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Abstract. We verify the infinitesimal inversive rigidity of almost all triangulated circle
polyhedra in the Euclidean plane E2, as well as the infinitesimal inversive rigidity of tan-
gency circle packings on the 2-sphere S2. From this the rigidity of almost all triangulated
circle polyhedra follows. The proof adapts Gluck’s proof in [7] of the rigidity of almost all
Euclidean polyhedra to the setting of circle polyhedra, where inversive distances replace
Euclidean distances and Möbius transformations replace rigid Euclidean motions.

Introduction

The infinitesimal rigidity theory of bar-and-joint frameworks traces its origins to the inves-
tigations of James Clerk Maxwell in 1864. Before Maxwell’s investigations, Legendre and
Cauchy investigated the global rigidity of polyhedra, culminating in the famous Cauchy
Rigidity Theorem [4] of 1813 that avers that convex, bounded polyhedra in Euclidean 3-
space E3 are globally rigid. In 1916 Max Dehn [6] generalized in one direction the Cauchy
Theorem by proving the infinitesimal rigidity of strictly convex polyhedra in E3, and in
the decade of the 1950’s, A.D. Alexandrov [1] greatly extended Dehn’s insights in his artic-
ulation of a rather broad theory of rigidity for 3-dimensional polyhedra. Nonetheless, the
question of whether or not all polyhedra, even non-convex ones, in E3 were rigid remained
open. In 1975 Herman Gluck [7], in the vein of Maxwell and Dehn, proved that almost all
of them are infinitesimally rigid, and therefore rigid. At that time, many believed that all
polyhedra in E3 were rigid, but in 1977 Robert Connelly [5] surprised the community by
constructing a flexible polyhedron in E3, necessarily non-convex, and by Gluck’s result, a
rather rare example among polyhedra.

In [2], the authors of the present work began a study of the rigidity theory of circle
frameworks, and in particular of circle polyhedra. There we showed that an analogue of
the Cauchy Rigidity Theorem remains true when vertices in E3 are replaced by circles in
the 2-sphere S2 that are placed in the pattern of a Euclidean polyhedron. There global
rigidity adheres when the circle polyhedron is convex and proper, and an example of Ma
and Schlenker [9] shows that this fails for non-convex ones, which mirrors the classical case
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for Euclidean polyhedra. Of course for circle polyhedra, Euclidean distance is replaced
by inversive distance and rigidity is understood with respect to Möbius transformations.
In the present paper, we show that an analogue of Gluck’s Theorem on the infinitesimal
rigidity as well as the rigidity of almost all polyhedra holds in the setting of circle polyhedra
in the plane E2.

The proof, not surprisingly, mirrors the plan developed over the last couple of centuries
by Cauchy [4], Dehn [6], Alexandrov [1], and Gluck [7] in their investigations of rigid
Euclidean polyhedra, with Gluck’s paper in particular serving as a valuable guide for
our development. The first task is identifying appropriate rigidity matrices and stress
matrices in the setting of circle frameworks, where the trivial motions are by Möbius
transformations and inversive distance between circles is the desired preserved parameter.
This is accomplished in Sections 1 and 2. With the right notions of these matrices in place,
the argument proceeds as in Gluck [7]. The infinitesimal rigidity of planar circle polyhedra
is related to inversive stresses in Section 3. In the classical Euclidean development, Dehn’s
Theorem plays the role of showing that the collection of infinitesimally rigid polyhedra
is non-empty, from which Gluck argues that the collection is dense in the space of all
polyhedra. The role played by Dehn’s Theorem in our development is of independent
interest and appears in Section 4 where we show that univalent tangency circle packings
of the 2-sphere are infinitesimally rigid. The four preceding sections come together in
the proof of the infinitesimal rigidity of almost all circle polyhedra in the final section,
Section 5, as well as their rigidity.

Because of the well-known, intimate connection between the hyperbolic geometry of the
unit ball in E3 (the Beltrami-Klein model), the inversive geometry of its 2-sphere ideal
boundary S2, and the projective geometry of RP3 in which these models reside, (infin-
itesimal) rigidity results for circle polyhedra and frameworks have implications for the
(infinitesimal) rigidity of hyperbolic polyhedra. These have been articulated in works of
Thurston, Rivin, Hogdsen-Rivin, Bao-Bonahon, and our previous paper [2]. We do not
take the time to translate the results of this paper to the setting of, for example, strictly
hyperideal hyperbolic polyhedra in H3 (see the final section of [2]) as we are content with
this mere mention of the connection.

1. Infinitesimal Inversive Rigidity of Circle Frameworks

1.1. Circle-frameworks and motions. The general definition of a circle framework in
the 2-sphere allows for the case where the disks bounded by the circles of the framework
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cover the whole of the 2-sphere.1 Our study will restrict this generality by considering
only those circle frameworks that have at least one intersticial region, an open set not
covered by the disks that the circles of the framework bound. This allows us to project
stereographically to the plane and define the inversive rigidity matrix using the very simple
Euclidean formulæ for the inversive distances among the adjacent circles of the framework.
Our study, then, is of circle frameworks in the plane. Nonetheless, our setting is general
enough to cover all univalent circle frameworks in the 2-sphere, the ones the interiors of
whose companion disks are pairwise disjoint, as well as many with overlapping adjacent
circles.

We parameterize the planar circles by their centers and radii and write C = (x,y, r)

when C is the circle with center (x,y) and radius r. A motion of C is a continuously
differentiable path C(t) = (x(t),y(t), r(t)) such that C(0) = C. Let G be a connected
graph on n vertices labeled by the integers 1, . . . ,n and with m unoriented edges, each
labeled by its pair of vertices. The set C = {C1, · · · ,Cn} of circles in the plane indexed
by the vertex set V(G) = {1, . . . ,n} is called a circle framework with adjacency graph
G, or a c-framework for short, and is denoted as G(C). Two circles Ci and Cj of the
c-framework G(C) are adjacent provided ij is an edge of G. If all adjacent circles are
tangent in G(C), we call it a tangency circle framework, or a tc-framework. If the closed
disks in the collection D = {D1, . . . ,Dn}, where ∂Di = Ci for i = 1, . . . ,n, have pairwise
disjoint interiors, then the circle framework G(C) is said to be univalent.

A motion of a framework G(C) is given by a motion of each of the circles in C that at
each time t preserves inversive distances among adjacent circles: for all t and each edge
ij ∈ E(G), the inversive distance between Ci(t) and Cj(t) remains constant. If there exists
a smooth 1-parameter family Mt of Möbius transformations such that M0 = idR2 and
Mt(Ci) = Ci(t) for all i ∈ V(G), then the motion is trivial; otherwise, the motion is a flex
of G(C). If there do not exist any flexes, then G(C) is rigid, otherwise flexible.

1.2. Inversive rigidity matrix. Let a motion of G(C) be given as

C(t) = {C1(t) = (x1(t),y1(t), r1(t)), · · · ,Cn(t) = (xn(t),yn(t), rn(t))}

and consider an edge ij. Differentiating the expression

Inv(Ci(t),Cj(t)) =
(xi(t) − xj(t))

2 + (yi(t) − yj(t))
2 − ri(t)

2 − rj(t)
2

2ri(t)rj(t)
= constant,

multiplying by −r2ir
2

j , letting d
2

ij = (xi − xj)
2 + (yi − yj)

2 = d2ji, and evaluating at t = 0

gives

1For example, non-univalent tangency circle packings are circle frameworks, and their corresponding
disks can cover the 2-sphere multiple times.
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rirj(xj − xi)x
′
i + rjri(xi − xj)x

′
j+

rirj(yj − yi)y
′
i + rjri(yi − yj)y

′
j+

(1/2)rj(r
2

i + d
2

ij − r
2

j)r
′
i+

(1/2)ri(r
2

j + d
2

ji − r
2

i)r
′
j = 0.

(1.1)

Equation 1.1 is linear in the derivatives x ′i, y
′
i, r
′
i, x

′
j, y

′
j, and r

′
j. The system of linear

equations over all edges ij can be represented as a matrix equation Rc = 0, where R is an
m×3n matrix corresponding to the coefficients of the linear system defined by Eq. 1.1 and
c = (x ′

1
,y ′

1
, r ′

1
, · · · , x ′n,y ′n, r ′n)T is the column vector of derivatives. The rows are indexed

by the m edges and the columns by the 3n coordinates of the n circles of the framework.
When ij is an edge of G, the row in R corresponding to that edge has the entries

(1.2) rirj(xj − xi), rirj(yj − yi), (1/2)rj(r
2

i + d
2

ij − r
2

j)

in the three columns corresponding to the three coordinates of the circle Ci, and similarly
for Cj with i and j exchanged, and with all other entries of that row equal to zero. We call
the matrix R = RG(C) the inversive rigidity matrix for G(C).

1.3. Infinitesimal rigidity. The derivative of the motion C(t) at t = 0 gives a solution
vector c to Rc = 0. We call any vector c satisfying Rc = 0 an infinitesimal motion of G(C).
Such an infinitesimal motion is trivial if it is the derivative of a trivial motion of G(C),
one by a smooth 1-parameter family of Möbius transformations. A non-trivial infinitesimal
motion is called an infinitesimal flex of G(C). If no infinitesimal flex exists for G(C), we
say G(C) is infinitesimally rigid; otherwise, infinitesimally flexible.

The space of infinitesimal motions of G(C) is the kernel of R. Since trivial infinitesimal
motions are derivatives of Möbius transformations, a 6-dimensional Lie group, describing
them requires six parameters. Thus, the dimension of the kernel is at least six and equals
six if and only if the framework is infinitesimally rigid. By the rank-nullity theorem, we
have the following result.

Lemma 1.1. G(C) is infinitesimally rigid if and only if the rank of the inversive
rigidity matrix R is equal to 3n− 6.

2. Inversive Stress of a c-Framework

For the graph G with vertex set V(G) = {1, . . . ,n}, the set p = {p1, . . . ,pn} of points in Rd

indexed by the vertex set V(G) = {1, . . . ,n} is called a Euclidean framework and denoted
as G(p). A key concept that has found many uses in the rigidity theory of Euclidean
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frameworks is that of a stress on a framework. Informally, a stress is a real number ωij

attached to each edge ij of a framework and is used to compute force vectors Fij = −Fji
acting on i and j so that a positive stress attracts i and j towards each other, a negative
stress repels, and a zero stress results in Fij = Fji = 0. For each vertex i a force Fi is
computed by the sum Fi =

∑
j:ij∈E(G) Fij. If for all i, Fi = 0, the stress is said to be an

equilibrium stress. An equilibrium stress is non-trivial whenever there exists at least one
edge ij such that Fij 6= 0. Alexandrov [1] proved that the only equilibrium stress on the
edge-framework of a convex polyhedron in R3 is the trivial one if and only if the framework
is infinitesimally rigid. Our aim in this section is to develop a similar notion of stress for
c-frameworks.

2.1. An inversive distance edge-vector. We want to define stresses in such a way that
an edge of a c-framework with a non-zero stress generates an attractive or repellent force
between its adjacent circles. The question is in what direction should the two circles
move and how should their radii change? In the Euclidean case, a stressed edge attracts or
repels its endpoints along the edge vector. One way to think of an edge vector in Euclidean
space is as the direction in which the distance between two points increases or decreases
most rapidly. The edge vector from pi to pj in E3 is pj − pi. Define the function fi as
fi(p) = ||p− pi||, the distance function from all points p ∈ E3 to pi. Then the gradient of
fi at pj is equal to the normalized edge vector ∇fi(pj) = (pj − pi)/||pj − pi||. In physics,
forces are usually the negative of the gradient of a potential. When thinking about the edge
vector as representing a force, a more physical description might be that one should think
of the point pj as exerting a force on the point pi determined by the potential function fj,
the distance from point pj, so that the force is −∇fj(pi). Of course it is straightforward
to see that −∇fj(pi) = ∇fi(pj) so it doesn’t matter which you use. It seems then that
there are two natural candidates for the inversive distance edge-vector between two circles
Ci = (xi,yi, ri) and Cj = (xj,yj, rj). Fixing the circle Ck and denoting the inversive
distance from Ck to all other circles C = (x,y, r) as

fk(x,y, r) = Inv(C,Ck) =
d2k − r2 − r2k

2rrk
,

where d2k = (x− xk)
2 + (y− yk)

2, we might define the inversive distance edge-vector from
vertex i to vertex j as either ∇fi(xj,yj, rj) or as −∇fj(xi,yi, ri). These in general fail
to be equal, so we have a choice to make. It turns out that using the more physically
inspired expression works and we define the inversive distance edge-vector from circle
Ci to circle Cj as Vij = −∇fj(xi,yi, ri).
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The partial derivatives of fj with respect to x, y, and r are

(2.1)
∂fj

∂x
=
x− xj
rrj

,
∂fj

∂y
=
y− yj
rrj

,
∂fj

∂r
=
r2j − d

2

j − r
2

2r2rj
.

It follows that

Vij = −∇fj(xi,yi, ri) =

(
xj − xi
rirj

,
yj − yi
rirj

,
r2i + d

2

ij − r
2

j

2r2irj

)T

.

Notice that unlike the standard case of Euclidean frameworks, the edge vectors are not
negatives of one another since, in general, Vij 6= −Vji, this because of the asymmetry
between i and j in the denominators of the third coordinates.

2.2. Inversive stresses. An inversive stress ω = {ωij : ij ∈ E(G)} on a c-framework
G(C) is an assignment of real numbers ωij = ωji to each edge ij ∈ E(G). For a fixed
vertex i, each edge ij adjacent to i exerts a force ωijVij on vertex i. If the sum of these
forces is 0, i.e., if

(2.2)
∑

j:ij∈E(G)

ωijVij = 0,

we say that the stress is in equilibrium at vertex i. If the stress is in equilibrium at all the
vertices of a framework, then ω is an equilibrium inversive stress on G(C). An inversive
stress is non-trivial if there exists at least one edge ij for which ωij 6= 0; otherwise it is
trivial.

The set of linear equations given by Eq. 2.2 for i = 1, . . . ,n gives a linear system Vω = 0.
The matrix V has dimension 3n ×m and its ij column is given as follows: its (3i − 2, ij),
(3i − 1, ij), and (3i, ij) entries are the components of Vij, its (3j − 2, ij), (3j − 1, ij), and
(3j, ij) entries are the components of Vji, and the remaining entries in the column are zero.
Notice that there are exactly six possible non-zero entries in the ijth column, which are
the components of the edge vectors Vij and Vji in the appropriate rows.

It follows that a non-trivial equilibrium inversive stress exists on G(C) if and only if
dim(kerV) 6= 0. We call V the inversive stress matrix for G(C).

Remark. We may scale each vector Vij by an arbitrary non-zero real number λij = λji
without affecting the existence of a non-trivial equilibrium stress. To see this, suppose
we have an inversive stress ω on G(C). Choose any set of non-zero numbers Λ = {λij :

ij ∈ E(G)}, one for each edge ij. Now scale each vector Vij by its corresponding number
λij to obtain the scaled edge vector V̂ij = λijVij. Let ω̂ij = ωij/λij. Then it follows
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immediately that

(2.3)
∑

j:ij∈E(G)

ωijVij =
∑

j:ij∈E(G)

ω̂ijV̂ij,

andωij = 0 if and only if ω̂ij = 0. In other words, the existence of a non-trivial equilibrium
inversive stress on a framework G(C) is independent of any choice of scale on the edge
vectors Vij. Eq. 2.2 with the scaled edge vectors may be written as

∑
j:ij∈E(G) ω̂ijV̂ij = 0,

which gives the linear system V̂ω̂ = 0. We call the matrix V̂ a scaled inversive stress
matrix.

We can state this rather nicely if we let Λ = diag[λij] be the diagonal m × m matrix
of rescale values rather than just the collection of rescale values. Then V̂ = VΛ and
ω̂ = Λ−1ω, and Eq. 2.3 becomes Vω = VΛΛ−1ω = V̂ω̂. This implies in particular that
the kernels kerV and ker V̂ are isomorphic via the invertible matrix Λ. The next lemma
summarizes this discussion.

Lemma 2.1. Let V be the inversive stress matrix for G(C) and let V̂ = VΛ be
any scaled inversive stress matrix. Then dim(kerV) = dim(ker V̂). In particular,
dim(kerV) = 0 if and only if dim(ker V̂) = 0 so that G(C) has a non-trivial inversive
stress if and only if dim(kerV) 6= 0 if and only if dim(ker V̂) 6= 0.

We use this fact with two different scalings in the next two sections. First, we choose one
set of λij-values to connect the concepts of inversive stresses and infinitesimal rigidity, and
then use a different set of λij-values to prove that all tc-frameworks are infinitesimally
rigid.

3. Non-trivial Equilibrium Inversive Stresses and Infinitesimal Rigidity of
Triangulated c-Polyhedra

Before specializing to circle polyhedra, which are the c-frameworks of interest in the re-
mainder of the paper, we make some observations connecting the inversive rigidity matrix
R to the inversive stress matrix V. For each edge ij of G, let λij = r2ir

2

j and let V̂ be the
scaled inversive stress matrix scaled by the non-zero constants Λ = {λij : ij ∈ E(V)}. A
moment’s inspection reveals that

(3.1) V̂T = R,

the transpose of the scaled inversive stress matrix is precisely the inversive rigidity matrix.
In particular, the ranks of the matrices V̂ and R agree, and by Lemma 2.1 so too does the
rank of V. The next lemma now follows from Lemma 1.1.
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Lemma 3.1. G(C) is infinitesimally rigid if and only if the rank of the inversive stress
matrix V is equal to 3n− 6.

We now specialize to those c-frameworks whose graphs are polyhedral graphs. A c-
framework P(C) is a c-polyhedron if the graph P is the 1-skeleton of an abstract triangulated
polyhedron, equivalently, the 1-skeleton of a simplicial triangulation of the 2-sphere.2

Lemma 3.2. A c-polyhedron P(C) in the plane is infinitesimally rigid if and only if
it has no non-trivial equilibrium inversive stress.

Proof. Let m be the number of edges and n the number of vertices of P. Since P is
a triangulated polyhedron, the Euler characteristic gives m = 3n − 6 so that the stress
matrix V for P has dimension 3n × (3n − 6) and the rigidity matrix R has dimension
(3n− 6)× 3n. The result now is immediate. Indeed, P(C) is infinitesimally rigid ⇐⇒ the
rank of R is 3n − 6 ⇐⇒ the rank of RT = V̂ is 3n − 6 ⇐⇒ the m = 3n − 6 columns of
V̂ are linearly independent ⇐⇒ dim(ker V̂) = 0 ⇐⇒ dim(kerV) = 0 ⇐⇒ there is no
non-trivial equilibrium inversive stress. �

Note that this proof works precisely because the number of edges m is equal to 3n− 6 and
the Möbius group is a 6-dimensional Lie group.

4. Univalent Tangency packings of the Sphere are Infinitesimally Rigid

A tc-polyhedron is a tc-framework that is also a c-polyhedron, so a configuration of circles
in the pattern of a triangulated polyhedron whose adjacent circles are tangent. Recall
that a c-framework is univalent if the open disks bounded by the circles are pairwise
disjoint.

Lemma 4.1. Let P(C) be a univalent tc-polyhedron in the plane. Then P(C) is in-
finitesimally rigid.

Proof. In our argument we use Cauchy’s Combinatorial Lemma, which Cauchy used in
the proof if his celebrated rigidity theorem for convex Euclidean polyhedra.

2This is more general than the development of c-polyhedra in [2] since we do not require the existence
of ortho-circles for each face, as required there, and at the same time less general in that we do require the
polyhedra to be triangulated, unlike there. The importance of the triangulation assumption is seen in the
lemma following.
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Cauchy’s Combinatorial Lemma. Let G be a graph that triangulates the 2-sphere.3

Then for any labeling of any non-empty subset of the edges of G with + and − signs,
there exists a vertex v that is incident to an edge labeled with a + or a − sign for
which one encounters at most two sign changes in labels on the edges adjacent to v
as one walks around the vertex.

To verify the lemma, it suffices by Lemma 3.2 to show that P has no non-trivial equilibrium
inversive stresses. We argue by contradiction.

Assume then that P admits a non-trivial equilibrium stress ω. Then Vω = 0 and ω has
a non-zero component for at least one edge. Let V̂ be the scaled inversive stress matrix
obtained from V by applying the scale λij = rirj. Then,

V̂ij = λijVij =

(
xj − xi , yj − yi ,

−r3j + d
2

ijrj + r
2

irj

2rirj

)T

.

Since this is a tangency packing, d2ij = (ri + rj)
2, and a quick calculation shows that

the third component of V̂ simplifies to ri + rj so that V̂ij =
(
xj − xi ,yj − yi , ri + rj

)T .
Because Vω = 0, V̂ω̂ = 0 by Lemma 2.1, and because ω has at least one non-zero entry,
so too does ω̂.

For any edge ij ∈ E(V), label ij with a + sign if ω̂ij > 0 and a − sign if ω̂ij < 0. We argue
that there is no vertex i that is incident to a vertex labeled with a + or a − sign such that
all labeled edges incident to i have the same label. To see this, treat V̂ as a vector in R3

and note that since all radii ri > 0, the z-component of each vector V̂ij is positive. Suppose
that for a vertex i some of the edges ij incident to i have a + label, but no incident edge is
labeled with a − sign. Then all of the ω̂ij values are strictly positive. From this it follows
that the z-component of the sum

∑
j∈Adj(i) ω̂V̂ij is strictly positive, which contradicts

that V̂ω̂ = 0. We conclude that any vertex i that is adjacent to an edge labeled with a +

or a − sign must give rise to at least two sign changes as one traverses in order the edges
adjacent to i. Since ω̂ has at least one non-zero entry, Cauchy’s combinatorial lemma
applies, and there exists a vertex i with exactly two sign changes.

Let v1, · · · , vk denote the vertices adjacent to i given in a counter-clockwise rotation.
Without loss of generality assume that all the + signs occur at the smaller indices, starting
with iv1. Let ivs be the last edge adjacent to i labeled with a + sign so that any of
the remaining edges ivs+1, . . . , ivk, if labeled, are labeled with a − sign. Consider the
corresponding edge vectors V̂iv1 , . . . , V̂ivk

. Note first that each vector V̂ivj
lies on the 45◦

cone L : z2 = x2 + y2. This follows from the facts that circle Ci is tangent to circle Cvj
for

3This holds more generally, for planar graphs with no loops and no multiple edges.
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j = 1, . . . ,k, that (xvj
− xi)

2 + (yvj
− yi)

2 is the squared-distance from the center of Ci to

that of Cvj
, and that V̂ivj

=
(
xvj

− xi ,yvj
− yi , ri + rvj

)T .
Assuming that circle Ci is centered at the origin of the xy-plane, the orthogonal projection
of the vector V̂ivj

is merely the position vector of the center of circle Cvj
. Since the tc-

polyhedron P(C) is a univalent tangency circle packing, the centers of the circles Cvj
appear

in the order 1, . . . ,k as one walks counterclockwise about the origin. It follows that there
are two rays in the xy-plane, R1 and R2, such that one open sector of the plane bounded by
the union R1 ∪R2 contains the centers of Cv1 , . . . ,Cvs and the complementary open sector
contains the centers of the remaining circles Cvs+1 , . . .Cvk

. Let R̂1 and R̂2 be the orthogonal,
vertical lifts of the respective rays R1 and R2 to the 45◦ cone L, and let Π be the plane in E3

containing these lifted rays. Then it is easy to see that the vectors V̂iv1 , . . . , V̂ivs
lie in one

open half-space bounded by Π and the vectors V̂ivs+1 , . . . , V̂ivk
lie in the complementary

open half-space. Since + signs may occur only at the edges iv1, . . . , ivs and − signs at
edges ivs+1, . . . , ivk among the edges incident with vertex i, all the non-zero vectors in the
list ω̂iv1V̂iv1 , . . . , ω̂ivk

V̂ivk
lie in the same open half-space bounded by Π. It follows that

the sum
∑

j∈Adj(i) ω̂ijV̂ij is non-zero since there are exactly two sign changes about vertex
i, which implies that not all the vectors ω̂iv1V̂iv1 , . . . , ω̂ivk

V̂ivk
are zero. This contradicts

the fact that V̂ω̂ = 0 and finishes the proof. �

5. Almost All c-Polyhedra are (Infinitesimally) Rigid

The arguments of Gluck [7], adapted to the setting of c-polyhedra, now apply to verify
our main theorem. Here are the details.

Let P be the 1-skeleton of a simplicial triangulation of the 2-sphere with vertices labeled
as 1, . . . ,n. Identify the c-polyhedron P(C) where C is the circle collection {C1, . . . ,Cn}

with the point p ∈ R3n whose coordinates are p3i−2 = xi, p3i−1 = yi, and p3i = ri when
Ci = (xi,yi, ri) under our parameterization of circles. The collection of all c-polyhedra
in the pattern of P is then parameterized by the points of the open subspace O of R3n

determined by the inequalities ri > 0 for i = 1, . . . ,n.

By Lemma 1.1, the c-polyhedron P(C) is infinitesimally flexible precisely when the rank of
the inversive rigidity matrix R = RP(C) is less than 3n−6. Since the rank of a matrix is the
greatest integer d such that some d× d sub-matrix has non-zero determinant, this occurs
when every (3n−6)×(3n−6) sub-matrix of the rigidity matrix R has zero determinant. By
Equations 1.2, the coefficients of the rigidity matrix R are polynomials in the coordinates
of the parameter point p ∈ R3n that represents P(C), and this implies that the determinant
of any (3n− 6)× (3n− 6) sub-matrix of R is a polynomial in the coordinates of p, i.e., in
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the variables xi,yi, ri, i = 1, . . . ,n. It follows that the c-polyhedron P(C) is infinitesimally
flexible if and only if the point p representing P(C) lies in the real algebraic variety V of
R3n determined by the polynomials detD = 0, as D ranges over the (3n − 6) × (3n − 6)

sub-matrices of R.

Main Theorem. The space O \V of parameter points corresponding to the infinites-
imally rigid c-polyhedra in the pattern of P is open and dense in O, and contains
those parameter points corresponding to the rigid c-polyhedra in the pattern of P.

Proof. To prove the first statement, that the space O \ V is open and dense in O, it
suffices to show that V is a proper subvariety of R3n. For this we need but demonstrate
the existence of a single c-polyhedron P(C) that is infinitesimally rigid. The Koebe Circle
Packing Theorem4 implies the existence of a univalent, tangency circle packing of the
2-sphere in the pattern of P, which then stereographically projects to give a univalent
tc-polyhedron P(C) in the plane. Lemma 4.1 implies that P(C) is infinitesimally rigid.

For the second part, that the infinitesimal rigidity of a c-polyhedron implies its rigidity,
we follow almost exactly the proof of Theorem 4.1 of Gluck [7]. It deserves to be separated
out as its own theorem, whose proof will finish off the proof of this Main Theorem. �

Theorem 5.1. If the c-polyhedron P(C) is infinitesimally rigid, it is rigid.

Proof. As in Gluck [7], the proof is an application of the implicit function theorem. It
works in the present setting because the number of edges m of P is 3n − 6 by an Euler
characteristic argument, since P is the 1-skeleton of a triangulation of S2, and the Möbius
group is a 6-dimensional Lie group. Here are the details.

The map f : O → Rm=3n−6 that assigns the inversive distances between adjacent circles
in the c-polyhedron P(C) corresponding to p ∈ O via

f(p)ij = Inv((Ci,Cj)) when ij ∈ E(P)

has derivative
dfp = ApRP(C),

where p corresponds to P(C) and Ap is the diagonal matrix whose ij diagonal entry is
−1/r2ir

2

j when ij ∈ E(P). As Ap is invertible, we have P(C) is infinitesimally rigid ⇐⇒
R = RP(C) has rank 3n− 6 ⇐⇒ R is surjective ⇐⇒ dfp is surjective ⇐⇒ p is a regular
value of f. By the implicit function theorem, f−1f(p) is a 6-dimensional manifold near p.

4This was proved first in Koebe [8], rediscovered by Thurston [10], and now is a part of what is known
as the Koebe-Andre’ev-Thurston Theorem. There are many proofs in the literature. See Bowers [3] for a
fairly quick proof and a survey of results relating to the theorem, as well as a bibliography of literature
surrounding the theorem.
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A moment’s consideration shows that f−1f(p) parameterizes the set of c-polyhedra in the
pattern of P with the same inversive distances between adjacent circles as those of P(C).
Let Möb(p) denote the set of parameter points q that correspond to the c-polyhedra in the
orbit of P(C) under the action of the Möbius group on the extended plane. Since the Lie
group of Möbius transformations is 6-dimensional, Möb(p) is a 6-dimensional manifold near
p. Since Möb(p) ⊂ f−1f(p) and both are 6-dimensional manifolds near p, they coincide in
a neighborhood of p. But this says precisely that any motion of the c-polyhedron P(C) is
in fact trivial. Hence P(C) is rigid. �
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