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Abstract. In this paper we produce many examples of thin subgroups of special linear groups that are
isomorphic to the fundamental groups of non-arithmetic hyperbolic manifolds. Specifically, we show that

the non-arithmetic lattices in SO(n, 1,R) constructed by Gromov and Piateski-Shapiro can be embedded

into SL(n + 1,R) so that their images are thin subgroups.
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Introduction

Let G be a semisimple Lie group and let Γ be a finitely generated subgroup. We say that Γ is a thin
subgroup of G if there is a lattice Λ ⊂ G containing Γ such that

• Γ has infinite index in Λ
• Γ is Zariski dense in G.

Intuitively, such groups are very sparse in the sense that they have infinite index in a lattice, but at the
same time are dense in an algebraic sense. Note, that if one relaxes the first condition above, then Γ would
be a lattice, so another way of thinking of thin groups is as infinite index analogs of lattices in semisimple
Lie groups.

Over the last several years, thin groups have been the subject of much research, much of which has
been motivated by the observation that many theorems and conjectures in number theory can be phrased
in terms of counting primes in orbits of groups that are “abelian analogs of thin groups.” Here are two
examples. First, let G = R, b,m ∈ N such that (b,m) = 1, ∆ = Z and Γ = mZ. The orbit b + Γ is an
arithmetic progression and Dirichlet’s theorem on primes in arithmetic progressions is equivalent to this
orbit containing infinitely many primes. Next, let G = R2, ∆ = Z2, Γ = 〈(1, 1)〉 and b = (1, 3) ∈ Z2. The
orbit b + Γ = {(m,m + 2) | m ∈ Z} and the twin prime conjecture is equivalent to the statement that this
orbit contains infinitely many points whose components are both prime. Note that in the first case Γ is a
lattice in G, but in the second case Γ has infinite index in ∆ and is an analog of a thin group (sans Zariski
density) in G.

This orbital perspective was used by Brun to attack the twin primes conjecture using “combinatorial
sieving” techniques. Although the full conjecture remains unproven these techniques did yield some powerful
results. For instance, using these methods, Chen [6] was able to prove that there are infinitely many pairs
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n and n + 2 such that one is prime and the other is the product of at most 2 primes. More details of this
perspective are explained in the excellent surveys of Bourgain [4] and Lubotzky [15].

Inspired by these results, Bourgain, Gamburd, and Sarnak [5] a developed complementary “affine sieving”
techniques to analyze thin group orbits. In this context, the thinness property of the group gives enough
control of orbits to execute these counting arguments. Again, much of this is described in Lubotzky’s survey
[15].

Given these connections it is desirable to produce examples of thin groups and understand what types of
groups are thin. Presently, there are many constructions of thin groups. For instance, in recent work of Fuchs
and Rivin [8] it is shown that if one “randomly” selects two matrices in SL(n,Z) then with high probability,
the group they generate is a thin subgroup of SL(n,R). However, the groups constructed in this way are
almost always free groups. There are also several constructions that allow one to produce thin subgroups
isomorphic to fundamental groups of closed surfaces in a variety of algebraic groups (see [7, 11, 12, 13], for
instance). Given these examples one may ask which isomorphism classes of groups are thin? More precisely,
if G is a semisimple Lie group and H is an abstract finitely generated group then we say that H can be
realized as a thin subgroup of G if there is in embedding ι : H → G whose image is a thin subgroup of G.
With this definition in hand we can rephrase the previous question as: given a semisimple algebraic group
G, what isomorphism types of groups can be realized as thin subgroups of G? Recent work of the author
and D. Long [1] shows that there are many additional isomorphism types of groups that can arise as thin
subgroups of special linear groups. More precisely, in [1] it is shown that fundamental groups of arithmetic
hyperbolic n-manifolds of “orthogonal type” can be realized as thin subgroups. In the present work, we
extend the techniques of [1] to produce infinitely many examples of non-arithmetic hyperbolic n-manifolds
whose fundamental groups can be realized as thin subgroups of SLn+1(R). Our main result is:

Theorem 0.1. For each n ≥ 3, there is an infinite collection Cn of non-arithmetic hyperbolic n-manifolds
with the property that if Mn ∈ Cn then π1(M) can be realized as a thin subgroup of SLn+1(R). Furthermore,
the collection Cn contains representative from infinitely many commensurability classes of both compact and
non-compact manifolds.

It should be noted that the collection Cn appearing in Theorem 0.1 can be described fairly explicitly, and
roughly speaking consists of the hyperbolic manifolds coming from the non-arithmetic lattices in SO(n, 1,R)
constructed by Gromov–Piateski-Shapiro in [9].

Outline of paper. In Section 1 we recall the Gromov–Piateski-Shapiro construction of non-arithmetic
lattices in SO(n, 1,R) and define the collection Cn appearing in Theorem 0.1. In Section 2 we show that
the fundamental group of any element of Cn can be embedded in several lattices in SLn+1(R). Finally, in
Section 3 we prove Theorem 0.1 by showing that the images of the previously mentioned embeddings are
thin subgroups.

Acknowledgements. The author would like to thank Darren Long for several helpful conversations during
the preparation of this work and Matt Stover for providing references that greatly simplified the proof of
Lemma 1.3. The author was partially supported by the NSF grant DMS-1709097.

1. Gromov–Piateski-Shapiro lattices

In their 1987 paper [9], Gromov–Piateski-Shapiro describe a method for constructing infinitely many
non-arithmetic lattices in SO(n, 1,R). In this section we describe their construction and the construction of
the lattices appearing in Theorem 0.1.

Let K be a totally real number field of degree d+1 with ring of integers OK . There are d+1 embeddings
{σ0, . . . , σd} of K into R. Using the embedding σ0 we will implicitly regard K as a subset of R. In this
way, it makes sense to say that elements of F are positive (resp. negative). Let sK : K× → Z≥0 where
sK(a) = |{i ≥ 1 | σi(a) > 0}|. In other words, sK(a) counts the non-identity embeddings for which a has
positive image.

Next, let α, β, a2 . . . an+1 ∈ OK be positive elements such that

• β/α is not a square in K
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• sK(α) = sK(β) = sK(αi) = d for 1 ≤ i ≤ n
• sK(an+1) = 0

Next, define quadratic forms

J1 = αx21 +

n∑
i=2

aix
2
i − an+1x

2
n+1(1.1)

J2 = βx21 +

n∑
i=2

aix
2
i − an+1x

2
n+1

If A ⊂ R is a subring containing 1 then we define

SO(Ji, A) = {B ∈ SLn+1(A) | Ji(Bv) = Ji(v) ∀v ∈ Rn+1}.
Using this notation define Γ1 = SO(J1,OK) and Γ2 = hSO(J2,OK)h−1, where h = Diag(

√
β/α, . . . , 1).

Note that both Γ1 and Γ2 are lattices in SO(J1,R), however, since β/α is not a square in K it follows from
[9] (see Cor 2.7 and §2.9) that these lattices are not commensurable.

There is a model for hyperbolic n-space given by

Hn = {v ∈ Rn+1 | J1(v) = −1, vn+1 > 0}.
The identity component SO(J1,R)◦ of SO(J1,R) consists of the orientation preserving isometries of Hn (see
[19, §3.2] for details). By passing to finite index subgroups we can assume that Γi ⊂ SO(J1,R)◦, and so
Hn/Γi is a finite volume hyperbolic orbifold for i = 1, 2.

The lattice Γ2 ⊂ SO(J1, L), where L = K(
√
β/α). Note that because α and β are positive and

sK(α) = sK(β) = d it follows that L is also totally real. Furthermore, for every γ ∈ Γ2, tr(γ) ∈ OK ⊂ OL.
The following lemma then shows that by passing to a subgroup of finite index we may assume that Γ2 ⊂
SO(J1,OL). This result seems well known to experts, but we include a proof for the sake of completeness.

Lemma 1.1. Let k ⊂ C be a number field and let Ok be the ring of integers of k. If Γ ⊂ GLn(k) acts
irreducibly on Cn and has the property that tr(γ) ∈ Ok for each γ ∈ Γ then there is a finite index subgroup
Γ′ ⊂ Γ such that Γ ⊂ GLn(Ok).

Proof. If A ⊂ k is a subring then let AΓ = {
∑
i aiγi | ai ∈ A, γi ∈ Γ}. Note that in this definition all sums

have finitely many terms. By [2, Prop 2.2], OkΓ is an order in the central simple algebra kΓ. The order
OkΓ is contained in some maximal order D in Mn(k) (n×n matrices over k). Let D1 ⊂ SLn(k) be the norm
1 elements of D. Mn(Ok) is also an order in Mn(k) whose group of norm 1 elements is SLn(Ok). It is a
standard result using restriction of scalars that groups of norm 1 elements in maximal orders of Mn(k) are
commensurable, and so D1 ∩ SLn(Ok) has finite index in D1. It follows that Γ∩ SLn(Ok) has finite index in
Γ, and the result follows. �

Note that since Γ2 is a lattice in SO(J1,OK) it acts irreducibly on Cn+1, and so by applying Lemma 1.1 we
may assume that Γ2 ⊂ SO(J1,OL).

Denote by SO(n− 1, 1,R) the subgroup of SO(J1,R) that preserves both complementary components in
Rn+1 of the hyperplane P given by the equation x1 = 0. The intersection P ∩Hn is a model for hyperbolic
(n−1)-space, Hn−1 and the group SO(n−1, 1,R) can be identified with the subgroup of orientation preserving

isometries of Hn−1. Next, let Γ̂ = Γ1 ∩ Γ2 ∩ SO(n − 1, 1,R). This subgroup is a lattice in SO(n − 1, 1,R),

and so Hn−1/Γ̂ is a hyperbolic (n − 1) orbifold. By passing to finite index subgroups we may arrange the
following properties:

1. Γi is torsion-free and contained in the identity component of SO(J1,R). This component is isomorphic
to Isom+(Hn), and so Mi := Hn/Γi is a finite volume hyperbolic manifold (apply Selberg’s Lemma and
the fact that SO(J,R)◦ has finite index in SO(J,R)).

2. Similarly, we may assume that Σ = Hn−1/Γ̂ is a hyperbolic (n−1)-manifold and this manifold is embedded
in both M1 and M2 (see [14, Thm 1(a)] and subsequent comments).

3. If Mi is non-compact then all cusps of Mi are diffeomorphic to an (n− 1)-torus times an interval (apply
[17, Thm 3.1])
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Figure 1. An graph of spaces description of the manifold N .

4. The complement M̂i = Mi\Σ is connected for i = 1, 2 (see [14, Thm 1(b)] and the subsequent comments).

The manifold M̂i is a convex submanifold of Mi and so M̂i = Vi/Γ̂i, where Vi is a component of the

preimage of M̂i in Hn under the universal covering projection Hn → Hn/Γi = Mi, and Γ̂i is a subgroup of

Γi that stabilizes Vi. The manifold M̂i is a hyperbolic manifold with totally geodesic boundary equal to two
isometric copies of Σ, and so it is possible to glue M̂1 and M̂1 along Σ to form the finite volume hyperbolic
manifold N (see [21, §6.5] for details). The manifold N can be realized as Hn/∆ where, after appropriately

conjugating Γ̂i in Γi, we may assume that

∆ = 〈Γ̂1, Γ̂2, s〉.(1.2)

Here s comes from a “graph of spaces” description of N and can thus be written as a produce s = s2s1,
where si is the isometry corresponding to an appropriate lift to Vi a curve in Mi whose algebraic intersection
with Σ is 1 (See Figure 1). In [9] it is shown that ∆ is a non-arithmetic lattice in SO(J1,R). If N = Hn/∆
then we call N an interbreeding of M1 and M2.

Since Γ1,Γ2 ⊂ SO(J1,OL) it follows that ∆ ⊂ SO(J1,OL). As a result, we call the field L the field
of definition of ∆. Let Cn be the collection of hyperbolic n-manifolds coming from the above interbreeding
construction.

We close this section by proving the following result:

Proposition 1.2. The collection Cn contains representatives of infinitely many commensurability classes of
both closed and non-compact hyperbolic n-manifolds satisfying the properties 1-4 from above.

To prove this we will need the following invariant, originally due to Vinberg [20]. Let Γ be a Zariski
dense subgroup of a Lie group H with Lie algebra h. The adjoint action of Γ on h gives a representation Ad :
Γ→ gl(h). In [20] it is shown that the field Q({tr(Ad(γ)) | γ ∈ Γ}) is an invariant of the commensurability
class of Γ in H. This field is called the adjoint trace field of Γ.

Next, let N = Hn/∆ ∈ Cn, then ∆ is a lattice in SO(J1,R), which is Zariski dense by the Borel density
theorem. The following lemma allows us to compute the adjoint trace field of the ∆. It is an immediate
corollary of a theorem of Mila (see [18, Thm 4.7]) once it is observed that L is the smallest extension of K
over which the forms J1 and J2 are isometric.

Lemma 1.3. Let N = Hn/∆ ∈ Cn and let L be the field of definition of ∆, then L is the adjoint trace field
of ∆.
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Proof of Proposition 1.2. From [9], it follows that N = Hn/∆ is compact if and only if the field K used to
construct ∆ is not equal to Q. For each choice of a totally real field K and a pair α, β ∈ K so that α

β is

not a square in K we can produce an element N ∈ Cn via the interbreeding construction. By varying the
choices of α and β we can produce infinitely many distinct L = K(

√
β/α) for each choice of K. It follows

from Lemma 1.3 the the corresponding N are representatives of infinitely many commensurability classes of
both compact and non-compact hyperbolic n-manfiolds. �

2. Lattices in SLn+1(R)

In this section we describe the lattices ∆ ⊂ SLn+1(R) in which our thin groups will ultimately live. Let
J1 be one of the forms constructed in Section 1 and let L be the corresponding (totally real) field of definition.
Let M = L(

√
r), where r ∈ L is positive, square-free, and sL(r) = 0. The number field M is a quadratic

extension of L and we let τ : M →M be the unique non-trivial Galois automorphism of M over L. In this
context, we can extend the quadratic form J1 on Ln+1 to a “Hermitian” form on Mn+1. Let NM/L : M → L

given by NM/L(x) = xτ(x) be the norm of the field extension M/L. Next let x = (x1, . . . , xn+1) ∈ Mn+1

and define H1 : Mn+1 → L as

H1(x) = αNM/L(x1) +

n∑
i=1

aiNM/L(xi)− an+1NM/L(xn+1)

Note that this defines a Hermitian form in the sense that if x ∈ Mn+1 and λ ∈ M then H1(λx) =
NM/L(λ)H1(x). Furthermore, since L is the fixed field of τ it follows that H1 reduces to J1 when restricted

to Ln+1.
Next, we can define a unitary analogue of SO(J1,OM ) as

SU(J1, τ,OM ) = {A ∈ SLn+1(OM ) | H1(Av) = H1(v) ∀v ∈Mn+1}.
It is well known (see [21, §6.8], for example) that SU(J1, τ,OM ) is an arithmetic lattice in SLn+1(R).

Let N = Hn/∆ be one of the manifolds from Cn. By construction, the manifold N contains the embedded

totally geodesic hypersurface Σ = Hn−1/Γ̂, and so it is possible to deform ∆ inside of SLn+1(R) using the
bending construction of Johnson and Millson (see [10]).

Specifically, let ct = Diag(e−nt, et, . . . , et) ∈ SLn+1(R). It is easy to check that ct centralizes SO(n −
1, 1,R). Since Σ is assumed to be non-separating, we see that write ∆ as an HNN extension ∆ ∼= ∆̂∗s,
where ∆̂ is isomorphic to the fundamental group of N\Σ and s is a free letter. In this context, we may view

∆̂ ⊂ SO(J1,OL) and s ∈ SO(J1,OL) and observe that as a subgroup of SO(J1,OL) we can write ∆ = 〈∆̂, s〉.
We now define a new family of subgroups ∆t = 〈∆, cts〉 ⊂ SLn+1(R). Using basic theory of HNN extensions,
it is easy to see that, since ct centralizes the fundamental group of Σ, as an abstract group ∆t is a quotient
of ∆. However, by the using the following result of Benoist [3] (compact case) and Marquis (non-compact
case)[16] from properly convex geometry we can actually say much more

Proposition 2.1. For each t, the group ∆t is isomorphic to ∆.

Next, we show for certain values of t the group ∆t is contained in one of the unitary lattices constructed
above. Specifically, if N = Hn/∆ is contained in Cn, let J1 and L be such that ∆ ⊂ SO(J1,OL). Recall
that the field L is totally real of degree d + 1 over Q and so there are d + 1 embeddings {σ0 = Id, . . . , σd}
of L into R. We can use Lemma 3.1 of [1] to produce a unit u ∈ O×L with the property that |u| > 2 and
0 < |σi(u)| < 1 for 1 ≤ i ≤ d. Let p(x) = x2 − ux + 1 and let M = L(v), where v is one of the roots of

p(x). It is easy to check that the discriminant of p(x) is u2 − 4 and so M = L(
√
u2 − 4). By construction

sL(u2 − 4) = 0, and so SU(J1, τ,OM ) is an arithmetic lattice in SLn+1(R), where τ : M → M is the non-
trivial Galois automorphism of M over L. The next lemma says that by carefully choosing t, we can arrange
that ∆t ⊂ SU(J1, τ,OM ).

Lemma 2.2. Let u be as above, then if t = log(u) then ∆t ⊂ SU(J1, τ,OM ).

This is basically Lemma 3.4 of [1], but the proof is short so we include it here for the sake of completeness.
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Proof. Recall from above that there is a subgroup ∆̂ ⊂ SO(J1,OL) and s ∈ SO(J1,OL) so that ∆ = 〈∆̂, s〉
and ∆t = 〈∆̂, cts〉, where ct = Diag(e−nt, et, . . . , et) ∈ SLn+1(R). Since SO(J1,OL) ⊂ SU(J1, τ,ON ) the
proof will be complete if we can show that ct ∈ SU(J1, τ,OM ).

If t = log(u) then ct = Diag(u−n, u, . . . , u). Furthermore, since τ(u) is the other root of p(x) it follows
that uτ(u) = 1, or in other words τ(u) = u−1. It follows that c∗t = Diag(un, u−1, . . . u−1). A simple
computation then shows that for each v ∈Mn+1, H1(ctv) = H1(v), and so ct ∈ SU(J1, τ,OM ). �

By combining Lemma 2.2 and Proposiiton 2.1 we get the following corollary

Corollary 2.3. For each N = Hn/∆ ∈ Cn there are infinitely many lattices Λ ⊂ SLn+1(R) that contains a
subgroup ∆′ isomorphic to ∆.

3. Certifying thinness

The main goal of this section is to complete the proof of Theorem 0.1. The proof consist of proving that
the subgroups constructed in the previous section are thin.

Proof of Theorem 0.1. Recall, that if N = Hn/∆ ∈ Cn from Corollary 2.3 it follows that we can find a lattice
Λ ⊂ SLn+1(R) and a subgroup ∆′ ⊂ Λ that is isomorphic to ∆.

Since ∆′ was obtained from ∆ via a bending construction if follows from [1, Prop 4.1] that ∆′ is Zariski
dense in SLn+1(R). The proof will be complete if we can show that ∆′ has infinite index in Λ. Suppose for
contradiction that this index is finite. Since Λ is a lattice in SLn+1(R) this implies that ∆′ is also a lattice in
SLn+1(R). However, ∆′ is isomorphic to ∆ and ∆ is a lattice in the Lie group SO(n, 1)◦. However, SO(n, 1)◦

and SLn+1(R) are not isomorphic and so this contradicts the Mostow rigidity theorem (see for [21, Thm
15.1.2]). �
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[20] È. B. Vinberg. Rings of definition of dense subgroups of semisimple linear groups. Izv. Akad. Nauk SSSR Ser. Mat.,
35:45–55, 1971.

[21] D. Witte Morris. Introduction to Arithmetic Groups. ArXiv Mathematics e-prints, June 2001.

E-mail address: ballas@math.fsu.edu

Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA


	Introduction
	Outline of paper
	Acknowledgements

	1. Gromov–Piateski-Shapiro lattices
	2. Lattices in SLn+1(R)
	3. Certifying thinness
	References

