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Abstract

Trivalent 2-stratifolds are a generalization of 2-manifolds in that
there are disjoint simple closed curves where three sheets meet. We
obtain a classification of 1-connected 2-stratifolds in terms of their
associated labeled graphs and develop operations that will construct
from a single vertex all graphs that represent 1-connected 2-stratifolds.
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1 Introduction

In Topological Data Analysis one studies high dimensional data sets by
extracting shapes. Many of these shapes are 2-dimensional simplicial com-
plexes where it is computationally possible to calculate topological invariants
such as the fundamental group or homology groups (see for example [6]).
2-complexes that are amenable for more detailed analysis are foams and 2-
stratifolds. Foams include special spines of 3-dimensional manifolds [7], [8].
Khovanov [5] used trivalent foams to construct a bigraded homology theory
whose Euler characteristic is a quantum sl(3) link invariant and Carter [1]
presented an analogue of the Reidemeister-type moves for knotted foams in
4-space.
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A closed 2-stratifold is a 2-dimensional cell complex X that contains a
collection of finitely many simple closed curves, the components of the 1-
skeleton X(1) of X, such that X −X(1) is a 2-manifold and a neighborhood
of each component C of X(1) consists of n ≥ 3 sheets.

It is not not known which 3-manifolds have spines that are 2-stratifolds.
There are significant differences: for any given 2-stratifold there are infinitely
many non-homeomorphic 2-stratifolds with the same fundamental group.
3-manifold groups are residually finite, but every Baumslag-Solitar group
(some of which are Hopfian, others are non-Hopfian) can be realized as the
fundamental group of a simple 2-stratifold.

However it can be shown that fundamental groups of 2-stratifolds have
solvable word problem (work in progress).

2-stratifolds arise in the study of categorical invariants of 3-manifolds.
For example if G is a non-empty family of groups that is closed under sub-
groups, one would like to determine which (closed) 3-manifolds have G-
category equal to 3. In [2] it is shown that such manifolds have a decompo-
sition into three compact 3-submanifolds H1, H2, H3 , where the intersection
of Hi∩Hj (for i 6= j) is a compact 2-manifold, and each Hi is G-contractible
(i.e. the image of the fundamental group of each connected component of Hi

in the fundamental group of the 3-manifold is in the family G). The nerve
of this decomposition, which is the union of all the intersections Hi ∩ Hj

(i 6= j), is a closed 2-stratifold and determines whether the G-category of
the 3-manifold is 2 or 3.

A 2-stratifold is essentially determined by its associated bipartite labelled
graph (defined in section 2) and a presentation for its fundamental group
can be read off from the labelled graph. Thus the question arises when a
labelled graph determines a simply connected 2-stratifold. In [3] it is shown
that a necessary condition is that the underlying graph must be a tree; if
the graph is linear then sufficient and necessary conditions on the labelling
are given, and if the graph is trivalent (definition in section 2), an algorithm
on the labelled graph was developed for determining whether the graph
determines a simply connected 2-stratifold. In [4] an algorithm is given that
decides whether a given labelled graph (not necessarily trivalent) determines
a 2-stratifold that is homotopy equivalent to S2.

The main result of the present paper (in section 3) is a classification of
all trivalent labelled graphs that represent simply connected 2-stratifolds.
Then in sections 4 and 5 we develop three operations on labelled graphs
that will construct from a single vertex all trivalent graphs that represent
simply connected 2-stratifolds.
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2 Properties of the graph of a 2-stratifold.

We first review the basic definitions and some results given in [3] and [4]. A
2-stratifold is a compact, Hausdorff space X that contains a closed (possibly
disconnected) 1-manifold X(1) as a closed subspace with the following prop-
erty: Each point x ∈ X(1) has a neighborhood homeomorphic to R×CL,
where CL is the open cone on L for some (finite) set L of cardinality > 2
and X −X(1) is a (possibly disconnected) 2-manifold.

A component C ≈ S1 of X(1) has a regular neighborhood N(C) = Nπ(C)
that is homeomorphic to (Y×[0, 1])/(y, 1) ∼ (h(y), 0), where Y is the closed
cone on the discrete space {1, 2, ..., d} and h : Y → Y is a homeomor-
phism whose restriction to {1, 2, ..., d} is the permutation π : {1, 2, ..., d} →
{1, 2, ..., d}. The space Nπ(C) depends only on the conjugacy class of π ∈ Sd
and therefore is determined by a partition of d. A component of ∂Nπ(C)
corresponds then to a summand of the partition determined by π. Here the
neighborhoods N(C) are chosen sufficiently small so that for disjoint com-
ponents C and C ′ of X(1), N(C) is disjoint from N(C ′). The components
of N(C)− C are called the sheets of N(C).

For a given 2- stratifold (X,X(1)) there is an associated bipartite graph
G = G(X,X(1)) embedded in X as follows:

In each component Cj of X(1) choose a black vertex bj . In the interior

of each component Wi of M = X − ∪jN(Cj) choose a white vertex wi. In
each component Sij of Wi∩N(Cj) choose a point yij , an arc αij in Wi from
wi to yij and an arc βij from yij to bj in the sheet of N(Cj) containing yij .
An edge eij between wi and bj consists of the arc αij ∗βij . For a fixed i, the
arcs αij are chosen to meet only at wi.

We label the graph G by assigning to a white vertex W its genus g of W
and by labelling an edge S by k, where k is the summand of the partition
π corresponding to the component S of ∂Nπ(C) where S ⊂ ∂Nπ(C). (Here
we use Neumann’s [9] convention of assinging negative genus g to nonori-
entable surfaces). Note that the partition π of a black vertex is determined
by the labels of the adjacent edges. If G is a tree, then the labeled graph
determines X uniquely.

Notation. IfG is a bipartite labelled graph corresponding to the 2-stratifold
X we let XG = X and GX = G.
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The following was shown in [3].

Proposition 1. There is a retraction r : X → GX .

Proposition 2. If X is simply connected, then GX is a tree, all white
vertices of GX have genus 0, and all terminal vertices are white.

The proof uses Proposition 1 and the following pruning construction:

Pruning at a subgraph. For a subgraph Γ of G and the retraction r :
XG → G, let Y = r−1(Γ). This is almost a 2-stratifold, except that Y has
possibly boundary curves corresponding to edges of st(Γ) − Γ, where st(Γ)
is the star of Γ in G. Let Ŷ be the quotient of X obtained by collapsing the
closure of each component of XG−Y to a point i.e. Ŷ is obtained from Y by
attaching disks to its boundary curves. Then Ŷ is a 2-stratifold, Ŷ = XΓ̂,

whose graph Γ̂ is the union of Γ and the labeled edges (with their vertices)
of st(Γ)− Γ which are adjacent to a black vertex of Γ.

Figure 1: G, Γ and Γ̂

Definition 1. P is a pruned subgraph of G if P = Γ̂, for some subgraph Γ
of G.

Remark 1. For a pruned subgraph P of G, the quotient map XG → XP in-
duces surjections π(XG) → π(XP ) and H1(XG;Z2) → H1(XP ;Z2). There-
fore, if XG is simply connected, XP is simply connected.

In this paper we consider trivalent graphs. A 2-stratifold X and its la-
beled bicolored graph GX are defined to be trivalent, if each black vertex b
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is incident to either three edges each with label 1 or to two edges, one with
label 1, the other with label 2, or b is a terminal vertex with adjacent edge of
label 3. This means that a neighborhood of a point of a component C of the
1-skeleton X(1) has 3 sheets, so the permutation π : {1, 2, 3} → {1, 2, 3} of
the regular neighborhood N(C) = Nπ(C) has partition 1+1+1 or 1+2 or 3.

One of the main results in [3] (Theorem 5) is that a trivalent 2-stratifold
is 1-connected if and only if H1(X;Z2) = H1(X;Z3) = 0. The second
condition is only needed to insure that GX has no terminal black vertices,
therefore:

Theorem 1. Let X be a trivalent 2-stratifold such that all terminal vertices
are white. Then X is 1-connected if and only if H1(X;Z2) = 0.

3 Classification of 1-connected trivalent 2-stratifolds

The building blocks for constructing labeled trivalent graphs for 1-connected
2-stratifolds are called b12-graphs and b111-graphs:

Definition 2. (1) The b111-tree is the bipartite tree consisting of one black
vertex incident to three edges each of label 1 and three terminal white vertices
each of genus 0.
(2) The b12-tree is the bipartite tree consisting of one black vertex incident
to two edges one of label 1, the other of label 2, and two terminal white
vertices each of genus 0.

Figure 2: b12-tree and b111-tree

First we consider special trivalent trees that do not contain b111-subtrees,
which we call barycentrically subdivided rooted (2, 1)-labeled trees or short
(2, 1)-collapsible trees:

A barycentrically subdivided rooted (2, 1)-labeled tree is constructed from
a rooted tree T with root r (a vertex of T ) as follows: color with white
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and label 0 the vertices of T , take the barycentric subdivision sd(T ) of T
, color with black the new vertices (the barycenters of the edges of T ) and
finally label an edge e of sd(T ) with 2 (resp. 1) if the distance from e to the
root r is even (resp. odd). This labeled sd(T ) is the (2, 1)-collapsible tree
determined by (T, r). We allow a one-vertex tree (with white vertex) as a
(2, 1)- collapsible tree.

A typical example is shown in Figure 3, where regions enclosed by the
dashed curves are (2, 1)-collapsible trees, bold white vertices are roots.

Lemma 1. Let XG be a trivalent 1-connected 2-stratifold. Then after remov-
ing the open stars of all black vertices of degree 3, the components C1, . . . , Cn
are barycentrically subdivided rooted (2, 1)-labeled trees. Furthermore, for
each black vertex b of degree 3, at least one of its (three white) neighbors is
the root of some Ci.

Figure 3

Proof. Note that each Ci is a pruned subgraph of G and so π(XCi) = 1.
Therefore for the first part of the proposition it suffices to show that if C
has no black vertices of degree 3 and XC is simply connected, then C is a
barycentrically subdivided rooted (2, 1)-labeled tree.

6



By Proposition 2, C is a tree with all white vertices of genus 0 and all
terminal vertices white and, if C is not a vertex, contains a b12-subgraph
L with terminal edge of label 1. Let w be the white vertex of L which is
not a terminal vertex of C. Let G0 = (C − L) ∪ {w}, let G′i (i = 1, . . . ,m)
be the components of G0 − {w} and Gi = G′i ∪ {w}. Then XGi is simply
connected for i = 0, . . . ,m. By induction on the number of vertices, each
Gi is a barycentrically subdivided rooted (2, 1)-labeled tree with a root ri.

If ri = w for each i = 1, . . . ,m then C is a barycentrically subdivided
rooted (2, 1)-labeled tree with root w.

If ri 6= w the label on the edge ei of Gi incident to w is 1. It follows that
there is at most one ri not equal to w. For otherwise, if ri 6= w 6= rj the
unioin of the edges and vertices of the simple path in Gi ∪Gj from ri to rj
is a pruned linear subgraph Γ = G(2, 1, . . . , 1, 1, 2, 1, . . . , 1, 2) of C for which
XΓ is not simply connected by Theorem 3 of [3]. This is a contradiction
since π1(XΓ) is a quotient of π1(XC). It follows that if ri 6= w then C is a
barycentrically subdivided rooted (2, 1)-labeled tree with root ri.

For the second part of the proposition, suppose that G contains a b111-
subgraph with black vertex b such that none of its white vertices w1, w2, w3

is a root of any of the Cj and let Ci be the pruned subgraph of G containing
wi (i = 1, 2, 3) and with roots ri 6= wi. Then the pruned subgraph Γ of G
which is the union of the edges and vertices of the three simple paths in
G from the roots ri to b (i = 1, 2, 3) has all terminal edges of label 2. By
Lemma 4 of [3], π1(XΓ) 6= 1, a contradiction.

The figure below shows that the converse of Lemma 1 is false. There are
two b111-vertices, all labels are 1 except as indicated, and H1(XG;Z2) ∼=
Z2×Z2. Deleting the two b12-trees at the white center vertex (but not the
center vertex) yields a horned tree.

Figure 4: horned tree

7



Definition 3. A horned tree HT is a finite connected bipartite labeled tree
such that
(1) every black vertex b whose distance to a terminal white vertex is 1 has
degree 2; otherwise b has degree 3;
(2) every nonterminal white vertex has degree 2;
(3) every terminal edge has label 2, every nonterminal edge has label 1.
(4) there is at least one vertex of degree 3.

A horned tree HT may be constructed from a tree T all of whose non-
terminal vertices have degree 3, with at least one such vertex, as follows:

Color a vertex of T white (resp. black) if it has degree 1 (resp. 3).
Trisect the terminal edges of T and bisect the nonterminal edges, obtaining
the graph HT . Color the additional vertices v so that HT is bipartite, that
is, v is colored black if v is a neighbor of a terminal vertex of HT and white
otherwise. Then label the edges so that (3) holds.

The main property of HT is that π1(XHT
) = Z2.

Finally we consider a “reduced graph” of G which encodes information
on how the (2, 1)-collapsible trees of Lemma 1 are attached to the stars of
the black vertices of degree 3.

Denote by B the union of all the black vertices of degree 3 of G, let
St(B) be the (closed) star of B in G and st(B) be the the open star of B.
Note that G− st(B) consists of the components C1, . . . , Cn as in Lemma 1.

Definition 4. Let G be a bipartite labeled tree such the the components
of G − st(B) are barycentrically subdivided rooted (2, 1)-labeled trees. The
reduced subgraph R(G) of G is the graph obtained from St(B) by attaching
to each white vertex w of St(B) that is not a root, a b12-graph such that the
terminal edge has label 2.

As an example the reduced graph R(G) for the graph in Figure 3 is
shown below.

Lemma 2. H1(XG,Z2) ≈ H1(XR(G),Z2).

Proof. H1(XG,Z2) is generated by the black vertices. Let w be a white
vertex of G of degree n ≥ 2 with incident edges e1, . . . , en. Suppose the
label on ei is 2 for i = 1, . . . , k (k ≤ n). Split w into k+ 1 (disjoint) vertices
w1, . . . , wk, w

′ so that each wk has degree 1 with adjacent edge ek and w′
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Figure 5

has degree n−k with adjacent edges ek+1, . . . , en. This change of the graph
does not change H1(XG,Z2).

Now let C be a (2, 1)-collapsible component of G − st(B). If w is a
terminal (white) vertex of C that is also a terminal vertex of G, delete the
b12-subgraph of C that contains w, if there is one (C might consist of a
single vertex). Continue doing this operation until all terminal vertices of
C belong to St(B). This does not change π1(XG). If w is a non-terminal
white vertex of (the new C) then, if w is the root, all edges incident to w
have label 2; if w is not the root, all edges but one incident to w have label
2. Do the above construction on each such w to change C to C ′. Then
each component of C ′ that does not contain a terminal white vertex of C
is a linear graph of type w1 − b1 − · · · −wk − bk with successive edge labels
2 − 1 − · · · − 2 − 1 (or consists of a single white vertex). Deleting these
homologically trivial components from C ′ does not change H1(XG,Z2).

Doing this for all (2, 1)-collapsible components C of G− st(B) results in
R(G).

We now state the Classification Theorem.

Theorem 2. Let XG be a trivalent connected 2-stratifold. The following
are equivalent :
(1) XG is 1-connected
(2) GX is a tree with all white vertices of genus 0 and all terminal vertices
white such that the components of G − st(B) are barycentrically subdivided
rooted (2, 1)-labeled trees and the reduced graph R(G) contains no horned
tree.

Proof. If XG is 1-connected then by Proposition 2 and Lemma 1 the compo-
nents of G−st(B) are barycentrically subdivided rooted (2, 1)-labeled trees.
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If the reduced graph R(G) contains a horned tree H let C be the component
of R(G) containing H. Note that H is a pruned subgraph of C and since
π1(H) = Z2, it follows from Remark 1 that H1(C;Z2) 6= 0. Lemma 2 then
shows that H1(XG;Z2) ∼= H1(XR(G);Z2) 6= 0. Hence R(G) does not contain
a horned tree.

Conversely, suppose the components of G − st(B) are barycentrically
subdivided rooted (2, 1)-labeled trees and R(G) contains no horned trees.
Let C be a component of R(G).

First we show by induction on n := number of black vertices of degree 3
in C, that H1(XC ;Z2) = 0.
If n = 1, then C is a b111-tree with at most two b21-trees attached to its
terminal vertices, and so H1(XC ;Z2) = 0.
Let n > 1. We claim that at least one terminal label of C is 1.
If not, then C satisfies conditions (1) and (3) of the definition of horned tree.
We can find a sequence C = C0, C1, . . . , Cm, where Cm is a horned tree and
Ci+1 is obtained from Ci by deleting all but two components of Ci−{w} for
some nonterminal white vertex w of Ci, contradicting the assumption that
R(G) contains no horned trees. This proves the claim.
Now let C ′ = C − st(b) where b − w is a terminal edge of C with label 1.
Then H1(C;Z2) = H1(XC′ ;Z2) which by induction is 0.

Therefore H1(XG,Z2) = H1(XR(G);Z2) = 0 and it follows from Theorem
1 that XG is 1-connected.

4 Constructing trivalent graphs with all edge la-
bels 1.

On a labeled graph Γ = ΓX with all white vertices of genus 0 consider the
following operation O1 that changes Γ = ΓX to Γ1 = ΓX1 :

If bi is the black vertex incident to the edge labeled ri then the cor-
responding relation br11 . . . brmm = 1 in π1(X) is changed to the relations
br11 . . . brkk b = 1, b = 1, b

rk+1

k+1 . . . b
rm
m = 1 in π1(X1) and it follows that π1(X1)

is a quotient of π1(X). In particular we note:

Remark 2. If X is simpy connected, then operation O1 does not change
the fundamental group.
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m ≥ k ≥ 0

Figure 6: Operation O1

Lemma 3. Let X be a trivalent 2-stratifold such that ΓX is a tree with all
white vertices of label 0, all terminal vertices white, and all edge labels 1.
Then ΓX can be reconstructed from any white vertex w of ΓX by successively
performing O1.

Proof. If Γ = ΓX consists of w only, there is nothing to show. Clearly the
Lemma is true if ΓX has only one black vertex.

Let b be a black vertex incident to w. Deleting b and its three incident
edges from Γ, we obtain three subtrees Γ′, Γ′′, Γ′′′ that satisfy the conditions
of the Lemma and with fewer black vertices than Γ. Denote by w′, w′′, w′′′

the three white vertices adjacent to b, where w′ = w ∈ Γ′, w′′ ∈ Γ′′ and
w′′′ ∈ Γ′′′. By induction on the number of black vertices, Γ′ is obtained from
w by repeated applications of operation O1. Now apply O1 to w ∈ Γ′ to put
back b with its three edges and vertices w′′ and w′′′, then apply a sequence
of O1’s to w′′ and to w′′′ to engulf Γ′′ and Γ′′′.

Theorem 3. Let X be a trivalent 2-stratifold such that each edge of ΓX has
label 1. Then the following are equivalent:
(1) π1(X) = 1.
(2) ΓX is a tree with all white vertices of label 0 and all terminal vertices
white.
(3) ΓX can be constructed from the b111-graph by successively performing
operation O1.

Proof. (1) =⇒ (2) by Corollary 1 of [3].
(2) =⇒ (3) by induction on the number of black vertice of ΓX : If this
number is 1, then ΓX is a b111-graph, so suppose ΓX has at least two black
vertices. By Corollary 1 of [3], ΓX contains a b111-subgraph Ψ with a white

11



vertex w which is a terminal vertex of ΓX . Let b be the black vertex and
w′, w′′ the other white vertices of Ψ. Deleting the edges of Ψ together
with b and w splits ΓX into two subgraphs ΓX′ and ΓX′′ , each with fewer
black vertices than ΓX and w′ ∈ ΓX′ , w

′′ ∈ ΓX′′ . Now X ′ and X ′′ are
simply-connected and satisfy the conditions of Lemma 3. By induction, ΓX′

is obtained from Ψ by successively performing operation O1. One further
operation O1 (starting at w′) adds Ψ to ΓX′ and by Lemma 3 we can add
ΓX′′ by performing successively operation O1, starting at w′′.
(3) =⇒ (1): The b111-graph is simply connected and by Remark 2 operation
O1 does not change the fundamental group.

5 Constructing trivalent graphs with edge labels
1 or 2.

For two disjoint labeled graphs Γ1 = ΓX1 and Γ2 = ΓX2 with all white ver-
tices of genus 0, operation O1∗ described in Figure 7, creates a new graph
Γ = ΓX :

h

m ≥ 0

Figure 7: Operation O1∗

Note that X is obtained from X1 and X2 by identifying a disk in X1

with a disk in X2, therefore :

Remark 3. π1(X) ∼= π1(X1) ∗ π1(X2).
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Finally, on a labeled graph Γ = ΓX with all white vertices of genus
0 consider operation O2 described in Figure 4, that changes Γ = ΓX to
Γ1 = ΓX1 :

m ≥ 0

Figure 8: Operation O2

Remark 4. Operation O2 does not change the fundamental group.

We now describe the collection G of all trivalent graphs that can be ob-
tained from a single white vertex by successively applying Operations O1
and O2.

For a collection C of bipartite labeled graphs denote by Ĉ the collection
of all compact, connected bipartite labeled graphs obtained by starting with
any Γ0 ∈ C and successively performing Operations O1 or O2. We express
this as

Ĉ = {∅,Γ0
O1

−→ · · · O
m

−→ Γ | Γ0 ∈ C, Oi = O1 or O2 ; m ≥ 0 }

Let ◦ denote (the collection containing only) the graph consisting of one
white vertex and let G0 = ◦̂ .

For two connected bipartite labeled graphs Γ and Γ′ denote by Γ Γ′ a
graph obtained by joining any white vertex of Γ to any white vertex of Γ′

by operation O1∗. Note that that there are vv′ such Γ Γ′, where v (resp.
v′) is the number of white vertices of Γ (resp. Γ′). Let

G0 G0 = {Γ Γ′ |Γ,Γ′ ∈ G0 }

In particular, G0 ∅ = G0 and ∅ ∅ = ∅. Let

G1 = ̂G0 G0, and inductively Gn+1 = ̂Gn Gn

Then G0 ⊂ G1 ⊂ · · · ⊂ Gn ⊂ . . . ⊂ G :=
⋃∞
i=0 Gi
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Theorem 4. Let X be a trivalent 2-stratifold. Then X is simply connected
if and only if ΓX ∈ G.

Proof. If ΓX ∈ G then π1(X) = 1 by Remarks 3 and 4.
Suppose π1(X) = 1. If ΓX has no black vertices, or exactly one black

vertex, then ΓX ∈ G. In any case ΓX is a tree with all white vertices of genus
0 and all terminal edges white. Furthermore by Lemma 4 of [3], ΓX contains
a terminal vertex w with incident edge e of label 1. Let b be the black vertex
incident to e. Then the star of b in ΓX is a b12-graph or a b111-graph. In
the first case star(b) has two (open) edges e,e′ where e′ has label 2. The
subgraph Γ′X obtained from ΓX by deleting w∪b∪e∪e′ is simply connected
(by Remark 4). By induction on the number of black vertices Γ′X ∈ G and
since ΓX is obtained from Γ′X by operation O2, it follows that ΓX ∈ G.

In the second case, star(b) has three edges e,e′,e′′, each with label 1. The
subgraphs Γ′X and Γ′′X obtained from ΓX by deleting w ∪ b ∪ e ∪ e′ ∪ e′′ are
simply connected by Remark 3. By induction, Γ′X and Γ′′X are in G and
since ΓX is obtained from Γ′X and Γ′′X by operation O1∗, it follows that
ΓX ∈ G.
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