A Bombieri-Vinogradov theorem for all number fields
M. Ram Murty, Kathleen L. Petersen
The classical theorem of Bombieri and Vinogradov is generalized to a non-abelian, non-Galois setting. This leads to a prime number theorem of "mixed-type" for arithmetic progressions "twisted" by splitting conditions in number fields. One can view this as an extension of earlier work of M. R. Murty and V. K. Murty on a variant of the Bombieri-Vinogradov theorem. We develop this theory with a view to applications in the study of the Euclidean algorithm in number fields and arithmetic orbifolds.