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Abstract

Thurston’s fibered face theory allows us to partition the set of pseudo-Anosov mapping
classes on di↵erent compact oriented surfaces into subclasses with related dynamical behavior.
This is done via a correspondence between the rational points on fibered faces in the first coho-
mology of a hyperbolic 3-manifold and the monodromies of fibrations of the 3-manifold over the
circle. In this paper, we generalize examples of Penner, and define quotient families of mapping
classes. We show that these mapping classes correspond to open linear sections of fibered faces.
The construction gives a simple way to produce families of pseudo-Anosov mapping classes
with bounded normalized dilatation and computable invariants, and gives concrete examples of
mapping classes associated to sequences of points tending to interior and to the boundary of
fibered faces. As an additional aid to calculations, we also develop the notion of Teichmüller
polynomials for families of digraphs.

1 Introduction

Let S be a compact connected oriented surface of finite type. A mapping class � : S ! S is a
self-homeomorphism of S considered up to isotopy relative to the boundary of S. By the Nielsen-
Thurston classification, mapping classes that are not periodic or reducible have the property that
for any essential simple closed curve � on S and any Riemannian metric !, the growth of the
sequence

`!(�
n(�))

is exponential, and furthermore the growth rate

� = lim
n!1

`!(�
n(�))

1
n

is independent of � and ! (see [Thu2], [FM]). The growth rate �(�) = � is called the dilatation of
�. Let P be the set of all pseudo-Anosov mapping classes.

⇤This work was partially supported by a grant from the Simons Foundation (#209171 to Eriko Hironaka).
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In this paper, we investigate special families Q of intrinsically defined mapping classes with simple
defining data, called quotient families. We show that quotient families correspond to the mon-
odromy of linear segments on a fibered face of a 3-manifold, allowing us to describe the behavior
of the normalized dilatation

L(S,�) = �(�)|�(S)|,

for (S,�) 2 Q.

Quotient families. Quotient families are defined as follows. Let eS be an oriented surface of infinite
type with a properly discontinuous Z-action generated by a map ⇣ : eS ! eS and a fundamental
domain ⌃ that is of finite type, connected and compact. A mapping class (X, f) is supported on
Y ⇢ X if f is the identity outside of Y . Let b� : eS ! eS be a mapping class supported on Y , where,
for some m0 � 1,

Y ⇢ ⌃ [ ⇣⌃ [ · · · [ ⇣m0�1⌃.

Let Jm0 = (0, 1
m0

) \Q be the rational points in the open interval from 0 to 1
m0

.

We will always write ↵ 2 Jm0 as a fraction in reduced form, i.e., ↵ = k
m , i.e., k,m are positive

integers, and (k,m) = 1. Let (S↵,�↵) be defined by

S↵ = eS/⇣m,

and
�↵ = ra⌘,

where r is induced by ⇣, ⌘ is induced by b�, and ak = 1(mod m). We call the collection

Q(eS, ⇣, b�) = {(S↵,�↵) : ↵ 2 Jm0}

the quotient family associated to (eS, ⇣, b�), and Jm0 the parameter set.

We say (⇣ b�)m stabilizes if there is a mapping class e� : eS ! eS that commutes with ⇣ and satisfies

e�(s) = ⇣�m(⇣ b�)m(s)

for all m � m0 and s 2 eS. In this case, the restriction of e�(s) to ⌃ determines a mapping class
� on the quotient surface S = eS/(⇣). In this case we say Q(eS, ⇣, b�) is a Type I quotient family.
Otherwise, it is of Type II.

Theorem 1.1 If Q(eS, ⇣, b�) is of Type I, then

lim
↵!0

L(S↵,�↵) = L(S,�);

and if it is of Type II, then
lim
↵!0

L(S↵,�↵) = 1.

In [Pen], Penner constructed a sequence of mapping classes (Sg,�g) 2 P, g � 2, where Sg is a
surface of genus g and two boundary components, and L(Sg,�g) is bounded. He uses these to show
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that, the minimum dilatation �g of pseudo-Anosov mapping classes on closed surfaces Sg of genus
g behaves asymptotically like

�g ⇣ 1

g
.

In [Val], Valdivia showed that Penner’s sequence and some generalizations have the property that its
normalized dilatations are bounded, and that furthermore their mapping tori are homeomorphic.
The results in this paper show further that Penner’s sequence (and its generalizations in [Bau,
Val, Tsa]) can be thought of as a Cauchy sequence in a quotient family, and hence are Cauchy
sequences on a one-dimensional linear section of a single fibered face. This information makes it
possible to explicitly calculate defining polynomials (Alexander and Teichmüller polynomials) for
the homological and geometric dilatations, as well as other properties (see Section 5.1).

Fibered faces. Thurston’s theory of fibered faces [Thu1] gives a way to associate pseudo-Anosov
mapping classes to rational points on open a�ne polyhedra F↵.

Let M be a fibered 3-manifold with first Betti number b = b1(M) � 2. Choose an identification of
H1(M ;R) = Rb defined over the integers. An integral element ↵ 2 H1(M ;Z) is said to be fibered
if it is dual to the fiber S↵ of a fibration  ↵ : M ! S1. The monodromy of  ↵ is a mapping class
denoted (S↵,�↵). In [Thu1], Thurston defines a norm || || on Rb so that if ↵ 2 H1(M ;Z) is fibered
then

|| ↵|| = |�(S↵)|,

where �(S) is the topological Euler characteristic of the fiber surface S↵. The Thurston norm
ball is a convex polyhedron, and the top dimensional faces F have the property that either all the
integral points in the cone F · R+ are fibered or none are. In the former case we say F is a fibered
face. Given a rational point ↵ on a fibered face F , there is a unique integral point, with relatively
prime coe�cients, on the ray emanating from the origin and passing through ↵. This point is dual
to the fiber of a fibration of  ↵ : M ! S1, and it is characterized by the property that it is the
unique integral element on the ray such that  has monodromy (S↵,�↵) where S↵ is connected.
In this way, each fibered face defines a family of fibrations  (M,F ) of M over the circle. Their
monodromies P(M,F ) can be identified with rational points on F so that the denominator of a
rational point ↵ on a fibered face equals |�(S↵)|.

The restriction of the normalized dilatation L to P(M,F ) defines a real-valued function on the
rational points of F . By a theorem of Fried [Fri], the function L extends to a continuous convex
function on F going to infinity toward the boundary of F (cf. [Mat, LO, McM1]). It follows that
if F has dimension greater than or equal to 1 (or, equivalently, b1(M) � 2) then compact subsets
of F give rise to families of mapping classes with bounded normalized dilatation and unbounded
topological Euler characteristic.

Theorem 1.2 Let Q(eS, ⇣, b�) be a quotient family. Then there is a 3-manifold M , and an embedding
A : (0, 1

m0
) ! T , where T is a one-dimensional linear segment of a fibered face F , and the rational

points of (0, 1
m0

) map to the rational points of T . Furthermore, If (eS, ⇣, b�) is of Type I, A extends
over 0 to an interior points of F , if it is of Type II, it extends over 0 to a boundary point of F .

Theorem 1.2 implies Theorem 1.1.
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Polynomial invariants. One of the advantages of realizing a family of mapping classes as mon-
odromies on a single fibered face is that one can compute invariants such as homological and
geometric dilatations from multivariable Alexander and Teichmüller polynomials. Since Theo-
rem 1.2 implies that each quotient family Q lies on a single fibered face, there is a single Alexander
polynomial and a single Teichmüller polynomial computable from one element of Q from which all
homological and geometric dilatations of mapping classes in Q can be computed (see Section 4 and
Section 5). Thus, by studying the dynamics of a single member of the quotient family, one can
determine whether the family is of Type I or Type II, and other properties such as which elements
in the family have orientable stable and unstable foliations.

Outline of paper. This paper is organized as follows. In Section 2 we give properties of mapping
classes on fibered faces. In Section 3, we prove Theorem 1.2. Applying the theory of fibered faces
and Teichmüller polynomials, we use Theorem 1.2 to give a simple method for computing Alexander
and Teichmüller polynomials for quotient families. We study examples of Type I and Type II
quotient families in Section 5 including generalizations of Penner sequences, and in Section 6, we
discuss a question of Farb, Leininger and Margalit concerning the structure of small dilatation
pseudo-Anosov mapping classes.

Acknowledgements. I would like to thank H. Sun for careful reading and useful comments on
earlier drafts of this paper, B. Farb, S. Fenley, V. Gadre, E. Kin, C. Leininger, C. McMullen, and
J. F. Valdez for helpful conversations and suggestions, and the Tokyo Institute of Technology and
University of Tokyo for their hospitality and support.

2 Fibered faces and linear deformations of pseudo-Anosov maps

In this section, we review properties of the monodromies of fibrations of a hyperbolic 3-manifold
over the circle. We show that the set P of pseudo-Anosov mapping classes partitions into disjoint
subfamilies P(M,F ) corresponding to rational points on F , where M is a hyperbolic 3-manifold
and F is a fibered face. We describe the mapping classes in P(M,F ) using abelian unbranched
coverings. This exposition expands on the discussion in [McM1] (Theorem 10.2).

Given (S,�), let M be the mapping torus

M = S ⇥ [0, 1]/(s, 1) ⇠ (�(s), 0).

Let  2 H1(M ;Z) be the element induced by the corresponding fibration M ! S1 over the circle.
Let M ! M be the cyclic covering over M defined by the epimorphism

⇡1(M) ! Z

induced by  .

Cut and paste description of M . The manifoldM has the following cut and paste description.
Let C = S ⇥ [0, 1]. Let M is the union of copies Cj of C, for j 2 Z. Each Cj is glued to Cj+1

by identifying (s, 1)j with (�(s), 0)j+1. Define ⇢ : M ! M to be the map that sends (s, t)j to the
equivalence class of (s, t) in M .
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Lemma 2.1 The map M ! M is a cyclic covering map, and the map T : M ! M defined by

T (s, t)j = (s, t)j�1

generates the group of covering automorphisms of M over M .

Proof. By the definition of mapping torus, M is the quotient of C by the identification

(s, 1) ⇠ (�(s), 0).

Since
⇢(s, 1)j = (s, 1) = (�(s), 0) = ⇢(�(s), 0)j+1,

⇢ is well-defined. Since

T (s, 1)j = (s, 1)j�1 = (�(s), 0)j = T (�(s), 0)j+1,

the map T is well defined on M , and since

⇢T (s, t)j = ⇢(s, t)j�1 = (s, t) = ⇢(s, t)j ,

T is a covering automorphism.

A flow on a manifold X is a continuous map

f : X ⇥ R ! X,

with the property that, the maps fv : X ! X defined by fv(x) = f(x, v) satisfy

fu+v = fu � fv.

Because of the additive property, to define f it su�ces to define fv for small v > 0.

Define a flow
fv : M ! M ,

such that for small v > 0

fv(s, t)j =

⇢
(s, t+ v)j if 0 < t, and t+ v < 1
(��1(s), v)j+1 if t = 1 and 0 < v < 1

This kind of flow is called a suspension flow, and it induces a circular suspension flow on M with
cross seciton S (see, for example, [Fri]).

Lemma 2.2 The flow fv has the property that

f1T (s, t)j = (��1(s), t)j

for all j 2 Z.
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Lifting to an infinite covering. Let H = H1(M ;Z)/Tor ' Zk, and let

h : ⇡1(M) ! H

be the Hurewicz map composed with the quotient map H1(M ;Z) ! H1(M ;Z)/Tor. Then h
determines a regular Zk covering

e⇢ : fM ! M,

of M with group of covering automorphisms H.

The element  2 H1(M ;Z) induces a homomorphism,  : ⇡1(M) ! Z, which factors through h.
Thus, we have an intermediate covering

fM

e⇢

✏✏

!!B
BB

BB
BB

BB

M 

⇢ }}zz
zz
zz
z

M.

By an H-isotopy of fM , we mean a continuous map

I : fM ! [0, 1] ! fM,

such that for fixed t 2 [0, 1], It(x) = I(x, t) defines a homeomorphism commuting with H. As a

covering space, fM is well-defined up to H-isotopy.

Let e� be a lift of � to eS. The identification M =
S

j Cj lifts to an identification

fM =
[

j

eCj ,

where eCj = eS ⇥ [0, 1] and eCj is glued to eCj+1 by

(s, 1)j = (e�(s), 0)j+1.

The covering map T� lifts to

eT� : fM ! fM
(s, t)j 7! (s, t)j�1.

The flow fv also lifts to
efv : fM ! fM,

so that
ef1(s, t)j = (e��1(s), t)j+1,
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Lemma 2.3 The flow ef⌫ satisifes

efm eTm
� (s, t)j = (e��m(s), t)j

for all (s, t)j 2 fM .

Deformations of  via coverings. All the elements of  (M,F ) and their associated monodromy
in P(M,F ) can be described in terms of the covering e⇢ and the flow ef⌫ as we will now explain.

Take any ↵ 2  (M,F ), and let K↵ ⇢ H be the kernel of the induced map

↵ : H ! Z.

Then ↵ determines another free cyclic intermediate covering

fM

e⇢

✏✏

!!C
CC

CC
CC

CC

M↵

⇢↵}}{{
{{
{{
{{

M,

where M↵ = fM/K↵. Let eT↵ 2 H be a solution to ↵( eT↵) = �1, and let T↵ be the induced map on

M↵. If (S↵,�↵) is the monodromy of ↵, then there is a corresponding flow ef (↵)
v on fM .

Theorem 2.4 ([Thu1, Thu2, Fri]) The flows ef (↵)
v and efv defined on fM are H-isotopic. Further-

more, ↵ 2 H1(M ;Z) is in the same fibered cone as  if and only if the dual to ↵ is a cross-section
of the flow efv.

Using Theorem 2.4, we can find �↵ as follows. Let eS↵ be the preimage of a vertical section S↵ ⇢ M
in fM . Then eS↵ has the property that K↵ leaves eS↵ invariant, and S↵ = eS↵/K↵.

Let e�↵ be the map on eS↵ defined as follows. Take any x 2 eS↵, and let v(x) � 0 be the smallest
number so that efv(x)( eT↵(x)) 2 eS↵. (The existence of v(x) is a necessary and su�cient condition for

↵ to lie in the fibered cone.) Let e�↵ satisfy

e��1
↵ (x) = efv(x)( eT↵(x)). (1)

Then e�↵ commutes with the action of K↵ on eS↵, and defines a map �↵ on S↵.

To summarize, starting with a single mapping class (S,�) 2 P(M,F ), we can reconstruct the
neighboring monodromy of M as follows.

1. Define from (S,�) a flow
efv : fM ! fM.
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2. For each ↵ 2  (M,F ), find a surface eS↵ in fM that is invariant under the action of the kernel
K↵ of

↵ : H ! Z.

3. The monodromy of ↵ is (S↵,�↵), where S↵ = eS↵/K↵ and �↵ can be found by solving ↵( eT↵) =
�1 and applying the flow efv as in Equation (1).

Linear deformations. By restricting attention to sections of a fibered face F by linear subspaces,
we simplify the structure of the coverings fM and eS.

Let k be an integer satisfying
0 < k  b1(M)� 1.

The k-dimensional linear subspaces of F are in one-to-one correspondence with k + 1 dimensional
subspaces of H1(M ;R). For example, let

{ ,�1, . . . ,�k} ⇢ H1(M ;R),

be a set of linearly independent integral elements, and let I be the k-dimensional linear section of
F cut by the subspace of H1(M ;R) generated by { ,�1, . . . ,�k}. Then I is a linear section of F
containing the projection of  .

The integral points in the cone in H1(M ;R) over I can be analyzed via the Zk+1-covering of M
determined by the natural map

⇡1(M) ! H ,�1,...,�k ,

where
H ,�1,...,�k = Hom(h ,�1, . . . ,�ki,Z).

In particular, a linear deformation of a mapping class (S,�) 2 P(M,F ) is the intersection of
rational elements in a neighborhood of the projection ↵ of  to F and a one dimensional linear
section of F passing through ↵ .

3 Quotient families

In this section, we define quotient families Q(eS, ⇣, b�), and prove Theorem 1.2.

We start with a triple (eS, ⇣, b�) consisting of the following. The surface eS is a connected, oriented,
infinite type surface, which is locally of finite type, and b� : eS ! eS is a self-homeomorphism. There
is a compact connected subsurface ⌃ ⇢ S of finite type, and a finite union of boundary components
and subarcs of boundary components ⌧� ⇢ S with the property that

⇣�1⌃ \ ⌃ = ⌧�

and
⇣i⌃ \ ⌃ = ;
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if i > 1. Let ⌧+ = ⇣⌧�, and ⌧±i = ⇣i(⌧±). The subsurface ⌃ is called a fundamental domain for

⇣. We can think of eS as being obtained by gluing together i copies of ⌃, namely ⌃i = ⇣i⌃, by
identifying ⌧+i with ⌧�i�1, where ⌧

±
i = ⇣i⌧± (see Figure 1).

The mapping class b� : eS ! eS is supported on the set

Y = ⌃ [ ⇣⌃ [ · · · [ ⇣m0⌃,

for some m0 > 1.

Figure 1: Example of a Z-surface with ⌧ = ⌧1 [ ⌧2.

Let
b�i = ⇣ib�⇣�i.

For integers m > m0, the maps {b�im : i 2 Z} commute with each other. Define

b�m-rep = �i2Zb�im.

Figure 2: Quotient surface Sm, where m = 3.

Let Jm0 =
⇣
0, 1

m0

⌘
\ Q. The associated quotient family Q(eS, ⇣, b�) consists of mapping classes

(S↵,�↵), for ↵ 2 Jm0 defined as follows. We will always represent ↵ as k
m , where m > m0,

0 < k < m, and (m, k) = 1. The surface S↵ is the quotient

S↵ = eS/⇣m.

(See Figure 2.) Let r and ⌘ be the mapping classes on S↵ induced by ⇣ and b�0. Since m > m0,
both these are well defined. Let �↵ : S↵ ! S↵ be defined by

�↵ = ra⌘,
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where a is the multiplicative inverse of k modulo m.

From the definitions we have the following.

Lemma 3.1 The mapping class (eS, e�↵) lifts (S,�↵), where

e�↵ = ⇣ab�m-rep.

Overview of proofs.

Starting with a triple (eS, ⇣, b�) and ↵ = k
m 2 Jm0 , we construct

(i) an unbranched covering fM (↵) ! M (↵) of a 3-manifold M (↵);

(ii) generators eT (↵), Z(↵) : fM (↵) ! fM (↵) for the group of covering automorphisms H(↵) of fM (↵)

over M (↵);

(iii) subsurfaces eX(↵)
v ⇢ fM (↵), for v 2 R (marked as the images of embeddings q(↵)v : eS ! fM (↵));

(iv) a flow ef (↵)
v on fM (↵), so that ef (↵)

v ( eX(↵)
⌘ ) = eX(↵)

⌘+v for all t 2 R that commutes with eT (↵) and

Z(↵);

(v) a homeomorphism R(↵) : fM (↵) ! fM (↵) with the property that R(↵) restricts to a homeomor-

phism on each eX(↵)
v , and, for s 2 eS,

R(↵)(q(↵)v (s)) = q(↵)v (⇣(s)),

and

(vi) a map bT (↵) with the property that ( bT (↵))m = eT , and ef (↵)
1
m

bT (↵) restricts to a homeomorphism

on each eX(↵)
v and for v = 0, it satisfies

ef (↵)
1
m

bT (↵)(q(↵)0 (s)) = q
(↵)
0 (b��1

m-rep(s)).

We then show that (fM (↵), ef (↵), eT (↵), Z(↵)) are independent of ↵; the monodromy of A(↵) is the
element (S↵,�↵) 2 Q(eS, ⇣, b�); and describe an extension of A to (� 1

m0
, 1
m0

), whose image outside
of 0 lies on fibered faces.

Cutting and pasting on a 3-manifold with a flow.

Consider a 3-manifold eN (possibly infinite type) with a flow tv : eN ⇥ R ! eN . We will construct a
new 3-manifold and flow from a cross-section eY ⇢ eN , a system of self-homeomorphisms of eY , and
a positive real number µ > 0.

A cross-section eY ⇢ eN of tv is a surface (possibly infinite type) with the property that
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(i) for each y 2 eY , tv(y) 2 eY if only if v = 0, and

(ii) for all z 2 eN , there is an y 2 eY and v 2 R such that tv(y) = z.

Let b�i : eY ! eY be any sequence of homeomorphisms. We define a new 3-manifold eP and a flow

f
(µ)
v on eP .

For v 2 R, define
eYv = etv(eY ),

and

qv : eY ! eYv
y 7! tv(y).

We use the translated surfaces eYiµ, i 2 Z, as cutting loci.

Each eY (µ)
iµ cuts eN into two sides, ( eN (µ)

iµ )±, where

( eN (µ)
iµ )+ = {tv(y) : v � 0, y 2 eY (µ)

iµ },

and
( eN (µ)

iµ )� = {tv(y) : v  0, y 2 eY (µ)
iµ }.

Let (eY (µ)
iµ )± ⇢ ( eN (µ)

iµ )± be the two sides of eY (µ)
iµ lying on the boundary of ( eN (µ))±. Let q±iµ : eY !

(eY (µ)
iµ )± be the parameterizations defined by qiµ. Let eP be obtained from eN by cutting along eY (iµ)

iµ

and regluing so that
q�iµ(s) = q+iµ(

b�i(s)).

For ⌘ 62 Zµ, the surfaces eY (µ)
⌘ lie outside the cut locus in eN , and hence determine surfaces in eP , and

qv : eY ! eY (µ)
v is well defined. For i 2 Z, the map qiµ determines an identification eY ! (eY (µ)

iµ )±,

which we also denote by q±iµ. Let

eCi =
⇣
eN (µ)
iµ

⌘+
\
⇣
eN (µ)
(i+1)µ

⌘�
[ qiµ(eY ).

The flow tv on eN induces a flow èv on eP defined for small v > 0 by

è
v(z) =

(
tv(z) if z, tv(z) 2 eCi

tv(qiµ(b��1
i (s))) if z = qiµ(s), for s 2 eS.

We say that ( eP , qv, èv) is obtained from ( eN, tv, eY , b�i, µ) by cutting and pasting.

Intermediate Construction.

Let eN = eS ⇥ R. Let

Z : eN ! eN
(s, t) 7! (⇣(s), t).
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Let tv be the flow on eN defined by tv(s, t) = (s, t+ v). Let eSv = eS ⇥ {v} for v 2 R.

Let

p : eS ! R (2)

be a continuous map with the property that

(i) p(⇣(s)) = p(s) + 1, for all s 2 eS,

(ii) p(⌃) ⇢ [0, 1], and

(iii) ⌧� = p�1(0).

For ↵ = k
m 2 Jm0 define eY (↵) ⇢ eN to be the image of q(↵), where

q(↵) : eS ! eN (3)

s 7! (s,�↵p(s)).

Let b�i = ⇣ib�⇣�i and define ( eP (↵), q
(↵)
v , è(↵)v ) be obtained from ( eN, tv, eY (↵), b�i, 1

m) by cutting and
pasting as above.

Lemma 3.2 The restriction of Z on eY (↵)
v is given by

Z : eY (↵)
v ! eY (↵)

v+↵

q(↵)v (x) 7! q
(↵)
v+↵(⇣(x)).

Proof. Let x 2 eY , and x0 = ⇣(x). Then

Z(q(↵)0 (x)) = Z(x,�↵p(x))
= (x0,�↵p(⇣�1(x0)))

= (x0,�↵(p(x0)� 1))

= è(↵)
↵ (x0,�↵p(x0))

= è(↵)
↵ q

(↵)
0 (x0)

= q(↵)↵ (x0)

The statement follows since Z and tv commute.

Lemma 3.3 The map Z determines a homeomorphism Z(↵) of eP (↵) that commutes with the flow
è(↵)
v .
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Proof. Any point in eP (↵) is of the form q
(↵)
u (x), for some u 2 R and x 2 eY (↵). Thus, by Lemma 3.2,

for small v, and u 62 Z↵, we have

è(↵)
v (Z(q(↵)u (x))) = è(↵)

v (q(↵)u+↵(⇣(x)))

= q
(↵)
v+u+↵(⇣(x))

= Zq
(↵)
v+u(x)

= Z(èv(q(↵)u (x))).

We call ( eP (↵), Z, bT (↵), è(↵)v ) the pre-covering constructed from (eS, ⇣, b�, q(↵)).

Construction of fM (↵).

We now cut eP (↵) further to make a 3-manifold fM (↵) with a translation eT (↵), and a flow ef (↵)
v that

is eT (↵)-invariant.

Consider
eN1 = {(s, v) : s 2 eS, v 2 [�1, 0]} ⇢ eN.

Let eP (↵)
1 ⇢ eP (↵) be the submanifold obtained by restricting the cutting and gluing to eN1.

Lemma 3.4 The surface eS�1 = eS ⇥ {�1} ⇢ eN1 is not a↵ected by the cutting and gluing, and the
flow èv equals the trivial flow tv on eS�1 for v 2 [0, 1� ↵m0].

Proof. Recall that �0 is the identity on ⌧� ⇢ ⌃, and the support of b�0 is contained in

⌃ [ ⇣⌃ [ · · · [ ⇣m0�1⌃.

It follows that èv = tv on eS�1 \ eY (↵)
i↵ for all v 2 [0, 1� ↵m0].

Identify eS�1 and eS0 with their images in eP (↵)
1 after cutting and pasting. Each eSi, for i = �1, 0,

is identified with eS by the product structure of eN . These can be thought of as the ends of eP (↵).
The map Z(↵) induces a discrete action on eN and stabilizes the eSi for all i. Thus, it also induces a

discrete action on eN1 and eP (↵)
1 that stabilizes the ends. For i 2 Z, let eP (↵)

i be a copy of eP (↵)
1 . Let

fM (↵) be the 3-manifold obtained by gluing together the eP (↵)
i so that, for each i 2 Z, the positive

end of P (↵)
i glues to the negative end of eP (↵)

i+1. By the triviality of è(↵)v on eS�1 for v small, the flows
è(↵)
v on each eP (↵)

i patch together to form a flow on fM (↵), which we will denote by ef (↵)
v .

Figure 3 illustrates an example of fM (↵). The slanted lines are the images of q(↵)i↵ , and the locus

where èv is not trivial is thickened.

Define

eT (↵) : fM (↵) ! fM (↵)

(x)j 7! (x)j�1

13



Figure 3: The manifold fM ( 25 ) and flow f
( 25 )
v with m0 = 2.

for (x)j 2 eP (↵)
j and j 2 Z.

For ↵ = k
m > 0, define

bT (↵) : eP ! eP

so that for 0 < v < 1
m , and s 2 eS,

bT (↵)(q(↵)v (s)) = q
(↵)

v� 1
m

(s),

and
bT (↵)((q(↵)

i 1
m

)+(s)) = (q(↵)
(i�1) 1

m

)+(s).

The map bT (↵) is only right continuous with respect to v, and its locus of discontinuity lies in

[

i2Z

eY (↵)
i
m

.

Lemma 3.5 The maps Z(↵) and bT (↵) commute.

Proof. For 0  v < 1
m , s 2 eS, we have

Z(↵) bT (↵)( efvq i
m
(s)) = Z(↵) efvq(↵)i�1

m

(s)

= efvZ(↵)q
(↵)
i�1
m

(s)

= efvq(↵)i+k�1
m

(⇣(s))

= bT (↵)( efvq(↵)i+k
m

(⇣(s)))

= bT (↵)Z(↵)( efvq(↵)i
m

(s)).

14



The map bT (↵) on eP1 determines a unique map bT (↵) : fM (↵) ! fM (↵) that commutes with eT (↵). Let
b�m-rep : eS ! eS be the composition

b�m-rep := �
i2Z
b�mi.

This is well-defined since the �mi have disjoint supports for i 2 Z, and we have

b��1
m-rep = �

i2Z
b��1
mi .

Lemma 3.6 For small 0  v < 1
m we have

ef (↵)
1
m

bT (↵)(q(↵)v (s)) = q(↵)v (b��1
m-rep(s)).

Proof. On eP1, we have, for s 2 eS and 0  v < 1
m ,

ef (↵)
1
m

bT (↵)( ef (↵)
v q

(↵)

i 1
m

(s)) = ef (↵)
1
m

bT (↵)eq(↵)
i 1
m+v

(b��1
i (s))

= ef (↵)
1
m

q
(↵)

(i�1) 1
m+v

(b��1
i (s))

= ef (↵)
v q

(↵)

i 1
m

(b��1
i (s)).

The rest follows by commutativity of bT (↵) and ef (↵)
v with eT (↵).

Although bT (↵) is not continuous, the m-th power of bT (↵) is continuous as we see in the following.

Lemma 3.7 For ↵ = k
m 2 Jm0,

eT (↵) = ( bT (↵))m.

Let X(↵)
v = eY (↵)

v \ eP1. Since eT (↵) sends X(↵)
1 \ eS0 to X

(↵)
0 \ eS�1,

eX(↵)
0 =

[

i2Z
( eT (↵))i X(↵)

i

is a subsurface of fM (↵), and for each v 2 R

eX(↵)
v =

[

i2Z
( eT (↵))i X(↵)

v+i =
ef (↵)
v
eX(↵)
0 .

The following is a direct consequence of the definitions.

Lemma 3.8 The map eT (↵) sends each eX(↵)
v to eX(↵)

v�1.

15



Corollary 3.9 The surfaces eX(↵)
v are stabilized by the action of ( eT (↵))k(Z(↵))m.

Proof. By Lemma 3.2, the map (Z(↵))m sends eX(↵)
v to eX(↵)

v+k. The rest follows from Lemma 3.8.

Define
R(↵) = Z(↵)( bT (↵))k.

Lemma 3.10 The map R(↵) preserves each eX(↵)
v and we have, for s 2 eS,

R(↵)(q(↵)v (s)) = q(↵)v (⇣(s)).

Proof. Take s 2 eS. By Lemma 3.2, we have

R(↵)(q(↵)v (s)) = Z(↵)( bT (↵))k(q(↵)v (s))

= Z(↵)(q(↵)v�k(s))

= q(↵)v (⇣(s)).

We call (fM (↵), Z, bT (↵), ef (↵)
v ) the covering manifold constructed from (eS, ⇣, b�, q(↵)).

Independence of ↵.

We will show that (fM (↵), Z, eT (↵), ef (↵)
v ) are independent of ↵ 2 (0, 1

m0
), and hence define a single

covering fM ! M with covering automorphisms generated by Z(↵) and eT = eT (↵), and a flow
efv = ef (↵)

v .

Lemma 3.11 For each ↵,↵0 2 (0, 1
m0

), there is a homeomorphism

h : fM (↵) ! fM (↵0)

such that

(1) h � Z = Z � h,

(2) h � ef (↵)
v = ef (↵0)

v � h, for v 2 R, and

(3) h � eT (↵) = eT (↵0) � h.

Proof. Define a homeomorphism
h1 : eN1 ! eN1

16



by

h1(s, v) =

(
(s, (v + 1)(1�↵

0m0
1�↵m0

)� 1) if v 2 [�1,�↵m0]

(s,�↵0m0 +
↵0

↵ (v + ↵m0)) if v 2 [�↵m0, 0]

Then h1( eX(↵)) = eX(↵0), and h1 commutes with Z. Thus h1 also defines a homeomorphism

h1 : eP (↵) ! eP (↵)

that commutes with Z and satisfies
h1f

(↵)
v = f (↵0)

v h1.

Since the map h1 is the identity when restricted to eSi, for i = �1, 0, the map extends to a
homeomorphism h : fM (↵) ! fM (↵0) with the desired properties.

We will say (fM,Z, eT , efv) is the covering manifold defined by (eS, ⇣, b�, q(↵)), for ↵ 2 Jm0 .

Linear section of a fibered face of M .

Let H be the group of covering automorphisms of fM over M . This is generated by eT and Z. The
duals  and � of eT and Z generate a free abelian group of rank 2 in H1(M ;Z). Let

A : Jm0 ! H1(M ;Z)

↵ =
k

m
7!  ↵ = m + k�

The map A determines a continuous map

A : (0,
1

m0
) ! H1(M ;R),

whose images lie on fibered faces of the Thurston norm ball. That is A is defined by

A(↵) =
 ↵

|| ↵||
.

We prove Theorem 1.2, in two steps. First we will show that for ↵ 2 Jm0 , (S↵,�↵) is the monodromy
of  ↵. Next we show that the map A extends continuously over 0, and A(0) is fibered if and only
if (eS, ⇣, b�) is of Type I.

Fix ↵ = k
m 2 Jm0 . Since  ( eT ) = �1 and �(Z) = 1 by construction, eT kZm generates the kernel of

↵. Thus, by Corollary 3.9, the kernel of ↵ stabilizes eX(↵)
v for all v 2 R.

Let �(↵) 2 H so that

(i) ↵(�(↵)) = �1, and

(ii) ef (↵)
1
m

�(↵) preserves eY (↵)
v for all v.

17



Lemma 3.12 The mth power (R(↵))m generates the kernel of  ↵ restricted to H and preserves
eXv ⇢ fM for all v 2 R.

Proof. By Lemma 3.7

(R(↵))m = (Z( bT (↵))k)m

= Zm( bT (↵))km

= Zm eT k

Let a, b 2 Z be solutions to
ak + bm = 1.

and define
�(↵) = Z�a eT b 2 H.

Then �(↵) is a solution to
↵(�(↵)) = �1.

Lemma 3.13 We have �(↵) = bT (↵)(R(↵))�a and hence the surfaces eX(↵)
v are stabilized by ef (↵)

1
m

�(↵).

Proof. We have

�(↵) = Z�a eT b

= Z�a( bT (↵))bm

= Z�a( bT (↵))1�ak

= bT (↵)(R(↵))�a.

Thus, for all v 2 R, �(↵) maps eX(↵)
v to bT (↵)( eX(↵)

v ). Since ef (↵)
1
m

bT (↵) preserves eX(↵)
v the claim follows.

Let �(�↵) = Za eT b. Then  �↵(�(�↵)) = �1. Let R(�↵) = Z( bT (�↵))k. Then R(�↵) preserves eX(�↵)
v

and
R(�↵)q(�↵)v (s) = q(�↵)v (⇣(s)).

Lemma 3.14 We have �(�↵) = ( bT (�↵))�1(R(�↵))a and hence the surfaces eX(�↵)
v are stabilized by

ef (�↵)
1
m

�(�↵).
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Proof. Analogously to Lemma 3.13, we have

�(�↵) = Za eT b

= Za( bT (�↵))�bm

= Za( bT (�↵))ak�1

= ( bT (�↵))�1(R(�↵))a.

Proof of Theorem 1.2. Take s 2 eS. Then
ef (↵)
1
m

�(↵)q(↵)(s) = ef (↵)
1
m

bT (↵)(R(↵))�aq(↵)(s)

= ef (↵)
1
m

bT (↵)q(↵)(⇣�a(s))

= q(↵)(b��1⇣�a(s)).

It follows that �↵ lifts to ⇣a � b�m-rep, and hence �↵ = ra⌘, where r and ⌘ are the maps on S↵

induced by R and b�m-rep.

We now show that we can complete the map A continuously over 0.

Suppose (eS, ⇣, b�) is of finite type. Then

(⇣ b�)m = ⇣m�m0(⇣ b�)m0 ,

for all m > m0. Let b�i = ⇣ib�⇣�i. Fix m > m0.

Lemma 3.15 The b�i have the following property that

b�i�m+1 · · · b�i = b�i�m0+1 · · · b�i
for all m � m0 and i 2 Z.

Proof.

b��m+1 · · · b�0 = ⇣�m+1b�⇣m�1⇣�m+2b�⇣m�2 · · · b�
= ⇣�m(⇣ b�)m

= ⇣�m0(⇣ b�)m0

= b��m0+1 · · · b�0
The rest follows by conjugating by ⇣i.

Let e� : eS ! eS be defined so that if s 2 ⌃i, then

e�(s) = b�i�m+1 · · · b�i(s).

This is well-defined for m > m0, since if s 2 ⌧+i = ⌧�i+1, then
b�i+1(s) = s, and

b�i�m+2 · · · b�i+1(s) = b�i�m+2 · · · b�i(s)
= b�i�m0+1 · · · b�i(s).
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Lemma 3.16 The maps ⇣ and e� commute as functions on eS.

Proof. Let s 2 ⌃. Then we have

⇣ e�(s) = ⇣ b��m0+1
b��m0+1 · · · b�0(s)

= b��m0+2 � · · · � b�0 � b�1(⇣(s))
= e�(⇣(s)).

Let S = eS/⇣ and let � : S ! S be the mapping class determined by e�.

Lemma 3.17 The cohomology class  is a fibered element satisfying

 

|| || = lim
m!1

A(
1

m
)

on F , and (S,�) is the associated monodromy.

Proof. The projection of  to F is the limit of the projections A( 1
m) of

m + �, m > m0

on F and hence equals  
|| || . The element eT satisfies  ( eT ) = �1, and sends eSi to eSi�1. For m > m0

and s 2 eS0,

f
( 1
m )

1
eT (s) = e�(s).

Thus, (S,�) is the monodromy associated to  , and the claim follows.

Remark 3.18 In the language of deformations in P, if (eS, ⇣, b�) is of finite type, and (S,�) is
pseudo-Anosov, then the mapping classes (S 1

m
,� 1

m
) converge to (S,�) in P. More generally, if ↵n

is a sequence in Jm0 converging to 0, then (S↵n ,�↵n) converge to (S,�) in P.

Suppose (eS, ⇣, b�) is of infinite type. In this case, there is no v such that efv eT stabilizes eSi. Thus,  
does not lie in the cone over F , and  

|| || lies on the boundary point of F . It follows that

lim
↵!0

L(S↵,�↵) = 1.

This completes the proof of Theorem 1.2.

Remark 3.19 Our construction partially extends to the case when ↵ 2 (0, 1
m0

) is irrational. In

this case, we can still define cross-sectional surfaces eY (↵)
v and a transversal flow efv. These give a

continuous interpolation of the monodromies of fM over R obtained as lifts of (S↵,�↵) for rational
↵ (cf. [McM1]).
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4 Teichmüller polynomial

In this section we briefly review an explicit method for computing dilatations for mapping classes
on fibered faces using train tracks and Teichmuller polynomials. The results of Section 3 imply that
mapping classes in quotient families have dilatations determined by a single Laurent polynomial.
In Section 5 we will use Teichmüller polynomials to explicitly compute dilatations for examples.

4.1 Computing geometric dilatations using train tracks and the Teichmüller
polynomial

The theory of train tracks was developed by W. Thurston (see [FLP, BH]). A simple algorithm for
finding dilatations on fibered faces using Teichmüller polynomials is described in [McM1] (see also
[LO]).

A train track t is a topological graph embedded on a surface S so that

i) each edge determines well-deifned tangent vectors at its endpoints, and

(ii) for each pair of edges meeting at a vertex v, the forward unit tangent vectors coincide up to
sign.

If two edges meet at a vertex, and their tangent vectors agree, we say the edges meet at a cusp.
Otherwise, they meet smoothly. A closed curve � on t is smooth if whenever it approaches and
leaves vertices along edges that meet smoothly. A simple closed curve � on S is carried on t if � is
isotopic to a smooth closed curve on t.

By work of Thurston [FLP, BH], if (S,�) is pseudo-Anosov, there is a train track t with the
properties:

(i) the connected regions of the complement of t in S are homeomorphic to either disks or boundary
parallel annuli;

(ii) if � is carried on t, then �(�) is also carried on t;

(iii) for any essential closed curve � ⇢ S, the image under iteration of �, �n(�) is eventually carried
on t;

(iv) for large enough n, �n(�) passes over every edge of t; and

(v) for every simple closed curve � carried on t, �(�) is also carried on t.

If t satisfies the above conditions, we say that t is compatible with (S,�).

Let t be compatible with (S,�). If B = {b1, . . . , bn} are the branches (or edges) of t, let Vt = RB be
the vector space of real labels on b1, . . . , bn. Then each smooth curve � on Vt determines a vector
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v� with integer labels corresponding to the number of times � passes over bi. We call these labels
the geometric edge weights of �. Let Wt ⇢ Vt be the subspace of weights spanned by vectors v� .
We can think of Wt as virtual curves on S. For a smooth closed curve � on t, let �⇤(v�) be the
vector corresponding to the isotopy class of �(�v). This deifnes a linear map

�⇤ : Wt ! Wt.

Written with respect to any basis of Wt consisting of vectors of the form v� , �⇤ has non-negative
entries. Since � is pseudo-Anosov, some power of �⇤ has strictly positive entries. That is, �⇤ is a
Perron-Frobenius matrix. The dilatation �(S,�) is the Perron-Frobenius eigenvalue of �⇤.

Let (S,�) be pseudo-Anosv and suppose eS is a regular covering of S with group of covering auto-
morphism equal to G, such that � lifts to e� : eS ! eS. Let t be a train track compatible with (S,�),
and let et be a lift to eS. Then et is compatible with (eS, e�).

Let �1, . . . , �n closed curves on S such that v�1 , . . . , v�n span Wt and the set theoretic union of the

�i is connected. Let e�1, . . . , e�n be a connected choice of path lifts to eS. These are smooth paths on
et, but typically not closed, and the set

G = {ge�i : i = 1, . . . , n and g 2 G}

spans Wet. Let
fW be the RG module generated by the elements in G. Since e� commutes with G, e�⇤

defines an RG-module homomorphism on fW . The characteristic polynomial ⇥(u) is a polynomial
with coe�cients in RG.

In particular, consider the case when G is free abelian. Let M be the mapping torus of (S,�), and

let fM = eS ⇥ R. Let eT be the covering automorphism of fM defined by

eT (x, t) = (e�(x), t� 1).

Then eT and G generate a discrete properly discontinuous action H on fM , and M = fMH . Let
F ⇢ H1(M ;Z) be the fibered face containing the homomorphisms H1(M ;Z) ! Z defined by the
corresponding fibration  . Then H defines a linear section FH of F , and rational points on FH are
in one-to-one correspondence with epimomorphisms

↵ : H ! Z.

For each ↵, let (S↵,�↵) be the corresponding monodromy.

Given an element f 2 ZH, and ↵ : H ! Z, the specialization of

f =
X

g2H
cgg

at ↵ is defined to be
f (↵)(x) =

X

g2H
cgx

↵(g).

The house of a polynomial P (x) is defined by

|P | = max{|µ| : µ 2 C, P (µ) = 0}.
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Theorem 4.1 (C. McMullen [McM1]) For each ↵, the dilatation �(�↵) satisfies

�(�↵) = |⇥(↵)|.

Remark 4.2 The ⇥ defined above is a multiple of the Teichmüller polynomial defined in [McM1]
by cyclotomic polynomials. These cyclotomic polynomials come from the action of �↵ on the
vertices of the train track. Since the polynomials are cyclotomic and don’t e↵ect the house of the
polynomial.

4.2 Homological dilatation

The homological dilatation of a mapping class (S,�) is the largest eigenvalue of the linear map on
the first homology of S

�⇤ : H1(S;R) ! H1(S;R)

induced by �. Let t be a train track compatible with (S,�). Choose �1, . . . , �n to be closed curves
carried on t whose homology classes generate H1(S;R). These can be obtained, for example, by
iterating � on any integral basis for H1(S;R).

Fix an orientation for each of the edges of t. For each i = 1, . . . , n, let wi 2 Vt be the sum of signed
weights for �i on t, where a path traversing an edge in the opposite direction from the orientation
contributes a negative one to the weight on that edge. We call the edge weights for �i the algebraic
edge weights. The span W of {w1, . . . , wn} in Vt is isomorphic to H1(S;R), and the action of �⇤ on
H1(S;R) defines a transformation on Vt that preserves W .

The train track t is orientable if one can choose orientations on the edges of t so that

(i) for any pair of edges meeting smoothly at a vertex of t, the edges are oriented so that one
points in and the other points out;

(ii) for any pair of edges meeting in a cusp at a vertex of t, the edges are oriented so that either
both point into the vertex or both point out.

A pseudo-Anosov mapping class is orientable if its stable and unstable foliations are orientable.

Lemma 4.3 A train track compatible with a pseudo-Anosov mapping class (S,�) is orientable if
and only if (S,�) is orientable.

Proof. If t is orientable, then we may orient the generating curves �1, . . . , �n so that their corre-
sponding algebraic weights are all non-negative, and equal the geometric weights. It follows that
�hom(�) = �geo(�), and hence the (S,�) is orientable. Conversely, if (S,�) is orientable, then the
orientation of the stable foliation determines an orientation on any compatible train track.
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4.3 Families of digraphs and Teichmüller polynomials

A digraph is a finite directed graph �. It is Perron-Frobenius, or a PF-digraph if, for large enough
n, its directed adjacency matrix T� satisfies (T�)n > 0. For example, if (S,�) is a pseudo-Anosov
mapping class with associated train track t, the induced linear transformation �⇤ defines a PF-
digraph. Some useful references for digraphs are [Gan, Kit].

The following theorem is well-known.

Theorem 4.4 (Coe�cient Theorem for Digraphs) Let � be a digraph with m vertices. Let
bs,` be the number of distinct linear subgraphs of � of size s and length `. Then

P�(x) = xm +
X

s,`

(�1)sbs,`x
m�`.

Let � be a digraph with m vertices such that each edge e is labeled by ge for some ge 2 G = Zk.
Assume that for all self-loops e, ge = (0, . . . , 0) is the trivial element. From � we define a family of
digraphs �↵ parameterized by homomorphisms

↵ : Zk ! Z

as follows. For each edge e, let ge 2 G be its label. Let �↵ be the graph obtained from � by
making ↵(ge) subdivisions of the edge e, for each e. Then each edge e is replaced by ↵(ge)+1 edges
connected end-to-end.

Lemma 4.5 The graphs �↵ have the following properties.

(i) Every linear subgraph of �↵ is of the form L↵ for some linear subgraph L of �.

(ii) The total number of vertices of �↵ is

M = m+
X

e

↵(ge),

where e ranges over the edges of L.

Let T� = [fi,j ] be the m⇥m matrix with entries

Fi,j =
X

e

g�1
e ,

where the sum is taken over edges e from vi to vj . Let ⇥�(x) be the characteristic polynomial of
T�.

For any element F =
P

g agg 2 ZG, the specialization of F at ↵ : G ! Z is defined by

F (↵)(x) =
X

`

agx
↵(g).
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Theorem 4.6 The PF-eigenvalue of �↵ satisfies

�(�↵) = |⇥(↵)|.

Proof. Let c be a cycle on �, let c↵ be the corresponding cycle on �↵. Then if e1, . . . , e` are the
edges in �, the length of c(↵) is the sum

`(c(↵)) = `+ ↵(ge1) + ↵(ge2) + · · ·↵(gse` ).

Define
g(c) = ge1 + · · ·+ ges` .

For each linear subgraph L = [c1, . . . , csL ] of �, let

g(L) =
sLX

i=1

g(c).

Then
L↵ = [(c1)↵, . . . , (csL)↵],

and let

Then
`(L↵) = `(L) +

X
↵(g(c)),

where we extend ↵ to a linear map on ZG.

By Lemma 4.5 and Theorem 4.4, we have

�(�↵) = |
X

L

(�1)s(L↵)xM�`(L↵)|

= |xM (
X

L2L(�)

(�1)s(L)x�`(L↵))|

= |xM (
X

L2L(�)

(�1)s(L)x�`(L)x�
P

i ↵(g(ci))|

= |xM (
X

L2L(�)

(�1)s(L)(�1)`(L)
sLY

i=1

(�g(ci))x
�`(L))(↵)|

= |xM (
X

L2L(�)

s(�(L))
sLY

i=1

(g(ci)
�1x�`(L))(↵)|

= |xM�m(
X

L2L(�)

s(�(L))
sLY

i=1

(g(ci)
�1xm�`(L))(↵)|

= |xM�m(⇥(↵)
� (x))|.
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5 Examples

In this section we study some explicit quotient families of Type I and Type II. Since quotient families
are associated to linear sections of fibered faces, it is easy to compute Alexander and Teichmüller
polynomials to compute homological and geometric dilatations.

5.1 Type I quotient familiy

The Type I quotient families of mapping classes described in Section 3 are generalizations of ex-
amples of Penner in [Pen] (see also, [Bau, Tsa, Val]). Penner showed such mapping classes are
pseudo-Anosov and have bounded normalized dilatations by analyzing the transition matrices. In
[Val], Valdivia proves that certain sequences of mapping classes generalizing Penner’s examples are
the monodromy of a single 3-manifold. Our results in Section 3 imply that we can obtain Penner’s
sequence, and its generalizations as the monodromy of (A( 1

m)) for some triple (eS, ⇣, b�) of finite
type.

Since the quotient family Q = Q(eS, ⇣, b�) is of finite type. Let (S,�) be the associated minimal
mapping class (see Lemma 3.17). Let A : (� 1

m0
, 1
m0

) ! F be the associated parameterization of
Q. The Teichmüller polynomial ⇥ can be computed from a train track on (S,�), and determines
the dilatations of the mapping classes in Q.

In [Pen] Penner defined an explicit sequence of mapping classes (see Figure 4) (Sg,�g) 2 P where
Sg are closed surfaces of genus g and such that the normalized dilatations

�(�g)
g

is bounded, thus showing that

log(�(�g)) ⇣
1

g
.

Figure 4: Penner’s original example.

The surface Sg has genus g and two boundary components. The mapping class �g is the composition
of Dehn twists along the curves ag, bg and cg with a rotation rg of period g.
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Figure 5: The minimal mapping class in the quotient family associated to Penner’s sequence.

The surface (S,�) is shown in Figure 5, where � is the mapping class on the torus with two boundary
components given by the product of Dehn twists �c � ��1

b � �a centered at the curves a, b and c, and
d is the path connecting the two boundary components. By Theorem 1.2, we have the following.

Proposition 5.1 Penner’s sequence of mapping classes �g satisfies

lim
g!1

�(�g) = �(�) ⇡ 46.9787.

The action of � on the first homology H1(S,Z) is given by the matrix

2

4
1 1 0
1 2 0
0 0 1

3

5

and hence has a 1-dimensional invariant subspace. Thus, the mapping torus M has b1(M) = 2.
The cyclic covering eS ! S defined by t is drawn in Figure 6. Let ⇣ generate the group of covering
automorphisms. Then ⇣ ⇥ {id} and Te� define generators for H1(M ;Z). Let µ be the dual of ⇣ ⇥ id,

that is, the extension of the map ⇡1(S) ! Z defined by t, and let  be the fibration map dual to �.

Let t, u 2 H1(M ;Z) be duals to µ and Te� respectively. Let t be the train track for � given by

smoothing the union of a, b and c at the intersections (see [Pen]). The Teichmüller polynomial is
the characteristic polynomial for the action of the lift of � on the cyclic covering of S defined by
t on the lift et of t, or more precisely on the space of allowable measurea on et. Using the switch
conditions, we can replace the space of allowable measures with the space of labels on the lifts of
the curves a, b and c. Then the Teichmüller polynomial of the fibered face defined by � is a factor
of the characteristic polynomial of the twisted transition matrix

2

4
1 1 0
1 2 1 + t

1 + t�1 2(1 + t�1) 1 + (1 + t)(1 + t�1).

3

5 ,

and is given by

⇥(u, t) = u2 � u(5 + t+ t�1) + 1.
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Figure 6: The simultaneous cyclic covering of Penner’s examples.

The Alexander polynomial � is the characteristic polynomial of the action of the lift e� of � on the
first homology of eS. The lifts of a, b and c generate H1(eS;Z) as a Z[t, t�1] module, and the action
of e� on these generators is given by

2

4
1 1 0
1 2 1� t

1� t�1 2(1� t�1) 1 + (1� t)(1� t�1)

3

5 .

We thus have

�(u, t) = ⇥(u,�t) = u2 � u(5� t� t�1) + 1. (4)

Normalized dilatations. By the relation between the Alexander and Thurston norms [McM2],
it follows that the fibered cone C in H1(M ;R) containing  is given by elements a + bµ, where

a > |b|,

and the Thurston norm is given by

||(a, b)||T = max{2|a|, 2|b|}.

The dilatation �(�(a,b)) corresponding to primitive integral points (a, b) in C is the largest solution
of the polynomial equation

⇥(xa, xb) = 0.

In particular, Penner’s examples (Sg,�g) correspond to the points (g, 1) 2 C , and we have the
following.

Proposition 5.2 The dilatation of �g is given by the largest root of the polynomial

⇥(xg, x) = x2g � xg+1 � 5xg � xg�1 + 1.
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The symmetry of ⇥ with respect to x 7! �x and convexity of L on fibered faces implies the
minimum normalized dilatation realized in P(M,F ) must occur at (a, b) = (1, 0). Thus, we have
the following.

Proposition 5.3 The minimum normalized dilatation for the monodromies in C is given by
�(�) ⇡ 46.9787.

Orientabilitiy: A pseudo-Anosov mapping class is orientable if it has orientable invariant foli-
ations, or equivalently the geometric and homological dilatations are the same, and the spectral
radius of the homological action is realized by a real (possibly negative) eigenvalue (see, for exam-
ple, [LT] p. 5). Given a polynomial f , the largest complex norm amongst its roots is called the
house of f , denoted h(f). Thus, �g is orientable if and only if

h(�(xg, x)) = h(⇥(xg, x)). (5)

Proposition 5.4 The mapping classes (Sg,�g) are orientable if and only if g is even.

Proof. By Equation (4), the homological dilatation of �g is the largest complex norm amongst
roots of

�(xg, x) = x2g + xg+1 � 5xg + xg�1 + 1.

Let � be the real root of �(xg, x) with largest absolute value. Plugging � into ⇥(xg, x) gives

⇥(�g,�) = �2�g+1 � 2�g�1 6= 0.

while for �� we have

⇥(��g,��) = (��)g+1 � (�)g+1 + (��)g�1 � (�g�1).

It follows that h�(xg, x) = � = h⇥(xg, x) if and only if g is even.

5.2 Quotient families of Type II.

We give two examples of quotient families of Type II.

The first example b� is defined by T ec1TebTeaT
�1
r , where T� is a positive Dehn twist along �, and

a, b, c1, r are the curves on eS drawn in Figure 7. This example is originally due to C. Leininger,
who described the associated generalized Penner sequence and its digraphs.

As before, let (Sm,�m) be the mapping classes associated to A( 1
m). For example, when m = 2,

Sm is a closed surface of genus 3, and �3 = ⇢Tc0Tb1Ta0T
�1
r0 , where a0, b0, c0, r0, a1, b1, c1, r1 are as

drawn in Figure 8.

We will show the following.

29



Proposition 5.5 The mapping classes (Sm,�m) are associated to the image of 1
m under an em-

bedding A : (0, 1) ! F , where F Is a fibered face. The corresponding quotient family is of Type II,
and as m goes to infinity, L(Sm,�m) behaves asymptotically as

L(Sm,�m) ⇣ 1

m
.

From Penner’s semi-group criterion, we have the following.

Figure 7: Infinite covering eS and compactly supported map b�.

Lemma 5.6 The map �2 is pseudo-Anosov.

Lemma 5.7 A train track t for �2 can be obtained by turning right on a, b, c, ta, tb, tc and turning
left on r.

Each a0, b0, c0, a1, b1, c1, r0, r1 determines a vector space of allowable weights on the edges of t.
These span the space of all allowable weights.

The transition matrix with respect to these vectors can be written as

30



2

66666666664

0 1 0 0 2 0 2 1
0 1 0 0 1 1 2 1
0 2 0 0 2 0 5 1
0 1 0 0 1 0 2 1
1 1 0 0 1 0 2 1
0 2 0 0 1 0 2 1
0 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0

3

77777777775

.

Figure 8: genus 3 case

The characteristic polynomial is

(u� 1)2(1 + u)2(1� 2u� 10u2 � 2u3 + u4),

and its house, or dilatation is approximately 4.37709.

We can compute the Teichmuller polynomial restricted to the corresponding linear section of the
fibered face of the mapping torus of (S2,�3) by considering the induced transition matrix on the
lifted train track.

2

66666666664

0 t 0 0 2 0 2 1
0 t 0 0 1 1 2 1
0 2t 0 0 2 0 5 2
0 t 0 0 1 0 2 1
t t 0 0 1 0 2 1
0 2t 0 0 1 0 2 1
0 0 t 0 0 0 0 0
0 t 0 t t 0 0 0

3

77777777775

.

The characteristic polynomial is

⇥(u, t) = (t� u2)2(�t2 + (1 + t)tu+ 10tu2 + (1 + t)u3 � u4).
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Let

✓(x, y) =
x10⇥(x�1, x�2y)

(y � 1)2
= 1� x� y(10 + x+ x�1) + (1� x�1)y2.

By Theorem 4.1, we have the following.

Proposition 5.8 For all m � 2, the dilatation of �m is the house of the polynomial

✓(z, zm) = 1� z � zm(10 + z + z�1) + (�z�1 + 1)z2m.

Proposition 5.9 The minimum normalized dilatation for �m occurs at �2, and is approximately
367.064.

Proof. Let A : (0, 12) ! F be the associated parameterization into a fibered face. One observes

that for this example ⇣ b� is conjugate to ⇣�1b�. Thus, the map A extends to (0, 1), and (S↵,�↵) is
conjugate to (S1�↵,�1�↵). It follows that L(S↵,�↵) = L(S1�↵,�1�↵), and by convexity of L, the
minimum of L must occur at ↵ = 1

2 .

Remark 5.10 In this case, the minimum normalized dilatation for the linear section defined by A
occurs at the mapping class with smallest topological Euler characteristic (in absolute value). This
is not typical as we see in the variation below.

The following is a general property of PF-digraphs.

Proposition 5.11 Let � be a PF-digraph, with m vertices, such that for some constants c and d,
the digraph � has one self-loop and all other cycles have length greater than m

d �c, where m is large
compared to k and c. Then the spectral radius �(�) of the PF matrix associated to � satisfies

m
1

2m  �(�)  m
3
m .

The digraph associated to (S2,�2) is shown in Figure 9, where the dotted edge is considered as a
solid edge. The digraphs associated to (Sm,�m) are gotten by subdividing each dotted edge using
m� 2 vertices. One observes that there is a self-loop at a1 independent of m.

Applying Proposition 5.11, it follows that as m approaches infinity, we have

logL(S 1
m
,� 1

m
) ⇣ logm

m
.

This completes the proof of Proposition 5.5.

Variation. The second example is the quotient family associated to (eS, ⇣, b�), where eS and ⇣ are
as above, and

b� = Tc0Tb1T
2
a0 .
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Figure 9: Digraph associated to (Sm,�m).

The mapping classes (Sm,�m) are the same as before, except that

�m = ⇢ � Tc0Tb1T
2
a0T

�1
r0 .

In this case, the twisted transition matrix is

2

66666666664

0 t 0 0 3 0 2 1
0 t 0 0 1 1 2 1
0 2t 0 0 4 0 5 2
0 t 0 0 2 0 2 1
t t 0 0 2 0 2 1
0 2t 0 0 2 0 2 1
0 0 t 0 0 0 0 0
0 t 0 t 2t 0 0 0

3

77777777775

.

and has characteristic polynomial

⇥(u, t) = (t� u2)2(t2 � tu� 2t2u� 12tu2 � 2u3 � tu3 + u4).

Let

✓(x, y) =
x4⇥(x�1, x�2y)

(y � 1)2
= 1� 2x� y(12 + x+ x�1) + (1� 2x�1)y2.

The map A extends to A : (0, 1) ! F , and as ↵ 2 (0, 1) approached 0 or 1, A(↵) approaches the
boundary of F , and the dilatation of (S k

m
,� k

m
) is given by |✓(zk, zm)|.
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Lemma 5.12 The behavior of �(A(↵)) as ↵ approaches 0 is given by

lim
↵!0

�(A(↵)) = 2.

Computation shows that the smallest normalized dilatation for rational points in A(0, 1) with
denominator less than 70 occurs at A(35), and

�(A

✓
3

5

◆
) ⇡ 1.93964.

In particular, for quotient families of Type II the minimum normalized dilatation at rational points
(if it exists) need not occur at a point where the topological Euler characteristic has smallest
absolute value. In this example, the minimum normalized dilatation occurs at some genus greater
than or equal to 5, while the minimum genus is 2.

Question 5.13 For quotient families of Type II, does the minimum normalized dilatation always
occur at a rational point?

6 Symmetry question for small dilatation mapping classes

Quotient families are examples of families that are strongly quasi-periodic. A mapping class is
quasi-periodic with support Y if there are mapping classes r, ⌘ : S ! S such that

(1) � = r � ⌘,

(2) r is supported on a subsurface X ⇢ S and is periodic relative to the boundary of X, and

(3) ⌘ is supported on Y .

A mapping class (S,�) is strongly quasi-periodic with support Y if r is periodic on all of S, i.e.,
X = S.

A family of mapping classes F ⇢ P is a (strongly) quasi-periodic family if for some ,

�↵ = r↵ � ⌘↵

is (strongly) quasi-periodic with support Y↵, where

|�(Y↵)|  .

Quotient families of mapping classes of Type I and Type II are strongly quasi-periodic.

The following question was posed by Farb, Leininger and Margalit in unpublished work.
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Question 6.1 (Symmetry question) Given ` > 1, is the subset of P consisting of elements with
normalized dilatation less than ` a strongly quasi-periodic family?

Quasi-periodic families are found in [HK, Hir1, Hir2], including examples whose normalized dilata-
tions converge to the smallest known accumulation point of L

L0 =

 
3 +

p
5

2

!2

,

which is the normalized dilatation of the simplest hyperbolic braid. It is not known whether or not
these families are also strongly quasi-periodic.

Theorem 6.2 Let (S,�) be a mapping class. Then (S,�) belongs to a quotient family if and only
if � = r � ⌘, where

(i) r is periodic of order m � 2 with fundamental domain ⌃ with ends ⌧� and ⌧+ = ⇣⌧�,

(ii) ⌘ has support
Y ⇢ ⌃ [ ⇣⌃ [ · · · [ ⇣m�2⌃.

Proof. Let eS and ⇣ by taking the cyclic covering of S corresponding to the map H1(S;Z) ! Z
given by intersection number with ⌧�. Let ⌃0 be a lift of ⌃. Then ⌘ determines a map b� with
support contained in

⌃0 [ ⇣⌃0 [ · · · [ ⇣m�2⌃0.

Then (S,�) lies in the quotient family defined by (eS, ⇣, b�).
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