Two Types of Burst Firing in Gonadotrophin-Releasing Hormone Neurones
Zhiguo Chu, Maurizio Tomaiuolo, Richard Bertram, Suzanne M. Moenter
GnRH neurones fire spontaneous bursts of action potentials, but little is understood about the underlying mechanisms. Here we show evidence for two types of bursting/oscillation driven by different mechanisms. Properties of these different types are clarified using mathematical modeling and a recently developed active-phase/silent-phase correlation technique. The first type of GnRH neurone (1-2%) exhibits slow (~0.05Hz) spontaneous oscillations in membrane potential. Action potential bursts are often observed during oscillation depolarization, but some oscillations were entirely subthreshold. Oscillations persist after blockade of fast sodium channels with TTX and blocking receptors for ionotropic fast synaptic transmission, indicating they are intrinsically generated. In the second type of GnRH neurone, bursts were irregular and TTX caused a stable membrane potential. The two types of bursting cells exhibited distinct active-phase/silent-phase correlation patterns, which is suggestive of distinct mechanisms underlying the rhythms. Further studies of type 1 oscillating cells revealed that the oscillation period was not affected by current or voltage steps, although amplitude was sometimes damped. Oestradiol, an important feedback regulator of GnRH neuronal activity, acutely and markedly altered oscillations, specifically depolarizing the oscillation nadir and initiating or increasing firing. Blocking calcium-activated potassium channels, which are rapidly reduced by oestradiol, had a similar effect on oscillations. Kisspeptin, a potent activator of GnRH neurones, translated the oscillation to more depolarised potentials, without altering period or amplitude. These data show that there are at least two distinct types of GnRH neurone bursting patterns with different underlying mechanisms.