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Abstract

A closed topological n-manifold M™ is of S'-category 2 if it can be
covered by two open subsets Wi,Ws2 such that the inclusions W; — M™
factor homotopically through maps W; — S*. We show that for n > 3, if
catgi(M™) = 2 then M™ ~ S™ or M"™ =~ S"~' x S* or the non-orientable
S™"~!bundle over S'. ! 2

1 Introduction

For a fixed space A and a space X the A-category cat, X of X was defined
by Clapp and Puppe [1]. In particular suppose A = K a cell-complex and X
a CW-complex. A subspace W of X is K-contractible (in X) if there exist
maps f : W — K and a : K — X such that the inclusion ¢+ : W — X is
homotopic to « - f. Notice that a subset of a K-contractible set is also K-
contractible. The K -category catxg X of X is the smallest number of sets, open
and K-contractible (in X) needed to cover X. Note that in the case K = P,
a point, catpX = cat X, the Lusternik-Schnirelmann category of X. We are
interested here in the case K = S', X = M™, a closed n-manifold, and consider
the beginning case catg: (M™) = 2.

So suppose that M™ is a closed connected topological n-manifold with catg: (M™) =
2. Denoting by S" 1% S either "~ x S! or the non-orientable S™~!-bundle
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over S' we obtain as obvious examples:

52, P2, S1xS! for n = 2.
53, lens spaces, S2x St for n = 3.
Sm, 8m~1x St for n > 3.

In [6] it is shown that for n = 2,3 these are the only possibilities up to
homotopy type, hence by Perelman [15] this is true up to homeomorphism type.
For n > 3 it is shown in [7] that 71 (M™) is trivial or infinite cyclic. The main re-
sult of this paper is that in the latter case the above list is complete (Theorem 5).

Here is an outline of the proof. Assume that M™ is a closed orientable n-
manifold, n > 3, and catgi (M™) = 2.

If 1 (M™) = 1 then catgi (M™) = cat(M™) = 2 implies M ~ S™ (Fox, Smale,
Freedman). Thus assume that w1 (M"™) = Z ([7]).

For the k-fold cyclic cover My of M™ (k > 1), m1(M}) =2 Z and cats1 (My) =
2. Then (by Poincaré Duality) H*(M},) ~ Z for i = 0, 1, n—1, n. Using a result
of Clapp and Puppe (Proposition 2) this implies that H,(Mj) = H,(S" ! x S1)
for all ¢ > 0. Lift a 1-sphere X! C M™ representing a generator of 1 (M™) to
a 1l-sphere E,ﬁ C M;'. We can asssume that E,l€ is locally flat and do surgery
on X} to obtain an n-sphere S} with a locally flat (n — 2)-sphere X7~ 2 C Sp
(Proposition 3) where Y3 = M}' — X} = S — %7~ 2 is a homology 1-sphere and
71(Y) = Z. Consider the action ¢ : ¥ — Y on the universal covering space
Y of Y = Y; given by a generator ¢ of w1 (Y). Then H;(Y) is a finitely gener-
ated Z(t)-module, for each ¢ > 0. Since H;(Y)) = 0 for ¢ > 1 it follows that
t™ —1: Hy(Y) — H;(Y) is an automorphism for each m > 1. An algebraic
lemma (Lemma 4) then implies that H;(Y) = 0 for all i and so Y is contractible
and Y is a homotopy S'. By Stallings and Freedman 2711_2 is a topologically
trivial knot in ST and it follows that M™ = M7 ~ S"~! x St

If M is non-orientable we give an argument using the 2-fold orientable cover
of M.

2 Preliminaries

In this section we assume that M is a closed connected n-manifold. If catgi M =
2 then M is covered by two open sets Wy, Wy such that for ¢ = 0,1, there are
maps f; and «; such that the diagram (*) is homotopy commutative.

W;
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The following proposition, proved in [6], allows us to replace the open sets
W; by compact submanifolds that meet only along their boundaries.

Proposition 1. If catgt M = 2 then M can be expressed as a union of two
compact S*-contractible n-submanifolds Wy, W1 such that Wo N W, = OW, =
OW1. Furthermore for n > 2, we may assume that o; is an embedding and
a;(S1) does not intersect Wo N W7.

The main result of [7] is

Theorem 1. If catsys M =2 and n > 3 then 1 (M) =1 or Z and the loops «;,
i = 0,1, represent a generator of m (M).

Lemma 1. Let W; < M be S'-contractible in M and let p: M — M be a
finite sheeted covering map. If p~'(a;(S*)) is connected then W := p~*(W;) is
St_contractible in M.

Proof. Let W = Wy or W1, W = Wy or Wy. There is a homotopy hy : W — M
such that hg = ¢, hy = a; - fi. Let S = p~1(a(S1)) =2 S and define ho: W —
J~\~4 to be inclusion. By the homotopy lifting Theorem h; lifts to a homotopy
hy : W — M such that hy (W) C p~(ai(fi(W)) C S. O

Lemma 2. Suppose (M) = Z and py, : My — M is the k-fold cyclic cover
(k Z 1) [fcatsl (M) = 2 then Catsl(Mk) = 2

Proof. There is a decomposition M = WyUW7 as in Prop. 1. By Theorem 1 the
loops «; are homotopic to a loop v representing a generator of 1 (M) = Z. Since
p t(7) is connected, p, *(a;(S)) is connected. By Lemma 1 My = Wo U W,y
where W; is S1-contractible in Mj. O

Lemma 3. Suppose M is non-orientable, n > 2, and p : M — M is the 2-fold
orientable cover. If catgi(M) =2 then catgi (M) = 2.

Proof. The proof is the same as in the previous lemma, noting that for an
orientation reversing loop w in M, w ~ ™ for some m # 0. Since p~!(w) is
connected it follows that p~1(y) and p~!(c;(S!)) are connected.

O

We will need the following algebraic lemma:

Lemma 4. Let J be the infinite cyclic group with generator t and let A be a
finitely generated Z(J)- module. If for any m > 1 multiplication by 1 —t™ is an
automorphism of A then A =0.

Proof. A is of type K in the sense of Levine [13] (p.8), i.e. A is a finitely
generated Z(J)- module such that ¢ — 1 : A — A | multiplication by ¢ — 1,
is an epimorphism (equivalently, an automorphism). A submodule or quotient
module of type K is again of type K. A module A of type K is finite if ev-
ery element of A has finite order ([16], proof on Lemma II.8, [13] p.8). Hence
Tor(A) :={a € A: a has finite order} is a finite group. Therefore the group of



bijections from Tor(A) to itself is finite, so the bijection t : Tor(A) — Tor(A)
has finite order k and t* — 1 : Tor(A) — Tor(A) is 0 and is an automorphism.
Hence Tor(A) = 0.

Then [16] (Lemma I1.12) A can be presented by a square matrix with en-
tries in Z(J) whose determinant A(t) is normalized so that it is a polynomial
in ¢ with nonzero constant term. It generates the first elementary ideal of A®Q.

Following Weber [20] p.267, there are polynomials \;,i = 1,...,r, such that
for the direct sum of cyclic Z(J)-modules B = &7_,Z(J)/(\;) one has a short
exact sequence of Z(J)-modules 0 = B — A — A/b- B — 0, where B — A is
multiplication by a nonzero integer b, such that A /b- B is finite torsion group.
Since now t™ —1: A/b-B — A/b- B is an epimorphism for each m > 1 it
follows from the argument given above for Tor(A) that A/b- B = 0.

Hence A = &I Z(J)/(X\;) and A(t) = [[_; A\; and it follows from the
Proposition of section 2 of [20] and multiplicativity of resultants (Corollary
p.262 of [20]) that |Res(t™ —1, A(t))| = order of A/(t™ —1)A =1 for all m > 1.

This implies by [10] that A(¢) = 1 (This also follows from [9] (Thm 1) and
Kronecker’s Theorem [18]).

Now A can be presented by an r x r diagonal matrix S over Z(J) with
det(S) = A(t). For each a € A, A-a = (detS)-a=(MA2... ) -a=0. Hence
A=1-A=A-A=0.

O

3 Cat 2 and Homology(S! x S 1)

Let D; denote the set of all cell-complexes of dimension < 1. Following Clapp-
Puppe [1] we let catp, X be the smallest number m such that X can be covered
by m open sets, each K-contractible in X, for some K € D;.

Let G be any coefficient group.

Proposition_ 2. Suppose that catp, X <
that o; € HY(X;Q), for some j; > 1 (i
arU---Uag =0.

k. Let aq,...,a be cocycles such
= 1,...,k). Then the cup product

Proof. This follows from [1]: Let X = X; U---U X} be an open cover of X,
where each X; is K;-contractible in X, for some 1-complex K;. Then the in-
clusion induced homomorphism ¢* : H7(X;G) — H7(X;; G) factors through
Hi(K;; G) which is 0 since j; > 1. Hence in the exact cohomology sequence

o HI(X, X5 G) — H(X;G) S HI(X3;G)



a; pulls back to a relative cocycle &;. Then the relative cup product &; U---U
a € HY(X,U_, Xi;G) = HY(X, X;G) = 0, where ¢ = ji + - - - + j. It follows
that aqy U---Uay = 0. O

Lemma 5. If 71(X) is cyclic then catsi X = catp, X.

Proof. Tt suffices to show that if W C X is K-contractible in X for some K € D,
then W is S'-contractible in X.
The inclusion ¢ : W — X factors homotopically through W LKk 2 x.

Since w1 (X) is cyclic, o factors as K F51 X and o~ o (f'f). O

Theorem 2. Suppose M is a closed orientable n-manifold, n > 3, with catgi M =
2. Then M is homeomorphic to S™ or M is a homology S* x S™~1.

Proof. If my(M) = 1 then an S'-contractible submanifold W is in fact con-
tractible in M. Hence catM = 2 and it follows (see for example [5]) that M is
a (homotopy) n-sphere.

Thus assume 71 (M) # 1, hence by Theorem 1 7;(M) = Z. By Poincare
Duality M has the same homology groups as S' x S"~! if and only if M has the
same cohomology groups as S x S"~1. Assume that H*(M) 2 H*(S* x S~ 1).
We show that this implies catp, M > 2. By Lemma 5 this would imply that
catgi M > 2.

Since 71 (M) = Z we have (by Poincaré Duality) Z & HY(M) = H"~}(M),
Z = HY(M) = H"(M). By assumption there exists some i, 1 < i < n — 1 such
that H'(M) # 0. Then H*(M;Q) # 0 or H(M;Z,) # 0 for some prime p. Let
G = Q if HY(M) is infinite and G = Z, if H'(M) is finite. Then there exist
a; € H{(M;Q), as € H"H(M;G) such that a; U as = u # 0, a generator of
H™(M; Q). By Proposition 2, catp, M > 2.

O

4 Surgery on a Homology S' x S"!

By the General Position Theorem of J. Dancis [2] any map from S! into a closed
n-manifold M", n > 3, is homotopic to a locally flat embedding of S! into M™.
So if M™ is a homology S™~! x S! we can asssume that a regular neighborhood
of a circle X! C M that represents a generator of Hy(M) is a tube X x D"~1.
We now show that we can do surgery on X! to obtain an n-sphere S™.

Proposition 3. Suppose the closed orientable n-manifold M, n > 3, is a ho-
mology S"~! x S'. Denote by ¥t x D"~ a regular neighborhood of a circle
Y1 C M that represents a generator of Hy(M).

Let Y = M —int(3! x D"71) and Mg =Y U (D? x S"~2) where 1 x S"=2 s
identified with S x S"2.

Then Y is a homology 1-sphere and Mg is a homology n-sphere.

Furthermore, if 7 (M) = 7Z and X' C M represents a generator of w1 (M), then
7T1(Y) =7 and MS ~ S".



Proof. We first show that H;(Y) =0for 1 <j <n—2.

We identify X! with S!. By excision and from the exact homology sequence
of the pair (S x D"~ S x §"~2) we obtain (using the fact that inclusion
induces isomorphisms H;(S' x S"~2) — H;(S* x D"71) for i = 0,1 ) that

forj=1,...,n—2
H;(M,Y) = Hj(S' x D", 8" x §"2) = { % fgrj. ) 1’;
This implies, using the exact homology sequence of the pair (M,Y") that

We now show that Mg is a homology n-sphere.

Since Mg is a closed n-manifold we have Hyo(Mg) = Z = H,,(Ms).
From the Mayer-Vietoris sequence of Mg = Y Ugign—2 (D? x S"~2) and us-
ing the fact that H;(Y) = 0 for 1 < j < n — 2, we obtain H;(Mg) = 0 for
2 < j<n—2. For j =1,2 consider the exact sequence

Ha(S' x S"=2) 52 0@ Hy(D? x §7~2) — Hy(Mg) — Hy(S' x S"=2) &
Hi(Y)®0 — Hy(Mg) — Ho(S* x S*2) 58 Hy(Y) & Ho(D? x S"~2) —
Ho(Mg) — 0

The homomorphism k; is induced by inclusion and is an isomorphism. The
last three terms of the sequence show that kg is injective. It follows that
H,(Mg) = 0.
If n > 4 the first two terms of the sequence are 0 and it follows that Hy(Mg) = 0.
For n = 4 these terms are Z. Now ks is an isomorhphism (since a generator

of Ha(S! x S2) is represented by {point} x S2 3 {point} x $2) and it follows
again that Ha(Mg) = 0.

Hence we have shown that H;(Mg) =0 for j =1,2,...,n — 3. By Poincarée
Duality, H,_;(Mg) =0 for j = 1,2,...,n — 3 and it follows (since for n = 4,
Hy(Ms) = 0) that H;(Mg) =0 for j =1,2,...,n— 1.

To complete the proof that Y is a homology S' we need to show that
H,(Y)=0forn—-2<gq.

Since 9Y # () we have H,(Y) = 0.
Denote by S"~2 the (n — 2)-sphere {P} x S"~2 C D? x S"~2 where P is
a point in 9D?. By Lefschetz Duality (see e.g. [19], Thm 6.17) H,(Y) =
Hy(Mg —S"2) 2 H"=9(Mg,S™2). Since Mg is a homology sphere it follows
(from the exact cohomology sequence of the pair (Mg, S"~2)) that this relative
cohomology group is 0 for g > 2.

Finally, if 71 (M) = Z and S C M represents a generator of 71 (M), then by

Seifert-vanKampen we obtain 71 (Y") = m1(M) and 71 (Mg) = 1. Since now Mg
is a simply connected homology sphere it follows that Mg is the (homotopy)



n-sphere. O

5 The Main Theorem

We first give a characterization of S' x S"! in terms of m; and the homology
of coverings.

Theorem 3. Suppose w1(M") = Z, withn > 3, and H,(My,) = H,(S! x S"71)
for all k > 1, where My, is the k-fold cover of M™. Then M™ is homeomorphic
to St x SnL,

Proof. We perform surgery on M. Let ©! x D"~! € M be a tubular neighbor-
hood of a 1-sphere representing a generator of (M), Y = M —int(X x D"71)
and Mg the union of Y and D? x S"~2 pasted together along their boundaries as
in Proposition 3. Then Y is a homology 1-sphere, 71(Y) = Z, Mg ~ S™ and we
have a locally flat knot (S™, S"~2) with exterior Y. By [11] (p.301 (III)), Y has
the homotopy type of a finite CW-complex and for the following we may assume
that Y is a finite CW-complex. Let £ x D"~1 (resp. V) be the lift of 1 x D" ~1
(resp. Y) to the k-fold cyclic cover My, of M (k > 1). Then m (M) = Z with
generator represented by Z}C and by Lemma 2, Theorem 2 and Proposition 3,
catgi (My) = 2, Yy, = My —int(SE x D"1) = S* —int(Sy ™2 x D?) is a homology
1-sphere and m1(Yy) = Z.

Consider the action ¢ : ¥ — Y on the universal covering space Y of Y = Y;
given by a generator ¢ of m1(Y). Since Y} is a finite CW-complex, HZ(Y/) is a
finitely generated Z(t)-module whose tensor product with Q is a finite dimen-
sional vector space over Q, for each i > 0. Since H;(Y},) = 0 for i > 1 it follows

(see [14], p 118) that t™ — 1 : H;(Y) — H;(Y) is an automorphism for each
m > 1.

By Lemma 4 H;(Y) = 0 for all i > 1 and so Y is contractible and Y is
a homotopy S!'. By Stallings (for n > 4) and Freedman (for n = 4) S"~2 is
a topologically trivial knot in S™, that is Y = D"~! x S'. Hence M is the
union of two copies of D"~! x S! pasted along their boundaries which implies
M =~ S 1 x St O

Remark 1. Implicit in the proof of the previous theorem is a proof of the
following Unknottedness Theorem.

Theorem 4. Let (S™,8"72), with n > 3, be a locally flat knot all of whose
branched cyclic coverings are spheres and such that w1 (S™ — S"~2) = Z. Then
(S™, 8"=2) is unknotted.

We now prove the Main Theorem.



Theorem 5. Let M be a closed n-manifold with n > 3 and catg: (M) = 2.
Then M = 8™ or 8"~ x St or the non-orientable S~ -bundle over S'.

Proof. By Theorem 1 71 (M) is trivial or infinite cyclic. If mq (M) is trivial then
catgi (M) = cat(M) = 2 and so (see for example [5]) M = S™.

If 7y (M) = Z and M is orientable let M} be the k-fold cover of M. Then,
for any k > 1, catg1 (My) = 2 by Lemma 2, and H,(My) = H,(S™"! x S1) by
Theorem 2. It follows from Theorem 3 that M is homeomorphic to S”~! x S?.

If M is non-orientable then by Lemma 3 the 2-fold orientable cover M has
catg1M = 2 and hence M ~ S"~1 x S'. Now it follows from the classification
of free involutions on S! x S™ (Thm 2.1 and (3.1) of [12]) that M is the non-
orientable S”~!-bundle over S*. O
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