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Abstract. We consider a two-dimensional model of double-diffusive convec-

tion and its time discretisation using a second-order scheme which treat the
nonlinear term explicitly (backward differentiation formula with a one-leg

method). Uniform bounds on the solutions of both the continuous and dis-

crete models are derived (under a timestep restriction for the discrete model),
proving the existence of attractors and invariant measures supported on them.

As a consequence, the convergence of the attractors and long time statistical

properties of the discrete model to those of the continuous one in the limit of
vanishing timestep can be obtained following established methods.

1. Introduction

The phenomenon of double-diffusive convection, in which two properties of a fluid
are transported by the same velocity field but diffused at different rates, often occur
in nature [12]. Perhaps the best known example is the transport throughout the
world’s oceans of heat and salinity, which has been recognised as an essential part of
climate dynamics [17,23]. In contrast to simple convections (cf. [2]), double-diffusive
convections support a richer set of physical regimes, e.g., a stably stratified initial
state rendered unstable by diffusive effects. Although in this paper we shall be
referring to the oceanographic case, the mathematical theory is essentially identical
for astrophysical [15, 18] and industrial [3] applications.

In this paper, we consider a two-dimensional double-diffusive convection model,
which by now-standard techniques [20] can be proved to have a global attractor
and invariant measures supported on it, and its temporal discretisation. We use a
backward differentiation formula for the time derivative and a fully explicit one-leg
method [8] for the nonlinearities, resulting in an accurate and efficient numerical
scheme. Of central interest, here and in many practical applications, is the ability
of the discretised model to capture long-time behaviours of the underlying PDE.
This motivates the main aim of this article: to obtain bounds necessary for the
convergence of the attractor and associated invariant measures of the discretised
system to those of the continuous system. We do this using the framework laid
down in [21,22], with necessary modifications for our more complex model.

For motivational concreteness, one could think of our system as a model for the
zonally-averaged thermohaline circulation in the world’s oceans. Here the physical
axes correspond to latitude and altitude, and the fluid is sea water whose internal
motion is largely driven by density differentials generated by the temperature T and
salinity S, as well as by direct wind forcing on the surface. Both T and S are also
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driven from the boundary—by precipitation/evaporation and ice melting/formation
for the salinity, and by the associated latent heat release and direct heating/cooling
for the temperature. Physically, one expects the boundary forcing for T , S and the
momentum to have zonal (latitude-dependent) structure, so we include these in our
model. Furthermore, one may also wish to impose a quasi-periodic time dependence
on the forcing; although this is eminently possible, we do not do so in this paper
to avoid technicalities arising from time-dependent attractors.

Taking as our domain D∗ = [0, L∗] × [0, H∗] which is periodic in the horizontal
direction, we consider a temperature field T∗ and a salinity field S∗, both trans-
ported by a velocity field v∗ = (u∗, w∗) which is incompressible, ∇∗ ·v∗ = 0, and
diffused at rates κT and κS , respectively,

(1.1)
∂T∗/∂t∗ + v∗ ·∇∗T∗ = κT∆∗T∗

∂S∗/∂t∗ + v∗ ·∇∗S∗ = κS∆∗S∗.

Here the star∗ denotes dimensional variables. Taking the Boussinesq approximation
and assuming that the density is a linear function of T∗ and S∗, which is a good
approximation for sea water (although not for fresh water near the freezing point),
the velocity field evolves according to

(1.2) ∂v∗/∂t∗ + v∗ ·∇∗v∗ +∇∗p∗ = κv∆∗v∗ + (αTT∗ − αSS∗)ez
for some positive constants αT and αS .

Our system is driven from the boundary by the heat and salinity fluxes (which
could be seen to arise from direct contact with air and latent heat release in the
case of heat, and from precipitation, evaporation and ice formation/melt in the case
of salinity),

(1.3) ∂T∗/∂n∗ = QT ∗ and ∂S∗/∂n∗ = QS∗.

Here n∗ denotes the outward normal, n∗ = z∗ at the top boundary and n∗ = −z∗
at the bottom boundary. We also prescribe a wind-stress forcing,

(1.4) ∂u∗/∂n∗ = Qu∗

along with the usual no-flux condition w∗ = 0 on z∗ = 0 and z∗ = H∗.

Largely following standard practice, we cast our system in non-dimensional form
as follows. Using the scales t̃, l̃, T̃ and S̃, we define the non-dimensional variables
t = t∗/t̃, x = x∗/l̃, v = v∗t̃/l̃, T = T∗/T̃ and S = S∗/S̃, in terms of which our
system reads

(1.5)

p−1
(
∂tv + v ·∇v

)
= −∇p+ ∆v + (T − S)ez

∂tT + v ·∇T = ∆T

∂tS + v ·∇S = β∆S.

To arrive at this, we have put l̃ = H∗ and taken the thermal diffusive timescale for

(1.6) t̃ = l̃2/κT ,

as well as scaled the dependent variables as

(1.7) T̃ = pl̃/(αT t̃
2) and S̃ = pl̃/(αS t̃

2),
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where the non-dimensional Prandtl number and diffusivity ratio (also known as the
Lewis number in the engineering literature) are

(1.8) p = κv/κT and β = κT /κS .

Another non-dimensional quantity is the domain aspect ratio ξ = L∗/l̃. The surface
fluxes are non-dimensionalised in the natural way: QT = pQT ∗/(αT t̃

2), QS =
pQS∗/(αS t̃

2) and Qu = Qu∗t̃.
For clarity and convenience, keeping in mind the oceanographic application, we

assume that the fluxes vanish on the bottom boundary z = 0,

(1.9) Qu(x, 0) = QT (x, 0) = QS(x, 0) = 0.

For boundedness of the solution in time, the net fluxes must vanish, so (1.9) then
implies that the net fluxes vanish on the top boundary z = 1,

(1.10)

∫ ξ

0

Qu(x, 1) dx =

∫ ξ

0

QT (x, 1) dx =

∫ ξ

0

QS(x, 1) dx = 0.

These boundary conditions can be seen to imply that the horizontal velocity flux
is constant in time, which we take to be zero, viz.,

(1.11)

∫ 1

0

u(x, z, t) dz =

∫ 1

0

u(x, z, 0) dz ≡ 0 for all x ∈ [0, ξ].

For some applications (e.g., the classical Rayleigh–Bénard problem), the fluxes on
the bottom boundary may not vanish, which must then be balanced by the fluxes
on the top boundary,

(1.12)

∫ ξ

0

[QT (x, 1)−QT (x, 0)] dx = 0

and similarly for Qu and QS . With some modifications (by subtracting background
profiles from u, T and S), the analysis of this paper also apply to this more general
case. This involves minimal conceptual difficulty but adds to the clutter, so we do
not treat this explicitly here.

Defining the vorticity ω := ∂xw − ∂zu, the streamfunction ψ by ∆ψ = ω with
ψ = 0 on ∂D (this is consistent with (1.11)), and the Jacobian ∂(f, g) := ∂xf∂zg−
∂xg∂zf = −∂(g, f), our system reads

(1.13)

p−1
{
∂tω + ∂(ψ, ω)

}
= ∆ω + ∂xT − ∂xS

∂tT + ∂(ψ, T ) = ∆T

∂tS + ∂(ψ, S) = β∆S.

The boundary conditions are,

(1.14) ∂zT = QT , ∂zS = QS , ω = Qu and ψ = 0 on ∂D.

In the rest of this paper, we will be working with (1.13)–(1.14) and its discretisation.
We assume that ω, T and S all have zero integral over D at t = 0. Thanks to the
no-net-flux condition (1.10), this persists for all t ≥ 0.

Another dimensionless parameter often considered in studies of (single-species)
convection is the Rayleigh number Ra. When the top and bottom temperatures
are held at fixed values T1 and T0, Ra is proportional to T0 − T1. The relevant
parameters in our problem would be RaT ∝ |QT |L2(∂D) and RaS ∝ |QS |L2(∂D),

but we will not consider them explicitly here; see, e.g., (2.11) in [1]. For notational
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conciseness, we denote the variables U := (ω, T, S), the boundary forcing Q :=
(Qu, QT , QS) and the parameters π := (p, β, ξ).

We do not provide details on the convergence of the global attractors and long
time statistical properties. Such kind of convergence can be obtained by following
established methods once we have the uniform estimates derived here. See [9] for
the convergence of the global attractors and [22] for the convergence of long time
statistical properties.

The rest of this paper is structured as follows. In section 2 we review briefly
the properties of the continuous system, setting up the scene and the notation for
its discretisation. Next, we describe the time discrete system and derive uniform
bounds for the solution. In the appendix, we present an alternate derivation of
the boundedness results in [22], without using Wente-type estimates but requiring
slightly more regular initial data.

2. Properties of the continuous system

In this section, we obtain uniform bounds on the solution of our system and use
them to prove the existence of a global attractor A. For the single diffusion case (of
T only, without S), this problem has been treated in [5] which we follow in spirit,
though not in detail in order to be closer to our treatment of the discrete case.

We start by noting that the zero-integral conditions on ω, T and S imply the
Poincaré inequalities

(2.1) |ω|2L2(D) ≤ c0 |∇ω|
2
L2(D),

as well as the equivalence of the norms

(2.2) |ω|H1(D) ≤ c |∇ω|L2(D),

with analogous inequalities for T and S. The boundary condition ψ = 0 implies
that (2.1)–(2.2) also hold for ψ, while an elliptic regularity estimate [6, Cor. 8.7]
implies that

(2.3) |∇ψ|2L2(D) ≤ c0 |ω|
2
L2(D).

Following the argument in [7], this also holds for functions, such as our T and S,
with zero integrals in D.

Let Ω be an H2 extension of Qu to D̄ (further requirements will be imposed

below) and let ω̂ := ω−Ω; we also define ∆ψ̂ := ω̂ and ∆Ψ := Ω with homogeneous
boundary conditions. Now ω̂ satisfies the homogeneous boundary conditions ω̂ = 0
on ∂D, and thus the Poincaré inequality (2.1)–(2.2). Furthermore, let TQ ∈ Ḣ2(D)
be such that ∂zTQ = QT on ∂D (with other constraints to be imposed below) and

let T̂ := T − TQ; analogously for SQ and Ŝ := S − SQ. We note that since both T̂

and Ŝ have zero integrals over D, they satisfy the Poincaré inequality (2.1)–(2.2).
We start with weak solutions of (1.13). For conciseness, unadorned norms and

inner products are understood to be L2(D), | · | := | · |L2(D) and (·, ·) := (·, ·)L2(D).

With ω̂, T̂ and Ŝ as defined above, we have

(2.4)

∂tω̂ + ∂(Ψ + ψ̂,Ω + ω̂) = p
{

∆ω̂ + ∆Ω + ∂xTQ + ∂xT̂ − ∂xSQ − ∂xŜ
}

∂tT̂ + ∂(Ψ + ψ̂, TQ + T̂ ) = ∆TQ + ∆T̂

∂tŜ + ∂(Ψ + ψ̂, SQ + Ŝ) = β (∆SQ + ∆Ŝ).
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On a fixed time interval [0, T∗), a weak solution of (2.4) are

(2.5)

ω̂ ∈ C0(0, T∗;L
2(D)) ∩ L2(0, T∗;H

1
0 (D))

T̂ ∈ C0(0, T∗;L
2(D)) ∩ L2(0, T∗;H

1(D))

Ŝ ∈ C0(0, T∗;L
2(D)) ∩ L2(0, T∗;H

1(D))

such that, for all ω̃ ∈ H1
0 (D), T̃ , S̃ ∈ H1(D), the following holds in the distributional

sense,

(2.6)

d

dt
(ω̂, ω̃) + (∂(Ψ + ψ̂,Ω + ω̂), ω̃)

+ p
{

(∇Ω +∇ω̂,∇ω̃)− (∂xTQ + ∂xT̂ , ω̃) + (∂xSQ + ∂xŜ, ω̃)
}

= 0

d

dt
(T̂ , T̃ ) + (∂(Ψ + ψ̂, TQ + T̂ ), T̃ ) + (∇T̂ ,∇T̃ )− (∆TQ, T̃ ) = 0

d

dt
(Ŝ, S̃) + (∂(Ψ + ψ̂, SQ + Ŝ), S̃) + β (∇Ŝ,∇S̃)− β (∆SQ, S̃) = 0.

The existence of such solutions can be obtained by standard methods, so we do not
do so explicitly here.

Next, we derive L2 inequalities for T , S and ω. Multiplying (2.4a) by ω̂ in L2(D)
and noting that (∂(ψ, ω̂), ω̂) = 0, we find

(2.7)

1

2

d

dt
|ω̂|2 + p |∇ω̂|2 = −(∂(Ψ,Ω), ω̂)− (∂(ψ̂,Ω), ω̂)

+ p
{

(∆Ω, ω̂) + (∂xT, ω̂)− (∂xS, ω̂)
}
.

We bound the rhs as∣∣(∆Ω, ω̂)
∣∣ = |∇Ω| |∇ω̂| ≤ 1

8 |∇ω̂|
2 + 2 |∇Ω|2∣∣(∂xT, ω̂)

∣∣ = |∂xω̂| |T | ≤ 1
8 |∇ω̂|

2 + 2 |T |2 ≤ 1
8 |∇ω̂|

2 + 4c0|∇T̂ |2 + 4 |TQ|2∣∣(∂xS, ω̂)
∣∣ = |∂xω̂| |S| ≤ 1

8 |∇ω̂|
2 + 2 |S|2 ≤ 1

8 |∇ω̂|
2 + 4c0|∇Ŝ|2 + 4 |SQ|2.

and the “nonlinear” terms as

(2.8)

∣∣(∂(ψ̂, ω̂),Ω)
∣∣ ≤ c |∇ψ̂|L∞ |∇ω̂|L2 |Ω|L2 ≤

c1
2
|Ω|L2 |∇ω̂|2∣∣(∂(Ψ, ω̂),Ω)

∣∣ ≤ c |∇Ψ|L∞ |∇ω̂|L2 |Ω|L2 ≤
p

8
|∇ω̂|2 +

c

p
|∇Ψ|2L∞ |Ω|2.

This brings us to

(2.9)

d

dt
|ω̂|2 + (p− c1|Ω|)|∇ω̂|2 ≤ 4pc0(|∇T̂ |2 + |∇Ŝ|2)

+
c

p
|∇Ψ|2L∞ |Ω|2 + 4p (|∇Ω|2 + |TQ|2 + |SQ|2).

Now for Ŝ, we multiply (1.13c), or equivalently,

(2.10) ∂tŜ + ∂(ψ, Ŝ + SQ) = β (∆Ŝ + ∆SQ),

by Ŝ in L2(D) and use (∂(ψ, Ŝ), Ŝ) = 0 to find

(2.11)
1

2

d

dt
|Ŝ|2 + β |∇Ŝ|2 = −(∂(Ψ, SQ), Ŝ)− (∂(ψ̂, SQ), Ŝ) + β (∆SQ, Ŝ).
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The last term on the rhs requires some care,

(2.12)

∣∣(∆SQ, Ŝ)
∣∣ ≤ ∣∣(QS , Ŝ)L2(∂D)

∣∣+
∣∣(∇SQ,∇Ŝ)

∣∣
≤ c |QS |H−1/2(∂D)|Ŝ|H1/2(∂D) + |∇QS | |∇Ŝ|

≤ 1
8 |∇Ŝ|

2 + c (|∇SQ|2 + |QS |2H−1/2(∂D))

≤ 1
8 |∇Ŝ|

2 + c |∇SQ|2

where we have used the trace theorem for the second and last inequalities. We note
that |∇SQ|L2(D) ultimately depends on |QS |H−1/2(∂D)

plus the constraint (2.17)

below. Bounding the “nonlinear” terms as

(2.13)

∣∣(∂(Ψ, Ŝ), SQ)
∣∣ ≤ c |∇Ψ|L∞ |∇Ŝ|L2 |SQ|L2 ≤

β

8
|∇Ŝ|2 +

c

β
|∇Ψ|2L∞ |SQ|2∣∣(∂(ψ̂, Ŝ), SQ)

∣∣ ≤ c |∇ψ̂|L∞ |∇Ŝ|L2 |SQ|L2 ≤
β

8
|∇Ŝ|2 +

c

β
|∇ω̂|2|SQ|2,

we arrive at

(2.14)
d

dt
|Ŝ|2 + β |∇Ŝ|2 ≤ c

β
|∇ω̂|2|SQ|2 +

c

β
|∇Ψ|2L∞ |SQ|2 + cβ |∇SQ|2.

Analogously, we have for T̂ ,

(2.15)
d

dt
|T̂ |2 + |∇T̂ |2 ≤ c |∇ω̂|2|TQ|2 + c |∇Ψ|2L∞ |TQ|2 + c |∇TQ|2.

Adding 8pc0 times (2.15) and 8pc0/β times (2.14) to (2.9), we find

(2.16)

d

dt

(
|ω̂|2 + 8pc0|T̂ |2 +

8pc0
β
|Ŝ|2

)
+ 4pc0 (|∇T̂ |2 + |∇Ŝ|2)

+
(
p− c1|Ω| − c2p|TQ|2 −

c2p

β2
|SQ|2

)
|∇ω̂|2

≤ cp |∇Ψ|2L∞
(
|Ω|2/p2 + |TQ|2 + |SQ|2/β2

)
+ cp (|∇Ω|2 + |∇TQ|2 + |∇SQ|2).

If we now choose Ω, TQ and SQ such that

(2.17) |Ω|L2 ≤ p/(8c1), |TQ|2L2 ≤ 1/(8c2) and |SQ|2L2 ≤ β2/(8c2),

(given the BC (1.14), this can always be done at the price of making ∇Ω, ∇TQ and
∇SQ large) we obtain the differential inequality

(2.18)
d

dt

(
|ω̂|2 + 8pc0|T̂ |2 +

8pc0
β
|Ŝ|2

)
+

p

2
|∇ω̂|2 + 4pc0 (|∇T̂ |2 + |∇Ŝ|2) ≤ ‖F‖2,

with ‖F‖2 denoting the purely “forcing” terms on the rhs of (2.16). Integrating

this using the Gronwall lemma, we obtain the uniform bounds, with |Û |2 = |ω̂|2 +

8pc0|T̂ |2 + 8pc0|Ŝ|2/β,

(2.19)

|Û(t)|2 ≤ e−λt|Û(0)|2 + ‖F‖2/λ

c3p

∫ t+1

t

{
|∇ω̂|2 + |∇T̂ |2 + |∇Ŝ|2

}
(t′) dt′ ≤ e−λt|U(0)|2 + (1 + 1/λ) ‖F‖2

valid for all t ≥ 0, for some λ(π) > 0. It is clear from (2.19a) that we have an
absorbing ball, i.e. |U(t)|2 ≤M0(Q;π) for all t ≥ t0(|U(0)|;π).
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On to H1, we multiply (2.4a) by −∆ω̂ in L2 to find

(2.20)

1

2

d

dt
|∇ω̂|2 + p |∆ω̂|2 = −(∂(∇ψ, ω̂),∇ω̂) + (∂(ψ,Ω),∆ω̂)

− p (∆Ω,∆ω̂)− p (∂xT,∆ω̂) + p (∂xS,∆ω̂).

Bounding the linear terms in the obvious way, and the nonlinear terms as∣∣(∂(∇ψ, ω̂),∇ω̂)
∣∣ ≤ c |∇ω̂|2L4 |∇2ψ|L2 ≤ c |∇ω̂| |∆ω̂| |∆ψ|

≤ p

8
|∆ω̂|2 +

c

p
|∇ω̂|2(|ω̂|2 + |Ω|2)∣∣(∂(ψ,Ω),∆ω̂)

∣∣ ≤ p

8
|∆ω̂|2 +

c

p
|∇Ω|2

(
|∇ω̂|2 + |∇Ψ|2L∞

)
,

we find

(2.21)

d

dt
|∇ω̂|2 + p |∆ω̂|2 ≤ c

p
|∇ω̂|2(|ω̂|2 + |Ω|2 + |∇Ω|2) +

c

p
|∇Ψ|2L∞ |∇Ω|2

+ 8p
(
|∇T̂ |2 + |∇Ŝ|2 + |∇TQ|2 + |∇SQ|2 + |∆Ω|2

)
.

Since ω̂, T̂ and Ŝ have been bounded uniformly in L2
t,1H

1
x in (2.19b), we can

integrate (2.21) using the uniform Gronwall lemma to obtain a uniform bound for
|∇ω̂|2,

(2.22) |∇ω̂(t)|2 ≤M1(· · · ) and

∫ t+1

t

|∆ω̂(t′)|2 dt′ ≤ M̃1(· · · ).

Similarly, multiplying (2.10) by −∆Ŝ in L2, we find

(2.23)

1

2

d

dt
|∇Ŝ|2 + β |∆Ŝ|2 =− β (∆SQ,∆Ŝ)

− (∂(∇ψ, Ŝ),∇Ŝ) + (∂(ψ, SQ),∆Ŝ).

Bounding as we did for ω̂, we arrive at

(2.24)

d

dt
|∇Ŝ|2 + β |∆Ŝ|2 ≤ 8β |∆SQ|2

+
c

β
|∇Ŝ|2(|ω̂|2 + |Ω|2) +

c

β
|∇SQ|2

(
|∇ω̂|2 + |∇Ψ|2L∞

)
,

which can be integrated using the uniform Gronwall lemma to obtain

(2.25) |∇Ŝ(t)|2 ≤M1(· · · ) and

∫ t+1

t

|∆Ŝ(t′)|2 dt′ ≤ M̃1(· · · ).

Obviously one has the analogous bound for T̂ ,

(2.26) |∇T̂ (t)|2 ≤M1(· · · ) and

∫ t+1

t

|∆T̂ (t′)|2 dt′ ≤ M̃1(· · · ).

These bounds allow us to conclude [20] the existence of a global attractor A and
of an invariant measure µ supported on A. Given a continuous functional Φ, its
long-time average satisfies

(2.27) lim
t→∞

1

t

∫ t

0

Φ(S(t)U0) dt =

∫
H

Φ(U) dµ(U)
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where U(t) = S(t)U0 is the solution of (1.13) with initial data U0. It is known that
A is unique while µ may depend on the initial data U0 and the definition of the
generalised limit lim.

Due to the boundary conditions, one cannot simply multiply by ∆2ω̂, etc., to
obtain a bound in H2, but following [19, §6.2], one takes time derivative of (1.13a)
and uses the resulting bound on |∂tω| to bound |∆ω|, etc. We shall not do this
explicitly here, although similar ideas are used for the discrete case below (proof of
Theorem 2).

3. Numerical scheme: boundedness

Fixing a timestep k > 0, we discretise the system (1.13) in time by the following
two-step explicit–implicit scheme,

(3.1)

3ωn+1 − 4ωn + ωn−1

2k
+ ∂(2ψn − ψn−1, 2ωn − ωn−1)

= p
{

∆ωn+1 + ∂xT
n+1 − ∂xSn+1

}
3Tn+1 − 4Tn + Tn−1

2k
+ ∂(2ψn − ψn−1, 2Tn − Tn−1) = ∆Tn+1

3Sn+1 − 4Sn + Sn−1

2k
+ ∂(2ψn − ψn−1, 2Sn − Sn−1) = β∆Sn+1,

plus the boundary conditions (1.14). Writing Un = (ωn, Tn, Sn), we assume that
the second initial data U1 has been obtained from U0 using some reasonable one-
step method, but all we shall need for what follows is that U1 ∈ H1(D). The
time derivative term is that of the backward differentiation formula (BDF) and the
explicit nonlinear term is sometimes known as a “one-leg method” [8, (V.6.6)]. This
results in a method that is essentially explicit yet second order in time, and as we
shall see below, preserves the important invariants of the continuous system.

Subject to some restrictions on the timestep k, we can obtain uniform bounds
and absorbing balls for the solution of the discrete system analogous to those of the
continuous system. Our first result is the following:

Theorem 1. With Q ∈ H3/2(∂D), the scheme (3.1) defines a discrete dynamical
system in H1(D)×H1(D). Assuming U0, U1 ∈ H1(D) and the timestep restriction
given in (3.20) below,

(3.2) k ≤ k1(|U0|H1 , |U1|H1 ; |Q|H1/2(∂D), π),

the following bounds hold

|Un|2L2 ≤ 40 e−νnk/4
(
|U0|2L2 + |U1|2L2

)
+M0(|Q|H1/2(∂D);π)

+ c(|Q|H−1/2(∂D);π)k e−νnk/4
(
|U0|2H1 + |U1|2H1

)
,(3.3)

|Un|2H1 ≤ N1(nk; |U0|H1 , |U1|H1 , |Q|H1/2(∂D), π) +M1(|Q|H3/2(∂D);π),(3.4)

where ν(π) > 0 and N1(t; · · · ) = 0 for t ≥ t1(|U0|H1 , |U1|H1 ;Q, π).

We note that the last term in (3.3) has no analogue in the continuous case; we
believe this is an artefact of our proof, but have not been able to circumvent it.
Unlike in [22], H2 bounds do not follow as readily due to the boundary conditions,
so we proceed by first deriving bounds for |Un+1−Un|, using an approach inspired
by [19, §6.2]. We state our result without the transient terms:
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Theorem 2. Assume the hypotheses of Theorem 1. Then for sufficiently large nk,
one has

(3.5) |ωn+1− ωn|2 + |Tn+1− Tn|2 + |Sn+1− Sn|2 ≤ k2Mδ(|Q|H3/2(∂D);π).

Furthermore, for large nk the solution is bounded in H2 as

(3.6) |∆ωn|2 + |∆Tn|2 + |∆Sn|2 ≤M2(|Q|H3/2(∂D);π).

We remark that these difference and H2 bounds require no additional hypotheses
on Q, indicating that Theorem 1 may be sub-optimal. We also note that using the
same method (and one more derivative on Q) one could bound |Un+1−Un|H1 and
|Un|H3 , although we will not need these results here.

Following the approach of [22], these uniform bounds (along with the uniform
convergence results that follow from them) then give us the convergence of long-
time statistical properties of the discrete dynamical system (3.1) to those of the
continuous system (1.13).

Proof of Theorem 1. Central to our approach is the idea of G-stability for multistep
methods [8, §V.6]. First, for f , g ∈ L2(D) and νk ∈ [0, 1], we define the norm

(3.7) |[f, g]|2νk =
|f |2L2

2
+

5 + νk

2
|g|2L2 − 2(f, g)L2 .

Note that our notation is slightly different from that in [10, 22]. Since both eigen-
values of the quadratic form are finite and positive for all νk ∈ [0, 1], this norm is
equivalent to the L2 norm, i.e. there exist positive constants c+ and c−, independent
of νk ∈ [0, 1], such that

(3.8) c−(|f |2L2 + |g|2L2) ≤ |[f, g]|2νk ≤ c+(|f |2L2 + |g|2L2)

for all f , g ∈ L2(D); computing explicitly, we find

(3.9) c− =
6−
√

32

4
and c+ =

7 +
√

41

4
.

As in [22], an important tool for our estimates is an identity first introduced in [8]
for νk = 0; the following form can be found in [10, proof of Lemma 6.1]: for f , g,
h ∈ L2(D) and νk ∈ [0, 1],

(3.10)

(3h− 4g + f, h)L2 + νk |h|2L2

= |[g, h]|2νk −
1

1 + νk
|[f, g]|2νk +

|f − 2g + (1 + νk)h|2L2

2(1 + νk)
.

As usual, c denotes generic constants which may take different values each time
it appears. Numbered constants such as c0 have fixed values; they are independent
of the parameters p and β unless noted explicitly.

The fact that (3.1) forms a discrete dynamical system in H1 ×H1 can be seen
by writing

(3.11) (3− 2k∆)Tn+1 = 4Tn − Tn−1 − 2k ∂(2ψn − ψn−1, 2Tn − Tn−1)

and inverting: given Un−1 and Un ∈ H1(D), the Jacobian is in H−1, which, with
the Neumann BC ∂zT

n+1 = QT ∈ H1/2(∂D), gives Tn+1 ∈ H1. Similarly for Sn+1

and, since now Tn+1, Sn+1 ∈ H1 and ωn+1 = Qu ∈ H1/2(∂D), for ωn+1. Therefore
(Un−1, Un) ∈ H1 ×H1 maps to (Un, Un+1) ∈ H1 ×H1.
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Let ω̂n := ωn − Ω, T̂n := Tn − TQ and Ŝn := Sn − SQ be defined as in the
continuous case, i.e. Ω, TQ, SQ ∈ H2(D) satisfying the boundary conditions Ω =
Qu, ∂zTQ = QT and ∂zSQ = QS , and the constraint (3.29), which is essentially
(2.17). The scheme (3.1) then implies

(3.12)

3ω̂n+1− 4ω̂n+ ω̂n−1

2k
+ ∂(2ψn− ψn−1, 2ω̂n− ω̂n−1+ Ω)

= p
{

∆ω̂n+1 + ∆Ω + ∂xT
n+1 − ∂xSn+1

}
3T̂n+1− 4T̂n+ T̂n−1

2k
+ ∂(2ψn− ψn−1, 2T̂n− T̂n−1+ TQ) = ∆T̂n+1 + ∆TQ

3Ŝn+1− 4Ŝn+ Ŝn−1

2k
+ ∂(2ψn− ψn−1, 2Ŝn− Ŝn−1+ SQ) = β(∆Ŝn+1+∆SQ)

where we have kept some ψn, Tn and Sn for now. We start by deriving difference

inequalities for ω̂n, T̂n and Ŝn. In order to bound terms of the form |∇ψ̂n|2L∞ ≤
c |ω̂n|2

H1/2 , we assume for now the uniform bound

(3.13) |ω̂n|2H1/2 ≤ k−1/2Mω(· · · ) for all n = 0, 1, 2, · · ·
where Mω will be fixed in (3.31) below. We also assume for clarity that k ≤ 1.

Multiplying (3.12a) by 2kω̂n+1 in L2(D) and using (3.10), we find

(3.14)

|[ω̂n, ω̂n+1]|2νk − νk |ω̂n+1|2 + 2pk |∇ω̂n+1|2 +
|(1 + νk)ω̂n+1− 2ω̂n+ ω̂n−1|2

2 (1 + νk)

=
|[ω̂n−1, ω̂n]|2νk

1+νk
− 2k (∂(2ψn− ψn−1, ω̂n+1), (1 + νk)ω̂n+1− 2ω̂n+ ω̂n−1)

+ 2k (∂(2ψ̂n− ψ̂n−1, ω̂n+1),Ω) + 2k (∂(Ψ, ω̂n+1),Ω)

+ 2pk
{

(∆Ω, ω̂n+1) + (ω̂n+1, ∂xT
n+1)− (ω̂n+1, ∂xS

n+1)
}
.

where ν > 0 will be set below. We bound the last terms as in the continuous case,

2 |(∆Ω, ω̂n+1)
∣∣ ≤ 1

8 |∇ω̂
n+1|2 + 8 |∇Ω|2

2 |(∂xTn+1, ω̂n+1)| ≤ 1
8 |∇ω̂

n+1|2 + 16c0 |∇T̂n+1|2 + 16 |TQ|2

2 |(∂xSn+1, ω̂n+1)| ≤ 1
8 |∇ω̂

n+1|2 + 16c0 |∇Ŝn+1|2 + 16 |SQ|2

2
∣∣(∂(Ψ, ω̂n+1),Ω)| ≤ p

8
|∇ω̂n+1|2 +

c

p
|∇Ψ|2L∞ |Ω|2,

and the previous one as

(3.15)
2 |(∂(2ψ̂n − ψ̂n−1, ω̂n+1),Ω)| ≤ c |2∇ψ̂n −∇ψ̂n−1|L∞ |∇ω̂n+1|L2 |Ω|L2

≤ p

8
|∇ω̂n+1|2 +

c

p
(|∇ω̂n−1|2 + |∇ω̂n|2)|Ω|2.

Taking ν = p/(8c0) for now, we can bound the second term in (3.14) using the
third. Using (3.13), we then bound the first nonlinear term as

(3.16)

2 |(∂(2ψn− ψn−1, ω̂n+1), (1 + νk)ω̂n+1− 2ω̂n+ ω̂n−1)|

≤ p

8
|∇ω̂n+1|2 +

c

p
|2∇ψn −∇ψn−1|2L∞ |(1 + νk)ω̂n+1− 2ω̂n+ ω̂n−1|2

≤ p

8
|∇ω̂n+1|2 + c3 (k−1/2Mω + |∇Ψ|2L∞)

|(1 + νk)ω̂n+1− 2ω̂n+ ω̂n−1|2

4p
.
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Recalling that the validity of (3.8) and (3.9) demands k ≤ 1/ν, which we henceforth
assume, we have 2(1 + νk) ≤ 4. This then implies that k times the last term in
(3.16) can be majorised by the fourth term in (3.14) if k is small enough that

(3.17) c3k
1/2(Mω + |∇Ψ|2L∞) ≤ p.

All this brings us to [cf. (2.9)]

(3.18)

|[ω̂n, ω̂n+1]|2νk + pk |∇ω̂n+1|2 ≤ |[ω̂
n−1, ω̂n]|2νk
1 + νk

+
ck

p
(|∇ω̂n−1|2 + |∇ω̂n|2)|Ω|2 + 16c0pk (|∇T̂n+1|2 + |∇Ŝn+1|2)

+ ck (|∇Ψ|2L∞ |Ω|2/p + p |TQ|2 + p |SQ|2 + p |∇Ω|2).

For Ŝn, we multiply (3.12c) by 2kŜn+1 in L2(D) and use (3.10) to find

|[Ŝn, Ŝn+1]|2νk − νk |Ŝn+1|2 + 2βk |∇Ŝn+1|2 +
|(1 + νk)Ŝn+1− 2Ŝn+ Ŝn−1|2

2 (1 + νk)

=
|[Ŝn−1, Ŝn]|2νk

1 + νk
− 2k (∂(2ψn− ψn−1, Ŝn+1), (1 + νk) Ŝn+1− 2Ŝn+ Ŝn−1)

+ 2k (∂(2ψ̂n− ψ̂n−1, Ŝn+1), SQ) + 2k (∂(Ψ, Ŝn+1), SQ) + 2βk (∆SQ, Ŝ
n+1).

Bounding the last term as in (2.12) and everything else as with ω̂n, and taking (this

also takes care of T̂n below)

ν = min{p, β, 1}/(8c0)(3.19)

k ≤ min
{

min{p2, β2, 1}/(c3Mω + c3|∇Ψ|2L∞)2, 1/ν
}
,(3.20)

we arrive at

(3.21)
|[Ŝn, Ŝn+1]|2νk + βk |∇Ŝn+1|2 ≤ |[Ŝ

n−1, Ŝn]|2νk
1 + νk

+
ck

β
(|∇ω̂n−1|2+ |∇ω̂n|2)|SQ|2

+
ck

β
|∇Ψ|2L∞ |SQ|2 + cβk |∇SQ|2.

Similarly, for T̂n we have

(3.22)
|[T̂n, T̂n+1]|2νk + k |∇T̂n+1|2 ≤ |[T̂

n−1, T̂n]|2νk
1 + νk

+ ck (|∇ω̂n−1|2 + |∇ω̂n|2)|TQ|2

+ ck |∇Ψ|2L∞ |TQ|2 + ck |∇TQ|2.
Adding 16pc0 times (3.22) and 16pc0/β times (3.21) to (3.18), and writing

(3.23) |[Ûn, Ûn+1]|2νk := |[ω̂n, ω̂n+1]|2νk + 16pc0|[T̂n, T̂n+1]|2νk + 16pc0|[Ŝn, Ŝn+1]|2νk/β,
we have

(3.24)

|[Ûn, Ûn+1]|2νk + pk
(
|∇ω̂n+1|2 + 8c0|∇T̂n+1|2 + 8c0|∇Ŝn+1|2/β

)
≤ |[Û

n−1, Ûn]|2νk
1 + νk

+ k ‖F1‖2(|∇ω̂n−1|2 + |∇ω̂n|2) + k ‖F2‖2

where

(3.25)
‖F1‖2 := c4p

(
|Ω|2/p2 + |TQ|2 + |SQ|2/β2

)
‖F2‖2 := |∇Ψ|2L∞‖F1‖2 + cp

(
|∇TQ|2 + |∇SQ|2 + |∇Ω|2

)
.
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In order to integrate this difference inequality, we consider a three-term recursion
of the form

(3.26) xn+1 + µyn+1 ≤ (1 + δ)−1xn + εyn + εyn−1 + rn.

For µ > 0, δ ∈ (0, 1] and ε ∈ (0, µ/8], we have

(3.27) xn + µyn ≤
xn−m + µyn−m

(1 + δ)m
+

ε yn−m−1
(1 + δ)m−1

+
∑m

j=1

rn−j
(1 + δ)j−1

(which follows readily by induction) and in particular

(3.28) xn+1 + µyn+1 ≤
x1 + µy1
(1 + δ)n

+
ε y0

(1 + δ)n−1
+
∑n

j=1

rj
(1 + δ)n−j

.

In order to apply the bound (3.28) of (3.26) to (3.24), we demand that Ω, TQ and
SQ be small enough that

(3.29) |Ω|2L2 ≤ p2/(32c4), |TQ|2L2 ≤ 1/(32c4) and |SQ|2L2 ≤ β2/(32c4).

We note that, up to parameter-independent constants, these conditions are identical
to those in the continuous case (2.17). Using the fact that (1 + x)−1 ≤ exp(−x/2)
for x ∈ (0, 1], we integrate (3.24) to find a bound uniform in tn = nk,

(3.30)
|[Ûn, Ûn+1]|2νk + pk |∇ω̂n+1|2

≤ e−νnk/2
{
|[Û0, Û1]|2νk + pk (|∇ω̂0|2 + |∇ω̂1|2)

}
+

2

ν
‖F2‖2.

Using (3.8)–(3.9), (3.3) follows.
The hypothesis (3.13) can now be recovered by interpolation,

(3.31)
|ω̂n|2H1/2 ≤ c |ω̂n| |∇ω̂n| ≤ c |[Ûn−1, Ûn]|νk|∇ω̂n|

≤ c (pk)−1/2
{
|[Û0, Û1]|2νk + p (|∇ω̂0|2 + |∇ω̂1|2) + 2 ‖F2‖2/ν

}
and replacing |[Û0, Û1]|2νk by its sup over νk ∈ (0, 1]. Summing (3.24) and using
(3.29), we find (discarding terms on the lhs)

(3.32)
k
∑n+m

j=n+1

{p
2
|∇ω̂j |2 + 8c0 |∇T̂ j |2 +

8c0
β
|∇Ŝj |2

}
≤ |[Ûn−1, Ûn]|2νk + 2k ‖F1‖2(|∇ω̂n−1|2 + |∇ω̂n|2) +mk ‖F2‖2.

From (3.30) and (3.32), it is clear that there exists a t0(|∇U0|, |∇U1|, Q;π) such
that, whenever nk ≥ t0,

(3.33) |Ûn|2 ≤M0(Q;π) and k
∑n+b1/kc

j=n
|∇Û j |2 ≤ M̃0(Q;π).

We redefine M0 and M̃0 to bound |Un|2 and
∑
j |∇U j |2 as well.
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On to H1, we multiply (3.12a) by −2k∆ω̂n+1 in L2 to get

(3.34)

|[∇ω̂n,∇ω̂n+1]|2νk − νk |∇ω̂n+1|2 +
|(1 + νk)∇ω̂n+1 − 2∇ω̂n +∇ω̂n−1|2

2 (1 + νk)

=
|[∇ω̂n−1,∇ω̂n]|2νk

1 + νk
− 2pk |∆ω̂n+1|2

− 2k (∂(2ψn − ψn−1,∇ω̂n+1), (1 + νk)∇ω̂n+1 − 2∇ω̂n +∇ω̂n−1)

− 2k (∂(2∇ψ̂n −∇ψ̂n−1, 2ω̂n − ω̂n−1),∇ω̂n+1)

− 2k (∂(∇Ψ, 2ω̂n − ω̂n−1),∇ω̂n+1) + 2k (∂(2ψn − ψn−1,Ω),∆ω̂n+1)

+ 2pk (∂xS
n+1 − ∂xTn+1 −∆Ω,∆ω̂n+1)

Labelling the “nonlinear” terms by 1©, · · · , 4©, we bound them as

1© ≤ ck |2∇ψn−∇ψn−1|L∞ |∇2ω̂n+1|L2 |(1 + νk)∇ω̂n+1− 2∇ω̂n+∇ω̂n−1|L2

≤ pk

8
|∆ω̂n+1|2 +

c3k
1/2

4p

(
Mω + |∇Ψ|2L∞

)
|∇((1 + νk)ω̂n+1− 2ω̂n+ ω̂n−1)|2

2© ≤ ck |2ω̂n − ω̂n−1|L4 |∇2ω̂n+1|L2 |2ω̂n − ω̂n−1|L4

≤ pk

8
|∆ω̂n+1|2 +

ck

p
|2ω̂n − ω̂n−1|2|2∇ω̂n −∇ω̂n−1|2

3© ≤ ck |Ω|L∞ |∇2ω̂n+1|L2 |2ω̂n − ω̂n−1|L2

≤ pk

8
|∆ω̂n+1|2 +

ck

p
|Ω|2L∞ |2ω̂n − ω̂n−1|2

4© ≤ ck |2∇ψn −∇ψn−1|L∞ |∇Ω|L2 |∆ω̂n+1|L2

≤ pk

8
|∆ω̂n+1|2 +

ck

p
|∇Ω|2

(
|∇Ψ|2L∞ + |2∇ω̂n −∇ω̂n−1|2

)
.

Bounding the linear term in the obvious fashion and again using (3.19)–(3.20), we
arrive at

(3.35)

|[∇ω̂n,∇ω̂n+1]|2νk + pk |∆ω̂n+1|2

≤ |[∇ω̂n−1,∇ω̂n]|2νk
[
1+ cp−1k (M0+ |∇Ω|2)

]
+ 8pk

(
|∇T̂n+1|2+ |∇Ŝn+1|2

)
+ cp−1k

(
M0|Ω|2L∞ + |∇Ω|2|∇Ψ|2L∞

)
+ 8pk

(
|∆Ω|2 + |∇TQ|2 + |∇SQ|2

)
valid for large times nk ≥ t0.

Noting that, for xn ≥ 0, rn ≥ 0 and b > 0,

(3.36) xn+1 ≤ (1 + b)xn + rn ⇒ xn+m ≤ (1 + b)m
(
xn +

∑n+m−1
j=n rj

)
,

we can obtain a uniform H1 bound from (3.33) and (3.35) as follows. Borrowing
an argument from [4], we conclude from (3.33) that there exists an n∗ ∈ {n +
b1/kc, · · · , n+ b2/kc − 1} such that

(3.37) |∇ω̂n∗ |2 + |∇ω̂n∗+1|2 ≤ c M̃0(Q;π) ⇒ |[∇ω̂n∗ ,∇ω̂n∗+1]|2νk ≤ c5 M̃0.

(In other words, in any sequence of non-negative numbers, one can find two con-
secutive terms whose sum is no greater than four times the average.) Taking n∗ ∈
{dt0/ke, · · · , d(t0 + 1)/ke − 1} and integrating (3.35) using (3.36) with m = b2/kc
and (3.33) to bound the |∇T̂n|2 and |∇Ŝn|2 on the rhs, we find

(3.38) |[∇ω̂n,∇ω̂n+1]|2νk ≤M1(Q;π)
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for all n ∈ {n∗, · · · , n∗ + b2/kc − 1}. We then find a n∗∗ ∈ {n∗ + b1/kc, · · · , n∗ +
b2/kc−1} that satisfies (3.37) and repeat the argument to find that (3.38) also holds
for all n ∈ {n∗∗, · · · , n∗∗ + b2/kc − 1}. Since n∗∗ ≥ n∗ + b1/kc, with each iteration
we increase the time of validity of (3.38) by at least 1 using no further assumptions,
implying that (3.38) in fact holds for all n ≥ n∗, i.e. whenever nk ≥ t0 + 1.

Similarly for Ŝn, we multiply (3.12c) by −2k∆Ŝn+1 in L2 to find after a similar
computation

(3.39)

|[∇Ŝn,∇Ŝn+1]|2νk + βk |∆Ŝn+1|2 ≤ |[∇Ŝn−1, Ŝn]|2νk
(
1 + ckβ−1M0

)
+
ck

β
(M0 + |∇SQ|2)

(
|∇Ψ|2L∞ + |∇ω̂n−1|2 + |∇ω̂n|2

)
+
ck

β
M0|Ω|2L∞ + 8βk |∆SQ|2.

Arguing as we did with ω̂n, we conclude that (redefining M1 as needed) one has

(3.40) |[∇Ŝn,∇Ŝn+1]|2νk ≤M1(Q;π) whenever nk ≥ t0 + 1.

Obviously the same bound applies to T̂n,

(3.41) |[∇T̂n,∇T̂n+1]|2νk ≤M1(Q;π) whenever nk ≥ t0 + 1.

As withM0, we redefineM1 to bound |[∇ωn,∇ωn+1]|2νk, etc., as well as |[∇ω̂n,∇ω̂n+1]|2νk.
�

Proof of Theorem 2. Let δUn := Un − Un−1 = Ûn − Ûn−1. We first prove that
|δUn|2 ≤ kM for all large n, and then use this result to prove (3.5).

Writing 3ωn+1 − 4ωn + ωn−1 = 3δωn+1 − δωn and using the identity

(3.42) 2 (3δωn+1 − δωn, δωn+1) = 3 |δωn+1|2 − 1
3 |δω

n|2 + 1
3 |3δω

n+1 − δωn|2,
we multiply (3.1a) by 4kδωn+1,

(3.43)

3 |δωn+1|2 + 1
3 |3δω

n+1 − δωn|2 = 1
3 |δω

n|2

+ 4pk (∆ωn+1, δωn+1) + 4pk (∂xT
n+1 − ∂xSn+1, δωn+1)

− 4k (∂(2ψn − ψn−1, 2ωn − ωn−1), δωn+1).

For the dissipative term, we integrate by parts using the fact that δωn+1 = 0 on
the boundary to write it as

(3.44) −2 (∆ωn+1, δωn+1) = |∇ωn+1|2 − |∇ωn|2 + |∇δωn+1|2.
We bound the nonlinear term as

(3.45)

4
∣∣(∂(2ψn − ψn−1, 2ωn − ωn−1), δωn+1)

∣∣
≤ c |2∇ψn −∇ψn−1|L∞ |2∇ωn −∇ωn−1|L2 |δωn+1|L2

≤ 1
8 |δω

n+1|2 + c |2∇ωn −∇ωn−1|4.
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Bounding the buoyancy terms by Cauchy–Schwarz, we arrive at

(3.46)

2 |δωn+1|2 + 1
3 |3δω

n+1 − δωn|2 + 2pk |∇ωn+1|2 + 2pk |∇δωn+1|2

≤ 1
3 |δω

n|2 + 2pk |∇ωn|2 + ck2 |2∇ωn −∇ωn−1|4

+ cp2k2
(
|∂xTn+1|2 + |∂xSn+1|2

)
≤ 1

3 |δω
n|2 + c(π)

(
kM1 + k2M2

1

)
.

It is now clear that, since δω1 is bounded in L2, we have for large nk

(3.47) |δωn|2 ≤ k c(π)(M1 + kM2
1 ).

Similarly for Ŝn, we multiply (3.12c) by 4kδŜn+1 to find

(3.48)
3 |δŜn+1|2 + 1

3 |3δŜ
n+1 − δŜn|2 = 1

3 |δŜ
n|2 + 4kβ (∆Ŝn+1+ ∆SQ, δŜ

n+1)

− 4k (∂(2ψn− ψn−1, 2Ŝn− Ŝn−1+ SQ), δŜn+1).

Bounding the nonlinear term as we did for ωn,

(3.49)
4
∣∣(∂(2ψn− ψn−1, 2Ŝn− Ŝn−1+ SQ), δŜn+1)

∣∣
≤ 1

8 |δŜ
n+1|2 + c |2∇ωn−∇ωn−1|2(|2∇Ŝn−∇Ŝn−1|2 + |∇SQ|2),

and the linear terms as we did with ωn, we arrive at

2 |δŜn+1|2 + 1
3 |3δŜ

n+1 − δŜn|2 + 2βk |∇Ŝn+1|2 + 2βk |∇δŜn+1|2

≤ 1
3 |δŜ

n|2 + 2βk |∇Ŝn|2 + ck2|2∇Un−∇Un−1|4 + c(β)k2(|∇SQ|4 + |∆SQ|2),(3.50)

whence

(3.51) |δŜn|2 ≤ k c(π)(M1 + kM2
1 ) for large nk.

Obviously a similar bound holds for δT̂n, so we conclude that

(3.52) |δUn|2 ≤ k c(π)(M1 + kM2
1 ) =: kM̃δ for large nk.

By taking difference of (3.1a), we find

(3.53)

3δωn+1 − 4δωn + δωn−1

2k
+ ∂(2ψn−1 − ψn−2, 2δωn − δωn−1)

+ ∂(2δψn − δψn−1, 2ωn − ωn−1) = p
{

∆δωn+1 + ∂xδT
n+1 − ∂xδSn+1

}
.

Multiplying this by 2kδωn+1 and using (3.10), we have

(3.54)

|[δωn, δωn+1]|2νk − νk |δωn+1|2 +
|(1 + νk)δωn+1− 2δωn + δωn−1|2

2(1 + νk)
+ kI

=
|[δωn−1, δωn]|2νk

1 + νk
− 2pk |∇δωn+1|2 + 2pk (∂xδT

n+1− ∂xδSn+1, δωn+1).

Here I = I1 + I2 denotes the nonlinear terms, which we bound as

(3.55)

|I1| ≤ c |2∇ψn−1−∇ψn−2|L∞ |∇δωn+1|L2 |2δωn− δωn−1|L2

≤ p

8
|∇δωn+1|2 +

c

p
|2∇ωn−1 −∇ωn−2|2|2δωn − δωn−1|2

|I2| ≤ c |2∇δψn −∇δψn−1|L4 |2ωn − ωn−1|L4 |∇δωn+1|L2

≤ p

8
|∇δωn+1|2 +

c

p
|2δωn − δωn−1|2|2∇ωn −∇ωn−1|2.
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Bounding the linear terms as

(3.56)
∣∣(∂xδTn+1− ∂xδSn+1, δωn+1)

∣∣ ≤ 1
4 |∇δω

n+1|2 + 2 |δTn+1|2 + 2 |δSn+1|2

and using (3.52), we obtain

(3.57)

|[δωn, δωn+1]|2νk + pk |∇δωn+1|2

≤ 1

1 + νk
|[δωn−1, δωn]|2νk + k2c(π)M̃δ(1 +M1).

Integrating this and the analogous expressions for δTn and δSn, we obtain (3.5)
for nk large.

To prove (3.6), we note that (3.1b) implies

(3.58)
|∆Tn+1| ≤ |∂(2ψn − ψn−1, 2Tn − Tn−1)|+ |3δT

n+1 − δTn|
2k

≤ c |2∇ωn −∇ωn−1| |2∇Tn −∇Tn−1|+ 3|δTn+1|+ |δTn|
2k

.

Since the right-hand side has been bounded (independently of k for the first term
and by Mk for the second) on the attractor Ak, it follows that |∆Tn| is uniformly
bounded on Ak as well. Clearly similar H2 bounds also hold for Sn and ωn, proving
(3.6) and the Theorem. �

Appendix A. 2d Navier–Stokes equations

In this appendix we present an alternate derivation of the boundedness results
in [22], without using the Wente-type estimate of [14] but requiring slightly more
regular initial data. In principle these could be obtained following the proofs of
Theorems 1 and 2 above, but the computation is much cleaner in this case (mostly
due to the periodic boundary conditions) so we present it separately.

The system is the 2d Navier–Stokes equations

(A.1)
3ωn+1 − 4ωn + ωn−1

2k
+ ∂(2ψn − ψn−1, 2ωn − ωn−1) = µ∆ωn+1 + fn

with periodic boundary conditions. It is clear that ωn has zero integral over D,
and we define ψn uniquely by the zero-integral condition. These imply (2.1)–(2.2),
which we will use below without further mention. Assuming that the initial data
ω0, ω1 ∈ H1/2 (in fact, we only need Hε for any ε > 0, but will write H1/2 for
concreteness), we derive uniform bounds for ωn in L2, H1 and H2.

Assuming for now the uniform bound

(A.2) |ωn|2H1/2 ≤ k−1/2Mω(· · · ) for n ∈ {2, 3, · · · },
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we multiply (A.1) by 2kωn+1 in L2, use (3.10) and estimate as before,

(A.3)

|[ωn, ωn+1]|2νk − νk |ωn+1|2 + 2µk |∇ωn+1|2 +
|(1 + νk)ωn+1− 2ωn+ ωn−1|2

2(1 + νk)

=
|[ωn−1, ωn]|2νk

1 + νk
+ 2k (fn, ωn+1)

− 2k (∂(2ψn − ψn−1, ωn+1), (1 + νk)ωn+1 − 2ωn + ωn−1)

≤ |[ω
n−1, ωn]|2νk
1 + νk

+
µk

2
|∇ωn+1|2 +

ck

µ
|fn|2H−1

+
ck

µ
|2∇ψn −∇ψn−1|2L∞ |(1 + νk)ωn+1 − 2ωn + ωn−1|2,

giving (as before, we require k ≤ 1/ν)

(A.4)
|[ωn, ωn+1]|2νk − νk |ωn+1|2 +

3µk

2
|∇ωn+1|2 ≤ |[ω

n−1, ωn]|2νk
1 + νk

+
ck

µ
|fn|2H−1

+ |(1 + νk)ωn+1− 2ωn+ ωn−1|2
(
c3k

1/2Mω/µ− 1
4

)
.

Setting ν = µ/(2c0) and imposing the timestep restriction

(A.5) k ≤ k0 := min{µ2/(4c3Mω)2, 1/ν},
this gives

(A.6) |[ωn, ωn+1]|2νk + µk |∇ωn+1|2 ≤ |[ω
n−1, ωn]|2νk
1 + νk

+
ck

µ
|fn|2H−1 .

Integrating using the Gronwall lemma, we arrive at the L2 bound

(A.7)

|[ωn+1, ωn+2]|2νk + µk |∇ωn+2|2 ≤ e−νnk/2|[ω0, ω1]|2νk +
c

µ2
supj |f j |2H−1

≤ |[ω0, ω1]|2νk +
c

µ2
supj |f j |2H−1 =: M0.

The hypothesis (A.2) is now recovered by interpolation as before,

(A.8)
|ωn|2H1/2 ≤ c |ωn| |∇ωn| ≤ c |[ωn−1, ωn]|νk|∇ωn|

≤ c (µk)−1/2
(
|[ω0, ω1]|2νk + (1/µ+ 1/µ2) supj |f j |2H−1

)
.

Summing (A.6), we find

(A.9) µk
∑n+b1/kc
j=n+1 |∇ω

j |2 ≤ |[ωn−1, ωn]|2νk + cµ supj |f j |2H−1 .

It is clear that both bounds (A.7) and (A.9) can be made independent of the initial
data for sufficiently large time, nk ≥ t0(ω0, ω1; f, µ).

For the H1 estimate, we multiply (A.1) by −2k∆ωn+1 in L2 and use (3.10).
Writing the nonlinear term as

(A.10)

N1 := (∂(2ψn − ψn−1, 2ωn − ωn−1),∆ωn+1)

= (∂(2∇ψn −∇ψn−1,∇ωn+1), 2ωn − ωn−1)

− (∂(2ψn − ψn−1,∇ωn+1),∇((1 + νk)ωn+1 − 2ωn + ωn−1))
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and bounding the terms as

(A.11)

|N1| ≤ c |2ωn − ωn−1|L4 |∇2ωn+1|L2 |2ωn − ωn−1|L4

+ c |2∇ψn−∇ψn−1|L∞ |∇2ωn+1|L2 |∇((1 + νk)ωn+1− 2ωn+ ωn−1)|L2

≤ µ

2
|∆ωn+1|2 +

c

µ
|2ωn − ωn−1|2|2∇ωn −∇ωn−1|2

+
ck−1/2

µ
Mω |∇((1 + νk)ωn+1− 2ωn+ ωn−1)|2,

we find the differential inequality, using the bound (A.7),

(A.12)
|[∇ωn,∇ωn+1]|2νk + µk |∆ωn+1|2 ≤ |[∇ωn−1,∇ωn]|2νk

(
1 + ckM0/µ

)
+ |∇((1 + νk)ωn+1− 2ωn+ ωn−1)|2

(
c3k

1/2Mω/µ− 1
4

)
+ ck |fn|2/µ.

Using the earlier timestep restriction (A.5), we can suppress the second term on the
r.h.s. Thanks to (A.9), for any n ∈ {0, 1, · · · } we can find n∗ ∈ {n, · · · , n+ b1/kc}
such that |[∇ωn∗ ,∇ωn∗+1]|2νk ≤ c(µ)

(
|[ω0, ω1]|2νk+supj |f j |2H−1

)
. Arguing as before,

we can use this to integrate (A.12) to give us a uniform H1 bound

(A.13) |[∇ωn,∇ωn+1]|2νk ≤M1(|∇ω0|, |∇ω1|;µ, supj |f j |)
valid for all n ∈ {0, 1, · · · }. Moreover, M1 can be made independent of the initial
data |∇ω0|, |∇ω1| for sufficiently large n; in fact, we do not even need ω0, ω1 ∈ H1,
although we still need them to be in Hε for the timestep restriction (A.5). Summing
(A.12) and using (A.13), we find

(A.14) µk
∑n+b1/kc
j=n+1 |∆ω

j |2 ≤ M̃1(supj |f j |;µ) for all nk ≥ t1(ω0, ω1, f ;µ).

Similarly, for the H2 estimate, we multiply (A.1) by 2k∆2ωn+1 in L2 and write
the nonlinear term as

(A.15)

N2 := (∂(2ψn − ψn−1, 2ωn − ωn−1),∆2ωn+1)

= −(∂(2∇ψn −∇ψn−1, 2ωn − ωn−1),∇∆ωn+1)

− (∂(2ψn − ψn−1, 2∇ωn −∇ωn−1),∇∆ωn+1).

Bounding this as

(A.16)

|N2| ≤ c |2ωn − ωn−1|L∞ |2∇ωn −∇ωn−1|L2 |∇∆ωn+1|L2

+ c |2∇ψn −∇ψn−1|L∞ |2∇2ωn −∇2ωn−1|L2 |∇∆ωn+1|L2

≤ µ

2
|∇∆ωn+1|2 +

c

µ
|2∇ωn −∇ωn−1|2|[∆ωn−1,∆ωn]|2νk,

we arrive at the differential inequality

(A.17)
|[∆ωn,∆ωn+1]|2νk + µk |∇∆ωn+1|2

≤ |[∆ωn−1,∆ωn]|2νk
(
1 + ckM1/µ

)
+ ck|∇fn|2/µ.

As with (A.12), this can be integrated to obtain the uniform bound

(A.18) |[∆ωn,∆ωn+1]|2νk ≤M2(supj |∇f j |;µ)

valid whenever nk ≥ t2(ω0, ω1, f ;µ).
To bound the difference δωn := ωn − ωn−1, we write (A.1) as

(A.19)
3δωn+1 − δωn

2k
+ ∂(2ψn − ψn−1, 2ωn − ωn−1) = µ∆ωn+1 + fn.
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Multiplying by 4kδωn+1 and using (3.42) and (3.44), we find

(A.20)

3|δωn+1|2 + 1
3 |δω

n+1 − δωn|2 = 1
3 |δω

n|2

+ 2µk|∇ωn|2 − 2µk|∇ωn+1|2 − 2µk|∇δωn+1|2

− 4k(∂(2ψn − ψn−1, 2ωn − ωn−1), δωn+1) + 4k(fn, δωn+1).

Bounding the nonlinear term and suppressing harmless terms, we arrive at

(A.21)

2|δωn+1|2 ≤ 1
3 |δω

n|2 + 2µk|∇ωn|2

+ ck2|2∇ψn −∇ψn−1|2L∞ |2∇ωn −∇ωn−1|2 +
ck2

µ
|fn|2H−1 .

Since the r.h.s. has been bounded uniformly for large nk, we conclude that

(A.22) |δωn|2 ≤ kM̂0(f, µ)

for nk sufficiently large. Arguing as in (3.53)–(3.57), we can improve the bound on
|δωn| to O(k).
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