow; cf. Theorem 5.1 and Theorem 4.6. (By Theorem 4.6, the opposite

classes M̃Cy(Y (w)◦) are orthogonal to the motivic classes.)
Recall the DL operators Ti and Li from (7) respectively (9). These determine recursively

the motivic Chern classes MCy(X(w)◦) = Tw−1(OTid) (Theorem 4.5) and the (normalized)

classes M̃Cy(X(w)◦) = Lw−1(OTid).
We state next the main result in this section.

Theorem 9.1. Let w ∈W . Then the following hold:

(a) C−ρ ⊗ L−ρ ⊗MCy(X(w)◦) = (−1)codimX(w) ? (M̃Cy(X(w)◦)).
(b) Consider the Schubert expansions

MCy(X(w)◦) =
∑
u≤w

cu,w(y; et)OTu ; M̃Cy(X(w)◦) =
∑
u≤w

du,w(y; et)ITu .

Then cu,w(y; et) = (−1)`(u)−`(w) ? (du,w(y; et)), or, equivalently,

〈MCy(X(w)◦), Iu〉 = (−1)`(w)−`(u) ? 〈M̃Cy(X(w)◦),Ou,T 〉.

(c) Consider the Schubert expansions

MCy(X(w)◦) =
∑
u≤w

au,w(y; et)ITu ; M̃Cy(X(w)◦) =
∑
u≤w

bu,w(y; et)OTu .



44 PAOLO ALUFFI, LEONARDO C. MIHALCEA, JÖRG SCHÜRMANN, AND CHANGJIAN SU

Then au,w(y; et) = (−1)`(u)−`(w)bu,w(y; et), or, equivalently,

〈MCy(X(w)◦),Ou,T 〉 = (−1)`(w)−`(u)〈M̃Cy(X(w)◦), Iu,T 〉.

Before we give the proof of this theorem, we recall that the y = 0 specialization recovers
a known relation between the ideal sheaves and structure sheaves; see Proposition 9.2 below
and compare to [Bri05, Proposition 4.3.4]. Brion proves the result in the non-equivariant
case, and for completeness we sketch a proof for the equivariant generalization. Aside from
the intrinsic interest, we also note that we use this result in the proof of Theorem 9.1.

Proposition 9.2 (Brion). Let w ∈W . Then the following holds in KT (X):

C−ρ ⊗ L−ρ ⊗ ITw = (−1)codimX(w) ? (OTw).

Proof. Following Brion’s proof, as equivariant sheaves,

?(OTw) = (−1)codimX(w)ωX(w) · ω−1X ;

this uses the fact that Schubert varieties are irreducible and Cohen-Macaulay - see [Bri05,
§3.3]. The difference in the equivariant case is that the canonical sheaf of X(w) needs to
be twisted by a trivial bundle:

ωX(w) = OX(w)(−∂X(w))⊗ Lρ ⊗ C−ρ.

This follows from [BK05, Proposition 2.2.2] to which one applies the projection formula.
(Note that our convention defining Lλ is opposite to the one from [BK05].) If X(w) = G/B,
then ωX = L2ρ (see e.g., [BK05, (8) in §2.1]). The result follows from this. �

Define the Z-linear endomorphism

Ψ : KT (X)→ KT (X); [E]T 7→ Cρ ⊗ Lρ ⊗ ?[E]T .

The previous proposition shows that

(46) Ψ(ITw ) = (−1)codimX(w)OTw.
We need the following lemma.

Lemma 9.3. Let w ∈W . Then

Ψ(ιw) =
(−1)dimG/B

ew(ρ)−ρ
ιw.

Proof. We start by observing that

(?(ιw))|u = ?((ιw)|u) = δu,wλ−1Tw(G/B).

Then

Ψ(ιw)|u = (Cρ ⊗ Lρ ⊗ ?(ιw))|u
= δw,ue

ρ+w(ρ)λ−1(Tw(G/B))

= δw,ue
ρ+w(ρ)

∏
α>0

(1− e−wα)

= δw,u
(−1)dimG/B

ew(ρ)−ρ

∏
α>0

(1− ewα)

=
(−1)dimG/B

ew(ρ)−ρ
ιw|u.

The claim follows from the injectivity of the localization map. �
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The map Ψ intertwines with the Hecke algebra action in the following way.

Theorem 9.4. For any a ∈ KT (X),

Ψ(Ti(a)) = −Li(Ψ(a)).

In particular, if w ∈W , then

Ψ((∂i − id)(ITw )) = (−1)codimX(w)+1∂i(OTw).

Proof. The last statement follows from the first after specializing at y = 0 and using (46)
and Lemma 3.4. Therefore it suffices to prove the first statement. By localization, it suffices
to prove this for the fixed point basis elements a := ιw. Let n = dimG/B. We use the
formulae from Lemma 3.3 and Lemma 9.3 to calculate:

(47) Ψ(Ti(ιw)) = (−1)n
−(1 + y)

ew(ρ)−ρ(1− ew(αi))
ιw + (−1)n

1 + yew(αi)

ewsi(ρ)−ρ(1− ew(αi))
ιwsi .

By definiton of Li,

−LiΨ(ιw) = −(T ∨i + (1 + y) id)Ψ(ι(w)) =
(−1)n+1

ew(ρ)−ρ
(T ∨i (ιw) + (1 + y)ιw).

Using now the action of T ∨i from Lemma 3.3 we calculate the last term as

(48)
(−1)n

ew(ρ)−ρ

(
(1 + y)

(
1

1− e−w(αi)
− 1

)
ιw −

1 + yew(αi)

1− e−w(αi)
ιwsi

)
.

A simple algebra calculation shows that the coefficients of ιw in both (47) and (48) are
equal. The equality of the coefficients of ιwsi is proved similarly, using in addition that
si(ρ) = ρ− αi. �

Remark 9.5. Theorem 9.4 has a particularly natural interpretation in terms of the Kostant-
Kumar Hecke algebra H. We keep the notation from §8.5. There is a Hecke algebra
automorphism A : H → H sending Di 7→ 1−Di and eλ 7→ e−λ. Let Li := Di(1 + yeαi) + y.
Then it follows from the definition that

A(Ti) = A((1 + yeαi)Di − 1) = −Li.
Therefore, Theorem 9.4 shows that Ψ : KT (X) → KT (X) commutes with the Hecke auto-
morphism A. y

Proof of Theorem 9.1. Observe first that OTid = ITid = ιid, and that Ψ(ιid) = (−1)dimG/Bιid.
Then, by Theorem 9.4,

Ψ(Tw−1(OTid)) = (−1)`(w
−1)Lw−1Ψ(ιid) = (−1)codimX(w)Lw−1(ιid)

= (−1)codimX(w)M̃Cy(X(w)◦).

Since Tw−1(OTid) = MCy(X(w)◦) by Theorem 4.5, this proves (a).
The equality

cu,w(y; et) = (−1)`(u)−`(w) ? (du,w(y; et)),

which, by (1), is equivalent to

〈MCy(X(w)◦), Iu,T 〉 = (−1)`(w)−`(u) ∗ 〈M̃Cy(X(w)◦),Ou,T 〉,
follows by applying Ψ to both sides of

MCy(X(w)◦) =
∑
u≤w

cu,w(y; et)OTu



46 PAOLO ALUFFI, LEONARDO C. MIHALCEA, JÖRG SCHÜRMANN, AND CHANGJIAN SU

and using Proposition 9.2. Finally, for part (c) we use that Ou,T =
∑

v≥u Iv,T (proved by

Möbius inversion). Then:

〈MCy(X(w)◦),Ou,T 〉 =〈MCy(X(w)◦),
∑
v≥u
Iv,T 〉

=
∑
v≥u

(−1)`(w)−`(v) ? 〈M̃Cy(X(w)◦),Ov,T 〉

=(−1)`(w)−`(u)〈M̃Cy(X(w)◦), Iu,T 〉.

This finishes the proof. �
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