Interhemispheric Dominance Switching in a Neural Network Model for Birdsong
Daniel Galvis, Wei Wu, Richard L. Hyson, Frank Johnson, Richard Bertram
Male zebra finches produce a sequence-invariant set of syllables, separated by short inspiratory gaps. These songs are learned from an adult tutor and maintained throughout life, making them a tractable model system for learned, sequentially ordered behaviors, particularly speech production. Moreover, much is known about the cortical, thalamic, and brainstem areas involved in producing this behavior, with the premotor cortical nucleus HVC (proper name) being of primary importance. In a previous study, our group developed a behavioral neural network model for birdsong constrained by the structural connectivity of the song system, the signaling properties of individual neurons and circuits, and circuit-breaking behavioral studies. Here, we describe a more computationally tractable model, and use it to explain the behavioral effects of unilateral cooling and electrical stimulations of HVC on song production. The model demonstrates that interhemispheric switching of song control is sufficient to explain these results, consistent with the hypotheses proposed when the experiments were initially conducted. Finally, we use the model to make testable predictions that can be used to validate the model framework and explain the effects of other perturbations of the song system, such as unilateral ablations of the primary input and output nuclei of HVC.