Verdier specialization via weak factorization
Paolo Aluffi
Let X in V be a closed embedding, with V - X nonsingular. We define a constructible function on X, agreeing with Verdier's specialization of the constant function 1 when X is the zero-locus of a function on V. Our definition is given in terms of an embedded resolution of X; the independence on the choice of resolution is obtained as a consequence of the weak factorization theorem of Abramovich et al. The main property of the specialization function is a compatibility with the specialization of the Chern class of the complement V-X. With the definition adopted here, this is an easy consequence of standard intersection theory. It recovers Verdier's result when X is the zero-locus of a function on V.
Our definition has a straightforward counterpart in a motivic group. The specialization function and the corresponding Chern class and motivic aspect all have natural `monodromy' decompositions, for for any X in V as above.
The definition also yields an expression for Kai Behrend's constructible function when applied to (the singularity subscheme of) the zero-locus of a function on V.