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Abstract

A closed topological n-manifold Mn is of S1-category 2 if it can be
covered by two open subsets W1,W2 such that the inclusions Wi → Mn

factor homotopically through maps Wi → S1. We show that for n > 3, if
catS1(Mn) = 2 then Mn ≈ Sn or Mn ≈ Sn−1 × S1 or the non-orientable
Sn−1-bundle over S1. 1 2

1 Introduction

For a fixed space A and a space X the A-category catAX of X was defined
by Clapp and Puppe [1]. In particular suppose A = K a cell-complex and X
a CW-complex. A subspace W of X is K-contractible (in X) if there exist
maps f : W → K and α : K → X such that the inclusion ι : W → X is
homotopic to α · f . Notice that a subset of a K-contractible set is also K-
contractible. The K-category catKX of X is the smallest number of sets, open
and K-contractible (in X) needed to cover X. Note that in the case K = P ,
a point, catP X = cat X, the Lusternik-Schnirelmann category of X. We are
interested here in the case K = S1, X = Mn, a closed n-manifold, and consider
the beginning case catS1(Mn) = 2.

So suppose that Mn is a closed connected topological n-manifold with catS1(Mn) =
2. Denoting by Sn−1×̃S1 either Sn−1 × S1 or the non-orientable Sn−1-bundle
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jcarlos@cimat.mx
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over S1 we obtain as obvious examples:

S2, P 2, S1×̃S1 for n = 2.
S3, lens spaces, S2×̃S1 for n = 3.
Sn, Sn−1×̃S1 for n > 3.

In [6] it is shown that for n = 2, 3 these are the only possibilities up to
homotopy type, hence by Perelman [15] this is true up to homeomorphism type.
For n > 3 it is shown in [7] that π1(Mn) is trivial or infinite cyclic. The main re-
sult of this paper is that in the latter case the above list is complete (Theorem 5).

Here is an outline of the proof. Assume that Mn is a closed orientable n-
manifold, n > 3, and catS1(Mn) = 2.

If π1(Mn) = 1 then catS1(Mn) = cat(Mn) = 2 implies M ≈ Sn (Fox, Smale,
Freedman). Thus assume that π1(Mn) ∼= Z ([7]).

For the k-fold cyclic cover Mk of Mn (k ≥ 1), π1(Mk) ∼= Z and catS1(Mk) =
2. Then (by Poincaré Duality) Hi(Mk) ≈ Z for i = 0, 1, n−1, n. Using a result
of Clapp and Puppe (Proposition 2) this implies that Hq(Mk) ∼= Hq(Sn−1×S1)
for all q ≥ 0. Lift a 1-sphere Σ1 ⊂ Mn representing a generator of π1(Mn) to
a 1-sphere Σ1

k ⊂ Mn
k . We can asssume that Σ1

k is locally flat and do surgery
on Σ1

k to obtain an n-sphere Sn
k with a locally flat (n − 2)-sphere Σn−2

k ⊂ Sn
k

(Proposition 3) where Yk = Mn
k −Σ1

k = Sn
k −Σn−2

k is a homology 1-sphere and
π1(Yk) = Z. Consider the action t : Ỹ → Ỹ on the universal covering space
Ỹ of Y = Y1 given by a generator t of π1(Y ). Then Hi(Ỹ ) is a finitely gener-
ated Z(t)-module, for each i ≥ 0. Since Hi(Yk) = 0 for i > 1 it follows that
tm − 1 : Hi(Ỹ ) → Hi(Ỹ ) is an automorphism for each m ≥ 1. An algebraic
lemma (Lemma 4) then implies that H̃i(Ỹ ) = 0 for all i and so Ỹ is contractible
and Y is a homotopy S1. By Stallings and Freedman Σn−2

1 is a topologically
trivial knot in Sn

1 and it follows that Mn = Mn
1 ≈ Sn−1 × S1.

If M is non-orientable we give an argument using the 2-fold orientable cover
of M .

2 Preliminaries

In this section we assume that M is a closed connected n-manifold. If catS1 M =
2 then M is covered by two open sets W0,W1 such that for i = 0, 1, there are
maps fi and αi such that the diagram (∗) is homotopy commutative.

(∗)

Wi M

S1

-

@
@Rfi �

��
αi
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The following proposition, proved in [6], allows us to replace the open sets
Wi by compact submanifolds that meet only along their boundaries.

Proposition 1. If catS1 M = 2 then M can be expressed as a union of two
compact S1-contractible n-submanifolds W0, W1 such that W0 ∩W1 = ∂W0 =
∂W1. Furthermore for n > 2, we may assume that αi is an embedding and
αi(S1) does not intersect W0 ∩W1.

The main result of [7] is

Theorem 1. If catS1 M = 2 and n > 3 then π1(M) = 1 or Z and the loops αi,
i = 0, 1, represent a generator of π1(M).

Lemma 1. Let Wi ↪→ M be S1-contractible in M and let p : M̃ → M be a
finite sheeted covering map. If p−1(αi(S1)) is connected then W̃i := p−1(Wi) is
S1-contractible in M̃ .

Proof. Let W = W0 or W1, W̃ = W̃0 or W̃1. There is a homotopy ht : W → M
such that h0 = ι, h1 = αi · fi. Let S̃ = p−1(α(S1)) ∼= S1 and define h̃0 : W̃ →
M̃ to be inclusion. By the homotopy lifting Theorem ht lifts to a homotopy
h̃t : W̃ → M̃ such that h̃1(W̃ ) ⊂ p−1(αi(fi(W )) ⊂ S̃.

Lemma 2. Suppose π1(M) = Z and pk : Mk → M is the k-fold cyclic cover
(k ≥ 1). If catS1(M) = 2 then catS1(Mk) = 2.

Proof. There is a decomposition M = W0∪W1 as in Prop. 1. By Theorem 1 the
loops αi are homotopic to a loop γ representing a generator of π1(M) ∼= Z. Since
p−1

k (γ) is connected, p−1
k (αi(S1)) is connected. By Lemma 1 Mk = W̃0 ∪ W̃1

where W̃i is S1-contractible in Mk.

Lemma 3. Suppose M is non-orientable, n > 2, and p : M̃ → M is the 2-fold
orientable cover. If catS1(M) = 2 then catS1(M̃) = 2.

Proof. The proof is the same as in the previous lemma, noting that for an
orientation reversing loop ω in M , ω ' γm for some m 6= 0. Since p−1(ω) is
connected it follows that p−1(γ) and p−1(αi(S1)) are connected.

We will need the following algebraic lemma:

Lemma 4. Let J be the infinite cyclic group with generator t and let A be a
finitely generated Z(J)- module. If for any m ≥ 1 multiplication by 1− tm is an
automorphism of A then A = 0.

Proof. A is of type K in the sense of Levine [13] (p.8), i.e. A is a finitely
generated Z(J)- module such that t − 1 : A → A , multiplication by t − 1,
is an epimorphism (equivalently, an automorphism). A submodule or quotient
module of type K is again of type K. A module A of type K is finite if ev-
ery element of A has finite order ([16], proof on Lemma II.8, [13] p.8). Hence
Tor(A) := {a ∈ A : a has finite order} is a finite group. Therefore the group of
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bijections from Tor(A) to itself is finite, so the bijection t : Tor(A) → Tor(A)
has finite order k and tk − 1 : Tor(A) → Tor(A) is 0 and is an automorphism.
Hence Tor(A) = 0.

Then [16] (Lemma II.12) A can be presented by a square matrix with en-
tries in Z(J) whose determinant ∆(t) is normalized so that it is a polynomial
in t with nonzero constant term. It generates the first elementary ideal of A⊗Q.

Following Weber [20] p.267, there are polynomials λi, i = 1, . . . , r, such that
for the direct sum of cyclic Z(J)-modules B = ⊕r

i=1Z(J)/(λi) one has a short
exact sequence of Z(J)-modules 0 → B → A → A / b · B → 0, where B → A is
multiplication by a nonzero integer b, such that A / b ·B is finite torsion group.
Since now tm − 1 : A / b · B → A / b · B is an epimorphism for each m ≥ 1 it
follows from the argument given above for Tor(A) that A / b ·B = 0.

Hence A ∼= ⊕r
i=1Z(J)/(λi) and ∆(t) =

∏r
i=1 λi and it follows from the

Proposition of section 2 of [20] and multiplicativity of resultants (Corollary
p.262 of [20]) that |Res(tm−1,∆(t))| = order of A/(tm−1)A = 1 for all m ≥ 1.

This implies by [10] that ∆(t) = 1 (This also follows from [9] (Thm 1) and
Kronecker’s Theorem [18]).

Now A can be presented by an r × r diagonal matrix S over Z(J) with
det(S) = ∆(t). For each a ∈ A, ∆ · a = (detS) · a = (λ1λ2 . . . λr) · a = 0. Hence
A = 1 ·A = ∆ ·A = 0.

3 Cat 2 and Homology(S1 × Sn−1)

Let D1 denote the set of all cell-complexes of dimension ≤ 1. Following Clapp-
Puppe [1] we let catD1X be the smallest number m such that X can be covered
by m open sets, each K-contractible in X, for some K ∈ D1.

Let G be any coefficient group.

Proposition 2. Suppose that catD1X ≤ k. Let α1, . . . , αk be cocycles such
that αi ∈ Hji(X;G), for some ji > 1 (i = 1, . . . , k). Then the cup product
α1 ∪ · · · ∪ αk = 0.

Proof. This follows from [1]: Let X = X1 ∪ · · · ∪ Xk be an open cover of X,
where each Xi is Ki-contractible in X, for some 1-complex Ki. Then the in-
clusion induced homomorphism ι∗ : Hji(X;G) → Hji(Xi;G) factors through
Hji(Ki;G) which is 0 since ji > 1. Hence in the exact cohomology sequence

· · · → Hji(X, Xi;G) → Hji(X;G) ι∗→ Hji(Xi;G)
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αi pulls back to a relative cocycle α̂i. Then the relative cup product α̂1 ∪ · · · ∪
α̂k ∈ Hq(X,

⋃k
i=1 Xi;G) = Hq(X, X;G) = 0, where q = j1 + · · ·+ jk. It follows

that α1 ∪ · · · ∪ αk = 0.

Lemma 5. If π1(X) is cyclic then catS1X = catD1X.

Proof. It suffices to show that if W ⊂ X is K-contractible in X for some K ∈ D1

then W is S1-contractible in X.
The inclusion ι : W → X factors homotopically through W

f→ K
α→ X.

Since π1(X) is cyclic, α factors as K
f ′→ S1 α′→ X and ι ' α′(f ′f).

Theorem 2. Suppose M is a closed orientable n-manifold, n > 3, with catS1M =
2. Then M is homeomorphic to Sn or M is a homology S1 × Sn−1.

Proof. If π1(M) = 1 then an S1-contractible submanifold W is in fact con-
tractible in M . Hence catM = 2 and it follows (see for example [5]) that M is
a (homotopy) n-sphere.

Thus assume π1(M) 6= 1, hence by Theorem 1 π1(M) = Z. By Poincarè
Duality M has the same homology groups as S1×Sn−1 if and only if M has the
same cohomology groups as S1×Sn−1. Assume that H∗(M) � H∗(S1×Sn−1).
We show that this implies catD1M > 2. By Lemma 5 this would imply that
catS1M > 2.

Since π1(M) ∼= Z we have (by Poincarè Duality) Z ∼= H1(M) ∼= Hn−1(M),
Z ∼= H0(M) ∼= Hn(M). By assumption there exists some i, 1 < i < n− 1 such
that Hi(M) 6= 0. Then Hi(M ; Q) 6= 0 or Hi(M ; Zp) 6= 0 for some prime p. Let
G = Q if Hi(M) is infinite and G = Zp if Hi(M) is finite. Then there exist
α1 ∈ Hi(M ;G), α2 ∈ Hn−i(M ;G) such that α1 ∪ α2 = µ 6= 0, a generator of
Hn(M ;G). By Proposition 2, catD1M > 2.

4 Surgery on a Homology S1 × Sn−1

By the General Position Theorem of J. Dancis [2] any map from S1 into a closed
n-manifold Mn, n > 3, is homotopic to a locally flat embedding of S1 into Mn.
So if Mn is a homology Sn−1×S1 we can asssume that a regular neighborhood
of a circle Σ1 ⊂ M that represents a generator of H1(M) is a tube Σ1 ×Dn−1.
We now show that we can do surgery on Σ1 to obtain an n-sphere Sn.

Proposition 3. Suppose the closed orientable n-manifold M , n > 3, is a ho-
mology Sn−1 × S1. Denote by Σ1 × Dn−1 a regular neighborhood of a circle
Σ1 ⊂ M that represents a generator of H1(M).
Let Y = M − int(Σ1 ×Dn−1) and MS = Y ∪ (D2 × Sn−2) where Σ1 × Sn−2 is
identified with S1 × Sn−2.
Then Y is a homology 1-sphere and MS is a homology n-sphere.
Furthermore, if π1(M) ∼= Z and Σ1 ⊂ M represents a generator of π1(M), then
π1(Y ) ∼= Z and MS ≈ Sn.
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Proof. We first show that Hj(Y ) = 0 for 1 < j < n− 2.

We identify Σ1 with S1. By excision and from the exact homology sequence
of the pair (S1 × Dn−1, S1 × Sn−2) we obtain (using the fact that inclusion
induces isomorphisms Hi(S1 × Sn−2) → Hi(S1 ×Dn−1) for i = 0, 1 ) that

Hj(M,Y ) ∼= Hj(S1 ×Dn−1, S1 × Sn−2) =
{

0 for j = 1, . . . , n− 2
Z for j = n− 1, n

This implies, using the exact homology sequence of the pair (M,Y ) that
Hj(Y ) ∼= Hj(M) for 1 ≤ j < n− 2.

We now show that MS is a homology n-sphere.

Since MS is a closed n-manifold we have H0(MS) = Z = Hn(MS).
From the Mayer-Vietoris sequence of MS = Y ∪S1×Sn−2 (D2 × Sn−2) and us-
ing the fact that Hj(Y ) = 0 for 1 < j < n − 2, we obtain Hj(MS) = 0 for
2 < j < n− 2. For j = 1, 2 consider the exact sequence

H2(S1 × Sn−2) k2→ 0 ⊕ H2(D2 × Sn−2) → H2(MS) → H1(S1 × Sn−2) k1→
H1(Y ) ⊕ 0 → H1(MS) → H0(S1 × Sn−2) k0→ H0(Y ) ⊕ H0(D2 × Sn−2) →
H0(MS) → 0

The homomorphism k1 is induced by inclusion and is an isomorphism. The
last three terms of the sequence show that k0 is injective. It follows that
H1(MS) = 0.
If n > 4 the first two terms of the sequence are 0 and it follows that H2(MS) = 0.
For n = 4 these terms are Z. Now k2 is an isomorhphism (since a generator
of H2(S1 × S2) is represented by {point} × S2 k2→ {point} × S2) and it follows
again that H2(MS) = 0.

Hence we have shown that Hj(MS) = 0 for j = 1, 2, . . . , n− 3. By Poincarè
Duality, Hn−j(MS) = 0 for j = 1, 2, . . . , n − 3 and it follows (since for n = 4,
H2(MS) = 0) that Hj(MS) = 0 for j = 1, 2, . . . , n− 1.

To complete the proof that Y is a homology S1 we need to show that
Hq(Y ) = 0 for n− 2 ≤ q.

Since ∂Y 6= ∅ we have Hn(Y ) = 0.
Denote by Sn−2 the (n − 2)-sphere {P} × Sn−2 ⊂ D2 × Sn−2, where P is
a point in ∂D2. By Lefschetz Duality (see e.g. [19], Thm 6.17) Hq(Y ) =
Hq(MS − Sn−2) ∼= Hn−q(MS , Sn−2). Since MS is a homology sphere it follows
(from the exact cohomology sequence of the pair (MS , Sn−2)) that this relative
cohomology group is 0 for q ≥ 2.

Finally, if π1(M) ∼= Z and S1 ⊂ M represents a generator of π1(M), then by
Seifert-vanKampen we obtain π1(Y )

∼=→ π1(M) and π1(MS) = 1. Since now MS

is a simply connected homology sphere it follows that MS is the (homotopy)

6



n-sphere.

5 The Main Theorem

We first give a characterization of S1 × Sn−1 in terms of π1 and the homology
of coverings.

Theorem 3. Suppose π1(Mn) = Z, with n > 3, and H∗(Mk) = H∗(S1×Sn−1)
for all k ≥ 1, where Mk is the k-fold cover of Mn. Then Mn is homeomorphic
to S1 × Sn−1.

Proof. We perform surgery on M . Let Σ1 ×Dn−1 ⊂ M be a tubular neighbor-
hood of a 1-sphere representing a generator of π1(M), Y = M − int(Σ1×Dn−1)
and MS the union of Y and D2×Sn−2 pasted together along their boundaries as
in Proposition 3. Then Y is a homology 1-sphere, π1(Y ) = Z, MS ≈ Sn and we
have a locally flat knot (Sn, Sn−2) with exterior Y . By [11] (p.301 (III)), Y has
the homotopy type of a finite CW-complex and for the following we may assume
that Y is a finite CW-complex. Let Σ1

k×Dn−1 (resp. Yk) be the lift of Σ1×Dn−1

(resp. Y ) to the k-fold cyclic cover Mk of M (k ≥ 1). Then π1(Mk) ∼= Z with
generator represented by Σ1

k and by Lemma 2, Theorem 2 and Proposition 3,
catS1(Mk) = 2, Yk = Mk−int(Σ1

k×Dn−1) = Sn−int(Sn−2
k ×D2) is a homology

1-sphere and π1(Yk) = Z.

Consider the action t : Ỹ → Ỹ on the universal covering space Ỹ of Y = Y1

given by a generator t of π1(Y ). Since Yk is a finite CW-complex, Hi(Ỹ ) is a
finitely generated Z(t)-module whose tensor product with Q is a finite dimen-
sional vector space over Q, for each i ≥ 0. Since Hi(Yk) = 0 for i > 1 it follows
(see [14], p 118) that tm − 1 : Hi(Ỹ ) → Hi(Ỹ ) is an automorphism for each
m ≥ 1.

By Lemma 4 Hi(Ỹ ) = 0 for all i ≥ 1 and so Ỹ is contractible and Y is
a homotopy S1. By Stallings (for n > 4) and Freedman (for n = 4) Sn−2 is
a topologically trivial knot in Sn, that is Y = Dn−1 × S1. Hence M is the
union of two copies of Dn−1 × S1 pasted along their boundaries which implies
M ≈ Sn−1 × S1.

Remark 1. Implicit in the proof of the previous theorem is a proof of the
following Unknottedness Theorem.

Theorem 4. Let (Sn, Sn−2), with n > 3, be a locally flat knot all of whose
branched cyclic coverings are spheres and such that π1(Sn − Sn−2) = Z. Then
(Sn, Sn−2) is unknotted.

We now prove the Main Theorem.
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Theorem 5. Let M be a closed n-manifold with n > 3 and catS1(M) = 2.
Then M = Sn or Sn−1 × S1 or the non-orientable Sn−1-bundle over S1.

Proof. By Theorem 1 π1(M) is trivial or infinite cyclic. If π1(M) is trivial then
catS1(M) = cat(M) = 2 and so (see for example [5]) M = Sn.

If π1(M) = Z and M is orientable let Mk be the k-fold cover of M . Then,
for any k ≥ 1, catS1(Mk) = 2 by Lemma 2, and H∗(Mk) = H∗(Sn−1 × S1) by
Theorem 2. It follows from Theorem 3 that M is homeomorphic to Sn−1 × S1.

If M is non-orientable then by Lemma 3 the 2-fold orientable cover M̃ has
catS1M̃ = 2 and hence M̃ ≈ Sn−1 × S1. Now it follows from the classification
of free involutions on S1 × Sn (Thm 2.1 and (3.1) of [12]) that M is the non-
orientable Sn−1-bundle over S1.
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