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Abstract. We present unconditionally stable and convergent numerical schemes

for gradient flows with energy of the form
R

Ω

“

F (∇φ(x)) + ǫ
2

2
|∆φ(x)|2

”

dx.

The construction of the schemes involves an appropriate extension of Eyre’s
idea of convex-concave decomposition of the energy functional. As an appli-
cation, we derive unconditionally stable and convergent schemes for epitaxial
film growth models with slope selection (F (y) = 1

4
(|y|2 − 1)2) and without

slope selection (F (y) = − 1
2

ln(1 + |y|2)). We conclude the paper with some
preliminary computations that employ the proposed schemes.

1. Introduction. Two commonly used phenomenological models for epitaxial thin
film growth are the gradient flows of the following “energy” functionals

E1(φ) :=

∫

Ω

(

−
1

2
ln
(

1 + |∇φ|2
)

+
ǫ2

2
|∆φ|2

)

dx , (1)

E2(φ) :=

∫

Ω

(

1

4

(

|∇φ|2 − 1
)2

+
ǫ2

2
|∆φ|2

)

dx , (2)

where Ω = [0, Lx] × [0, Ly], with Lx = Ly = 2π for simplicity, φ : Ω → R is a
periodic height function with average zero, and ǫ is a constant. The second energy
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may be viewed as an approximation of the first energy under the assumption that
the gradient of the height is small [?].

There are significant differences between the two models with the second (sim-
plified) model having a slope selection mechanism (|∇φ| = 1 is preferred) that is
absent in the first model. This leads to differences in energy minimizers and long-
time coarsening processes [?, ?, ?]. Both energy functionals take the form of

E(φ) =

∫

Ω

(

F (∇φ(x)) +
ǫ2

2
|∆φ(x)|2

)

dx , (3)

where F (y) is a smooth function of its argument y. The first term,

EES(φ) =

∫

Ω

F (∇φ(x)) dx , (4)

represents the Ehrlich-Schwoebel effect — i.e., adatoms (absorbed atoms) must
overcome a higher energy barrier to stick to a step from an upper rather than from
a lower terrace [?, ?, ?] — while the second term,

ESD(φ) =

∫

Ω

ǫ2

2
|∆φ(x)|2 dx , (5)

represents the surface diffusion effect [?].
The variational derivatives of these functionals, which may be interpreted as

chemical potentials, can be calculated formally as

µ :=
δE(φ)

δφ
= −∇x · ∇yF (∇xφ) + ǫ2∆2φ . (6)

The gradient flow then takes the form

∂φ

∂t
= −µ = ∇x · ∇yF (∇xφ) − ǫ2∆2φ , (7)

where the boundary conditions for φ are taken to be periodic in both spatial di-
rections. The physically interesting coarsening process for spatially large systems
(small ǫ) occurs on a very long time scale. For instance, for the model with slope
selection, the minimal energy is of the order of ǫ [?]. Assuming the widely believed

t−
1
3 scaling for the energy [?, ?, ?], it requires about 1

ǫ3 time for the system to reach
saturation from an initially order one profile. Therefore, numerical simulations for
the coarsening process of large systems require long-time accuracy and stability.

In the case of Allen-Cahn or Cahn-Hilliard flow, where, for example, the energy
is of the form

E(φ) =

∫

Ω

(

1

4

(

φ2 − 1
)2

+
ǫ2

2
|∇φ|2

)

dx , (8)

Eyre [?] (see also [?, ?]) proposed to decompose the free energy into convex and
concave parts and utilize implicit time discretization in the convex part and explicit
time stepping in the concave part. (Note that Eyre employed spatial discretization
of the energy first.) Eyre’s convex-splitting scheme for the Cahn-Hilliard equation
can be interpreted as

φn+1 − φn = k∆µn+1 , µn+1 =
(

φn+1
)3

− φn − ǫ2∆φn+1 , (9)

where k > 0 is the time step size. The scheme is first-order accurate in time,
unconditionally uniquely solvable, and unconditionally energy stable in the sense
that the energy is monotonically non-increasing in (discrete) time, regardless of the
time step size. Such unconditionally stable schemes are highly desirable with regard
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to long time numerical simulation, especially for coarsening processes that require
increasingly larger time step sizes to simulate efficiently. Du and Nicolades [?]
proposed a different scheme for the Cahn-Hilliard equation. Spacial discretization
in [?] was effected by a finite element method, though they also discussed a finite
difference version, which was subsequently analyzed by Furihata [?] for one space
dimension. In any case, the space continuous version of the scheme in strong form
is

φn+1−φn = k∆µn+1/2 , µn+1/2 =
G
(

φn+1
)

−G (φn)

φn+1 − φn
−
ǫ2

2
∆
(

φn+1 + φn
)

, (10)

where G(φ) := 1
4

(

φ2 − 1
)2

. The scheme is second-order in time and energy stable
if it is solvable. In the fully discrete setting both Du and Nicolades and Furihata
show that if k/h2 ≤ C, where h > 0 is the uniform space step size and C > 0 is a
constant, then the scheme does indeed possess a unique solution. However, Du and
Nicolades point out in a footnote to a theorem [?, Thm. 3.1], that the fully discrete
scheme may in fact be solvable, though perhaps not uniquely, for much larger time
steps. The issue of solvability for the time-discrete, space-continuous scheme is a
more delicate question.

The main purpose of this manuscript is to generalize Eyre’s idea to the case
of equations for thin film epitaxy, where the total “free energy” takes the form of
∫

Ω

(

F (∇φ) + ǫ2

2 |∆φ|
2
)

dx, where F (y) = − 1
2 ln

(

1 + |y|
2
)

in the case of no slope

selection and F (y) = 1
4

(

|y|
2
− 1
)2

in the case with slope selection. Application of

a scheme like that proposed by Du and Nicolades would pose significant difficulties
for our analysis because of the solvability question. Eyre’s original approach em-
phasized time discretization with spatially discretized energies (e.g., via finite differ-
ences) [?, ?]. Herein we emphasize semi-discretization, specifically time discretiza-
tion, since the stability in time is the central issue. In particular, our time stepping
scheme can be combined with any spatial discretization (e.g., Fourier spectral, or
continuous Galerkin), provided that the spatial discretization preserves the energy
stability features. Although the theory herein is presented for energy function-
als suitable for thin film epitaxy, it is easily generalized to a wider class of gradient
flow equations, such as Swift-Hohenberg and phase field crystal (PFC) equations [?]
(see also [?]). Higher-order (in particular, second-order) convex-splitting schemes
can be developed as well [?] that preserve the unconditional energy stability and
unconditional solvability aspects of the first-order convex splitting schemes.

The rest of the manuscript is organized as follows. In section ?? we motivate
the convex-concave splitting of the Ehrlich-Schwoebel energy, derive the convex-
splitting scheme, and prove some properties of the scheme. Specifically, in section ??

we prove a lemma that will facilitate a convex-concave decomposition of the energy;
in section ?? we define the semi-discrete convexity splitting scheme; in section ??

we show the unconditional stability and well-posedness of the scheme; in section ??

we prove an error estimate that demonstrates the local-in-time convergence of the
scheme; and in section ?? we prove another desirable property of the scheme, i.e., all
solutions to the scheme converge to critical points of the original energy functional as
time approaches infinity. In section ?? we apply the general convex-concave splitting
scheme to the thin film epitaxy equations by verifying that the two classical energies
(??) and (??) satisfy the assumptions imposed in section ??. We also show some
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preliminary computations using the proposed schemes. We offer our concluding
remarks in section ??.

2. The general numerical scheme and its properties. It is quite clear that
the linear fourth order surface diffusion term must be treated implicitly in the
discretization in order for any scheme to enjoy unconditional stability. One of
the interesting features with the models we examine here is that a fully implicit
scheme may not provide the answer to the stability question. Specifically the energy
functional may not be monotonically decreasing at each time step. Moreover, fully
implicit time stepping could suffer from non-uniqueness of solutions at each time
step due to non-convexity. The question then is the treatment of the nonlinear
second order Ehrlich-Schwoebel terms. The key observation is that the energy
increment is proportional to the variational derivative acted on the increment in
the phase field plus a second order correction term. Hence whether the energy is
convex or concave plays a central role in the sign of the correction term. We will
explore this below.

2.1. Convex-concave decomposition of the energy. Consider a general differ-
entiable Ehrlich-Schwoebel type energy functional EES given by (??), associated
with a (smooth) function F : R2 → R. Now for any two admissible functions φ, ψ,
we define the scalar function f(λ), λ ∈ R as

f(λ) = EES(φ+ λ(ψ − φ)) . (11)

It is easy to see that f(0) = EES(φ) and f(1) = EES(ψ). Therefore

EES(ψ) − EES(φ) = f(1) − f(0) = f ′(0) +

∫ 1

0

∫ s

0

f
′′

(τ) dτds . (12)

Notice that

f ′(λ) =

∫

Ω

2
∑

j=1

∂F

∂yj
(∇(φ + λ(ψ − φ)))

∂

∂xj
(ψ − φ) dx

= −

∫

Ω

2
∑

j=1

∂

∂xj

∂F

∂yj
(∇(φ+ λ(ψ − φ)))(ψ − φ) dx

=

∫

Ω

δEES
δφ

∣

∣

∣

∣

φ+λ(ψ−φ)

(ψ − φ) dx , (13)

f
′′

(λ) =

∫

Ω

2
∑

j=1

2
∑

k=1

∂2F

∂yj∂yk
(∇(φ + λ(ψ − φ)))

∂(ψ − φ)

∂xj

∂(ψ − φ)

∂xk
dx , (14)

where δE
δφ denotes the functional (variational) derivative of E. Hence we have

EES(ψ) − EES(φ)

=

∫

Ω

δEES
δφ

∣

∣

∣

∣

φ

(ψ − φ) dx

+

∫ 1

0

∫ s

0

∫

Ω

∇(ψ − φ) ·D2
yF (∇φ+ τ∇(ψ − φ))∇(ψ − φ) dxdτds , (15)

where D2
yF =

(

∂2F
∂yi∂yj

)

denotes the Hessian matrix of the function F . Therefore

we have the following simple calculus lemma.
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Lemma 2.1. For the energy functional EES given in (??), we have the following
inequalities:

EES(ψ) − EES(φ) ≥

∫

Ω

δEES
δφ

∣

∣

∣

∣

φ

(ψ − φ) dx , if D2
yF (∇φ) ≥ 0, ∀φ ∈ H2

per ,

(16)

EES(ψ) − EES(φ) ≤

∫

Ω

δEES
δφ

∣

∣

∣

∣

φ

(ψ − φ) dx , if D2
yF (∇φ) ≤ 0, ∀φ ∈ H2

per ,

(17)

where D2
yF (∇φ) ≥ 0 (D2

yF (∇φ) ≤ 0) indicates positive (negative) semi-definiteness
of the Hessian matrix.

2.2. A semi-implicit convex-splitting scheme. We now consider the case of an
abstract total “free energy” functional E which takes the form of (??).

Let C∞

per(Ω) denote the set of all Ω – periodic C∞ functions, and let Ċ∞

per(Ω)
denote the subset of C∞

per(Ω) whose functions have zero average on Ω. The natural
function space for our problem is

Ḣ2
per(Ω) := {closure of Ċ∞

per in H2(Ω)} . (18)

EES (and hence E) is assumed to be well-defined on this space. This is guaranteed
by a Sobolev embedding in two dimensions provided the growth rate of F (y) is at
most polynomial.

Suppose that F can be decomposed into convex (+) and concave (−) terms in
the sense that 2

F (y) = F+ (y) + F− (y) , (19)

D2
yF+ ≥ 0, E+(φ) :=

∫

Ω

F+ (∇xφ) dx , (20)

D2
yF− ≤ 0, E−(φ) :=

∫

Ω

F− (∇xφ) dx . (21)

The associated gradient flow is given by

∂φ

∂t
= −

δEES
δφ

− ǫ2∆2φ = −
δE+

δφ
−
δE−

δφ
− ǫ2∆2φ . (22)

As will be clear later, Lemma ?? suggests we treat the “convex” part implicitly
and the “concave” part explicitly. Therefore, we propose the following general one

step scheme for the gradient flow (??) with time step size k > 0:

φn+1 − φn

k
= −

δE+

δφ

∣

∣

∣

∣

φ=φn+1

−
δE−

δφ

∣

∣

∣

∣

φ=φn

− ǫ2∆2φn+1

= ∇x · ∇yF+

(

∇xφ
n+1
)

+ ∇x · ∇yF− (∇xφ
n) − ǫ2∆2φn+1 .(23)

Notice that there could exist many such schemes since the convex-concave splitting
is not unique in general.

Other numerical schemes have been proposed for the models under consideration,
most notably the slope-selection model. The scheme proposed by Li and Liu [?] is

2Such a decomposition always exists provided that the “energy density” F is convex for large
enough y. In this case the convex part will be given by F (y)+ β|y|2 with β > 0 sufficiently large.
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essentially

φn+1 − φn

k
=

3

2
∇x · ∇yF (∇xφ

n)−
1

2
∇x · ∇yF

(

∇xφ
n−1
)

−
ǫ2

2

(

∆2φn+1 + ∆2φn
)

,

(24)
which is second-order and unconditionally uniquely solvable. Li and Liu [?] did not
analyze the stability of the scheme, though it is not expected to be unconditionally
stable. Xu and Tang [?] proposed the first-order linear scheme

φn+1 − φn

k
= A

(

∆φn+1 − ∆φn
)

+ ∇x · ∇yF (∇xφ
n) − ǫ2∆2φn+1 , (25)

where A is a linear splitting parameter. Xu and Tang prove that, for the slope
selection case, the scheme is energy stable, provided A is sufficiently large. However,
they show that the appropriate A depends on the unknown φn+1, and thus the
scheme is not unconditionally stable. The convex-splitting scheme has no such
restriction, as we show presently.

2.3. Unconditional solvability and stability of the scheme. We claim that
our convex splitting scheme (??) is well-posed and unconditionally “gradient” sta-
ble, i.e., stable in the sense that the energy is a non-increasing function in (discrete)
time regardless of the time step size k.

Theorem 2.2 (Solvability and energy stability). Assume that the energy func-

tional E defined in (??) is twice functionally differentiable on Ḣ2
per(Ω), and F (y),

∇yF (y) grow at most like a polynomial in y. Then the scheme given by (??) for
the gradient system (??) satisfying the decomposition (??) is well-posed with the
solution given by the unique minimizer of the following modified energy functional:

Escheme(φ) :=
ǫ2

2
‖∆φ‖

2
+E+(φ)+

1

2k
‖φ‖

2
+

∫

Ω

(

δE−

δφ

∣

∣

∣

∣

φ=φn

−
1

k
φn

)

φdx . (26)

Moreover, the energy is a non-increasing function of time, i.e., we have

E(φn+1) ≤ E(φn) −
1

k

∥

∥φn+1 − φn
∥

∥

2
−
ǫ2

2

∥

∥∆
(

φn+1 − φn
)∥

∥

2
, ∀ k > 0 . (27)

Proof. Here and in the sequel let us denote by ‖ · ‖ the L2 norm on Ω. The proof
of the decay of the energy is a straightforward application of the Lemma ?? above.
Indeed, multiplying the gradient system (??) by −

(

φn+1 − φn
)

; integrating over
Ω; and utilizing the lemma, the decomposition (??), and the identity a(a − b) =
1
2 (a2 − b2 + (a− b)2), we have

−
1

k

∥

∥φn+1 − φn
∥

∥

2
=

∫

Ω

δE+

δφ

∣

∣

∣

∣

φ=φn+1

(

φn+1 − φn
)

dx

+

∫

Ω

δE−

δφ

∣

∣

∣

∣

φ=φn

(

φn+1 − φn
)

dx

+
ǫ2

2

(

∥

∥∆φn+1
∥

∥

2
− ‖∆φn‖2 +

∥

∥∆
(

φn+1 − φn
)∥

∥

2
)

≥ E+

(

φn+1
)

− E+ (φn) + E−

(

φn+1
)

− E− (φn)

+
ǫ2

2

(

∥

∥∆φn+1
∥

∥

2
− ‖∆φn‖

2
+
∥

∥∆
(

φn+1 − φn
)∥

∥

2
)

= E
(

φn+1
)

− E (φn) +
ǫ2

2

∥

∥∆
(

φn+1 − φn
)
∥

∥

2
. (28)
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For the convex part (+) in the last calculation we have utilized Lemma ?? with
φ = φn+1 and ψ = φn and for the concave part (−) we have φ = φn and ψ = φn+1.

The uniqueness of the solution to the scheme (??) is also straightforward. Let φ

and φ̃ be two solutions of the scheme with given φn. Then ψ = φ − φ̃ satisfies the
following equation

ψ

k
= −

δE+

δφ

∣

∣

∣

∣

φ=φ

+
δE+

δφ

∣

∣

∣

∣

φ=φ̃

− ǫ2∆2ψ .

Multiplying this equation by ψ, integrating over the domain and utilizing the lemma
we have

1

2k
‖ψ‖

2
≤ −

ǫ2

2
‖∆ψ‖

2
,

which implies that ψ ≡ 0.
As for the existence, we notice that the scheme (??) is the Euler-Lagrange equa-

tion of the modified energy functional (??). The convexity of E+ implies the con-
vexity and coercivity (when combined with the diffusion term) of Escheme in (??).
The convexity in fact implies sequential lower semi-continuity, which in turn leads
to the existence of an absolute minimizer φn+1 of (??) [?]. This minimizer must
satisfy the Euler-Lagrange equation, i.e., (??), under the assumed differentiability
and growth condition [?, ?, ?]. This ends the proof of the theorem.

Remark 1. Although for (??) a nonlinear problem needs to be solved at each time
step, the problem is a strictly convex one, and, hence, most classical methods would
work very efficiently here [?, ?].

Remark 2. The energy non-increasing property for the convex splitting of a gen-
eral gradient system was recently proven in [?], based on the functional splitting
inequality given by [?, Thm. 1.1]. For the energy functional taking the special form
of (??), this article gives a slightly more detailed estimate (??), which will be uti-
lized in the numerical analysis of the long-time behavior as can be seen in later
sections.

Before our discussion of the convergence analysis, we establish the L∞(0, T ;H2)
stability of the numerical method. That in turn gives the L∞ and L∞(0, T ;W 1,p)
bounds of the numerical solution by a Sobolev embedding in the 2D case. As in
Thm. ??, a polynomial growth bound for F (y), ∇yF (y), andD2

yF (y) (the Hessian
matrix of F ) needs to be imposed, for technical reasons. We will see later that both
thin film models examined here (one with and one without slope selection) satisfy
this assumption.

Theorem 2.3 (H2 stability). Consider the convex splitting scheme (??) for the
gradient flow (??). Under the additional technical assumption on the lower bound
of F , i.e., that for any β > 0, there exists a Cβ > 0 such that

F (y) ≥ −β |y|
2
− Cβ , (29)

we have

‖φ‖L∞(0,T ;H2) ≤ C4, ‖φ‖L∞ ≤ C4C5, ‖φ‖L∞(0,T ;W 1,p) ≤ C4Cp , (30)

for any p : 2 < p < +∞. C4 depends on the initial H2 data, Lx and Ly (both
of which equal 2π here), and ǫ, but is independent of final time T . C5 and Cp are
positive Sobolev embedding constants.
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Proof. The energy stability (??) for the numerical scheme shows that

E (φn) ≤ E
(

φ0
)

:= C0 , ∀ n ,

or, equivalently,
∫

Ω

F (∇φn) dx +
ǫ2

2
‖∆φn‖

2
≤ C0 , ∀ n . (31)

Meanwhile, by the technical assumption (??), we take β = ǫ2

4C1
and observe the

following inequality

F (∇φ) ≥ −
1

4C1
ǫ2 |∇φ|

2
− Cβ , (32)

where C1 corresponds to the constant in the Poincaré inequality:

‖∇φ‖
2
≤ C1 ‖∆φ‖

2
. (33)

In turn, a substitution of (??) into the total physical energy gives

E(φ) =

∫

Ω

F (∇φ) dx +
ǫ2

2
‖∆φ‖

2

≥ −
1

4C1
ǫ2 ‖∇φ‖

2
− CβLxLy +

ǫ2

2
‖∆φ‖

2

≥ −
1

4
ǫ2 ‖∆φ‖

2
− CβLxLy +

ǫ2

2
‖∆φ‖

2

≥
ǫ2

4
‖∆φ‖2 − CβLxLy . (34)

Subsequently, a combination of (??) and (??) leads to

‖∆φn‖
2
≤

4

ǫ2
(C0 + CβLxLy) , ∀ n . (35)

As a direct consequence, we arrive at

‖φn‖H2 ≤ C3 ‖∆φ
n‖ ≤

2C3

ǫ

√

C0 + CβLxLy := C4 , ∀ n , (36)

where the constant C3 > 0 comes from elliptic regularity with the assumption
∫

Ω
φn dx = 0. The first part of the theorem is proven. The second and third parts

come directly from the following Sobolev inequalities:

‖φ‖L∞ ≤ C5 ‖φ‖H2 , ‖φ‖W 1,p ≤ Cp ‖φ‖H2 , ∀ p : 2 < p < +∞ . (37)

2.4. Local-in-time convergence.

Theorem 2.4 (Error estimate). Given smooth, periodic initial data φ0(x, y), sup-
pose the unique, smooth solution for the gradient flow (??) is given by φe(x, y, t)
on Ω for t ∈ [0, T ], for some T < ∞. We also assume that D2

yF (y) (the Hessian
matrix of F ) grows at most like a polynomial in y, i.e., there exists a positive integer
m and a constant C such that

∥

∥D2
yF+ (y)

∥

∥+
∥

∥D2
yF− (y)

∥

∥ ≤ C (1 + |y|
m

) . (38)

Define φne := φe( · , nk), and φ̃n := φne − φn, where φn is the numerical solution of
(??) with φ0 := φ0

e. Then
∥

∥

∥
φ̃n
∥

∥

∥
≤ Ck , ∀ n : n ≤

⌊

T

k

⌋

, (39)
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provided k is sufficiently small, for some C > 0 that is independent of k.

Proof. The exact solution φe solves the numerical scheme

φn+1
e − φne

k
= ∇ ·

(

∇yF+

(

∇φn+1
e

)

+ ∇yF− (∇φne )
)

− ǫ2∆2φn+1
e + τn+1, (40)

where τn+1 is the local truncation error, which satisfies
∣

∣τn+1
∣

∣ ≤M1k, (41)

for some M1 ≥ 0 that depends only on T , Lx, and Ly. In particular, we have

M1 ≤ C
(

‖φe‖C2(0,T ;C0(Ω)) + ‖φe‖C1(0,T ;Cm+2(Ω))

)

. (42)

The regularity of the exact solution to the epitaxial equations can be found in [?], for
instance. The unconditional stability and the well-posedness for the semi-discrete in
time scheme (??) can be used to show the well-posedness of the underlying gradient
system (??) just as the case for the Navier-Stokes equation [?].

Subtracting (??) from (??) yields

φ̃n+1 − φ̃n

k
= ∇ ·

(

∇yF+(∇φn+1
e ) −∇yF+(∇φn+1)

)

+∇ · (∇yF−(∇φne ) −∇yF−(∇φn)) − ǫ2∆2φ̃n+1 + τn+1. (43)

Taking inner product with 2kφ̃n+1 and applying integration by parts shows that
∥

∥

∥
φ̃n+1

∥

∥

∥

2

−
∥

∥

∥
φ̃n
∥

∥

∥

2

+
∥

∥

∥
φ̃n+1 − φ̃n

∥

∥

∥

2

+ 2ǫ2k
∥

∥

∥
∆φ̃n+1

∥

∥

∥

2

− 2k
(

φ̃n+1, τn+1
)

= −2k
(

∇φ̃n+1,
(

∇yF+(∇φn+1
e ) −∇yF+(∇φn+1)

)

)

−2k
(

∇φ̃n+1, (∇yF−(∇φne ) −∇yF−(∇φn))
)

. (44)

The local truncation error term can be directly controlled by the Cauchy inequality:

2
(

φ̃n+1, τn+1
)

≤
∥

∥

∥
φ̃n+1

∥

∥

∥

2

+
∥

∥τn+1
∥

∥

2
≤
∥

∥

∥
φ̃n+1

∥

∥

∥

2

+M2
1k

2LxLy . (45)

For the term related to the convex part of F , we see that the technical assumption
(??) implies that

|∇yF+ (y1) −∇yF+ (y2)| ≤ max
t∈[0,1]

∥

∥D2
yF+ (y2 + t(y1 − y2))

∥

∥ |y1 − y2|

≤ C (|y1|
m + |y2|

m + 1) |y1 − y2| , (46)

in which a vector form of the mean value theorem was utilized in the first step. By
substituting y1 = ∇φn+1

e , y2 = ∇φn+1, we get
∣

∣

∣
∇yF+(∇φn+1

e ) −∇yF+(∇φn+1)
∣

∣

∣
≤ C

(
∣

∣

∣
∇φn+1

e

∣

∣

∣

m

+
∣

∣

∣
∇φn+1

∣

∣

∣

m

+ 1
)
∣

∣

∣
∇φ̃n+1

∣

∣

∣
. (47)

Consequently, a direct application of the Hölder inequality to the above estimate
implies that

∥

∥∇yF+(∇φn+1
e ) −∇yF+(∇φn+1)

∥

∥

≤ C
∥

∥

∥

(∣

∣

∣
∇φn+1

e

∣

∣

∣

m

+
∣

∣

∣
∇φn+1

∣

∣

∣

m

+ 1
)∥

∥

∥

L4
·
∥

∥

∥
∇φ̃n+1

∥

∥

∥

L4

≤ C
(

∥

∥∇φn+1
e

∥

∥

m

L4m +
∥

∥∇φn+1
∥

∥

m

L4m + 1
)

·
∥

∥

∥
∇φ̃n+1

∥

∥

∥

L4
. (48)
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For the exact solution φn+1
e , we use C∗ to denote the bound of its norms (up to

W 2,∞ in our case) so that

∥

∥∇φn+1
e

∥

∥

L4m ≤ C∗, ∀ n : n ≤

⌊

T

k

⌋

. (49)

For the numerical solution φn+1, we recall from Thm. ?? (with p = 4m):
∥

∥∇φn+1
∥

∥

L4m ≤ C4Cp . (50)

As a result, a substitution of (??) and (??) into (??) shows that

∥

∥∇yF+(∇φn+1
e ) −∇yF+(∇φn+1)

∥

∥ ≤ C
∥

∥

∥
∇φ̃n+1

∥

∥

∥

L4
. (51)

Similarly, for the concave part of F , we have

‖∇yF−(∇φne ) −∇yF−(∇φn)‖ ≤ C
∥

∥

∥
∇φ̃n

∥

∥

∥

L4
. (52)

Consequently, the above two estimates indicate that

− 2
(

∇φ̃n+1,
(

∇yF+(∇φn+1
e ) −∇yF+(∇φn+1)

)

)

≤ 2
∥

∥

∥
∇φ̃n+1

∥

∥

∥
·
∥

∥∇yF+(∇φn+1
e ) −∇yF+(∇φn+1)

∥

∥

≤ 2C
∥

∥

∥
∇φ̃n+1

∥

∥

∥
·
∥

∥

∥
∇φ̃n+1

∥

∥

∥

L4
, (53)

2
(

∇φ̃n+1, (∇yF−(∇φne ) −∇yF−(∇φn))
)

≤ 2
∥

∥

∥
∇φ̃n+1

∥

∥

∥
· ‖∇yF−(∇φne ) −∇yF−(∇φn)‖

≤ 2C
∥

∥

∥
∇φ̃n+1

∥

∥

∥
·
∥

∥

∥
∇φ̃n

∥

∥

∥

L4
. (54)

Recall that standard interpolation inequalities imply
∥

∥

∥
∇φ̃n+1

∥

∥

∥
≤ C

∥

∥

∥
φ̃n+1

∥

∥

∥

1/2

·
∥

∥

∥
∆φ̃n+1

∥

∥

∥

1/2

, (55)

∥

∥

∥
∇φ̃n+1

∥

∥

∥

L4
≤ C

∥

∥

∥
φ̃n+1

∥

∥

∥

1/4

·
∥

∥

∥
∆φ̃n+1

∥

∥

∥

3/4

, (56)

∥

∥

∥
∇φ̃n

∥

∥

∥

L4
≤ C

∥

∥

∥
φ̃n
∥

∥

∥

1/4

·
∥

∥

∥
∆φ̃n

∥

∥

∥

3/4

. (57)

Therefore, a combination of (??), (??) and (??) gives
∥

∥

∥
∇φ̃n+1

∥

∥

∥
·
∥

∥

∥
∇φ̃n+1

∥

∥

∥

L4
≤ C

∥

∥

∥
φ̃n+1

∥

∥

∥

3/4

·
∥

∥

∥
∆φ̃n+1

∥

∥

∥

5/4

≤ C
∥

∥

∥
φ̃n+1

∥

∥

∥

2

+
ǫ2

4

∥

∥

∥
∆φ̃n+1

∥

∥

∥

2

. (58)

Similarly, we have
∥

∥

∥
∇φ̃n+1

∥

∥

∥
·
∥

∥

∥
∇φ̃n

∥

∥

∥

L4
≤ C

∥

∥

∥
φ̃n+1

∥

∥

∥

1/2

·
∥

∥

∥
φ̃n
∥

∥

∥

1/4

·
∥

∥

∥
∆φ̃n+1

∥

∥

∥

1/2

·
∥

∥

∥
∆φ̃n

∥

∥

∥

3/4

≤ C

(

∥

∥

∥
φ̃n+1

∥

∥

∥

2

+
∥

∥

∥
φ̃n
∥

∥

∥

2
)

+
ǫ2

8

(

∥

∥

∥
∆φ̃n+1

∥

∥

∥

2

+
∥

∥

∥
∆φ̃n

∥

∥

∥

2
)

. (59)
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Consequently, a substitution of the above two inequalities into (??) and (??) results
in an estimate of the inner product related to F :

− 2
(

∇φ̃n+1,
(

∇yF+(∇φn+1
e ) −∇yF+(∇φn+1)

)

)

−2
(

∇φ̃n+1, (∇yF−(∇φne ) −∇yF−(∇φn))
)

≤ C

(

∥

∥

∥
φ̃n+1

∥

∥

∥

2

+
∥

∥

∥
φ̃n
∥

∥

∥

2
)

+
3

8
ǫ2
∥

∥

∥
∆φ̃n+1

∥

∥

∥

2

+
1

8
ǫ2
∥

∥

∥
∆φ̃n

∥

∥

∥

2

. (60)

Finally, a substitution of (??), and (??) into (??) leads to

∥

∥

∥
φ̃n+1

∥

∥

∥

2

−
∥

∥

∥
φ̃n
∥

∥

∥

2

+
∥

∥

∥
φ̃n+1 − φ̃n

∥

∥

∥

2

+ ǫ2k
∥

∥

∥
∆φ̃n+1

∥

∥

∥

2

≤ k (1 + C)

(

∥

∥

∥
φ̃n+1

∥

∥

∥

2

+
∥

∥

∥
φ̃n
∥

∥

∥

2
)

+M2
1k

3LxLy . (61)

An application of a discrete Grownwall inequality implies that

∥

∥

∥
φ̃n
∥

∥

∥
≤ CeCTM1(LxLy)

1/2k , ∀ n : n ≤

⌊

T

k

⌋

. (62)

This completes the proof of the theorem.

Remark 3. In fact, the additional growth condition on the Hessian of the convex
part is not necessary here since we have

(∇yF+(y1) −∇yF+(y2)) · (y1 − y2)

= (y1 − y2) ·

(
∫ 1

0

D2
yF+(y2 + t(y1 − y2)) dt

)

(y1 − y2)

≥ 0 .

2.5. Long time behavior of the scheme. Besides the unconditional stability
and the convergence of the scheme (??), we can also show that the scheme shares
another property with the gradient system (??) that it is approximating, namely,
solutions to the numerical scheme (??) must converge to critical points of the energy
functional (??) (no convergence to energy minimizer is guaranteed).

Thanks to the estimates (??, ??), we have

‖∆φn‖ ≤ C,

∞
∑

n=0

∥

∥∆φn+1 − ∆φn
∥

∥

2
<∞. (63)

Therefore {φn} must have weakly convergent subsequence in H2. Let {φnj} be a
weakly convergent subsequence of {φn} in H2 with the limit being φ∞. Thanks to
(??), we see that {φnj+1} also converges to φ∞ in H2. We restrict the scheme to
these special subsequences and we have

φnj+1 − φnj

k
= ∇x · ∇yF+(∇xφ

nj+1) + ∇x · ∇yF−(∇xφ
nj ) − ǫ2∆2φnj+1 . (64)

Taking the limit as j approaches infinity in the weak sense, we have that φ∞

satisfies the Euler-Lagrange equation of the energy functional (??) since both {φnj}

and {φnj+1} converges to φ∞. Indeed, for ψ ∈ Ḣ2
per and F = F+ or F = F−, we
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have

|(∇yF (∇xφ
n) −∇yF (∇xφ

∞),∇ψ)|

≤

∣

∣

∣

∣

(

max
t∈[0,1]

∥

∥D2
yF (φ∞ + t(φn − φ∞)

∥

∥ |∇(φn − φ∞)| ,∇ψ

)∣

∣

∣

∣

≤ C |((1 + |∇φn|m + |∇φ∞|m) |∇(φn − φ∞)| ,∇ψ)|

≤ C(1 + ‖∇φn‖mL3m + ‖∇φ∞‖mL3m) ‖∇(φn − φ∞)‖L3 ‖∇ψ‖L3

→ 0 ,

where in the last step we have applied the Rellich compactness theorem. Hence

0 = ∇x · ∇yF+(∇xφ
∞) + ∇x · ∇yF−(∇xφ

∞) − ǫ2∆2φ∞

= ∇x · ∇yF (∇xφ
∞) − ǫ2∆2φ∞. (65)

This proves that φ∞ must be a critical point of the energy functional (??). Therefore
we have

Theorem 2.5. All solutions of the numerical scheme (??) must converge to critical
points of the energy functional (??) as time approaches infinity provided that the
convexity decomposition assumption (??) and the growth assumptions (??, ??) are
satisfied.

This result indicates that the scheme viewed as a discrete dynamical system
shares exactly the same very important long-time behavior of the continuous dynam-
ical system associated with the gradient flows (??) in the sense that they converge
to exactly the same set of critical points. These critical points are not necessarily
minimizers of the energy functional (??), since an arbitrary critical point of the
energy (??) is a steady state of the numerical scheme (??) as well.

We could talk about the stationary statistical properties of the scheme (??) and
the gradient system (??) just as in [?]. However, we will refrain from doing so here
since it is not the extremely long-time behavior (described by the critical points of
the energy functional and their connecting orbits) that are of importance for thin
film epitaxial growth systems. It is the behavior on the intermediate time scale (up
to the order of 1

ǫ3 , see the introduction) that is of physical relevance here.

3. Application of the schemes to thin film epitaxy equations.

3.1. Solvability, stability, and convergence. For application to thin film epi-
taxy, we naturally decompose the Ehrlich-Schwoebel energy into a “convex” and
“concave” part as in the theorem. For the energy with slope selection, it is easy to
see that we have the following decomposition

E2(φ) =

∫

Ω

1

4

(

|∇φ|4 + 1
)

dx +

∫

Ω

(

−
1

2
|∇φ|2

)

dx +

∫

Ω

ǫ2

2
|∆φ(x)|2 dx , (66)

with the first integral on the right hand side being “convex” and the second integral
being “concave.” Hence, we propose the following scheme for this case with slope
selection:

φn+1
2 − φn2

k
= ∇ ·

(

∇φn+1
2

∣

∣∇φn+1
2

∣

∣

2
)

− ∆φn2 − ǫ2∆2φn+1
2 . (67)
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In the case without slope selection, we have

E1(φ) =

∫

Ω

1

2

(

|∇φ|2 − ln
(

1 + |∇φ|2
))

dx+

∫

Ω

(

−
1

2
|∇φ|2

)

dx+

∫

Ω

ǫ2

2
|∆φ(x)|2 dx ,

(68)
with the first integral “convex,” the second one “concave,” and, hence, we propose
the following scheme for the equation without slope selection:

φn+1
1 − φn1

k
= ∇ ·

(

∇φn+1
1

∣

∣∇φn+1
1

∣

∣

2

1 +
∣

∣∇φn+1
1

∣

∣

2

)

− ∆φn1 − ǫ2∆2φn+1
1 . (69)

The gradient stability for both schemes is then a corollary of Thm. ??:

Corollary 1. The schemes (??, ??) are well-posed and stable in the sense that the
following hold:

Ei
(

φn+1
i

)

≤ Ei (φ
n
i ) −

1

k

∥

∥φn+1
i − φni

∥

∥

2
−
ǫ2

2

∥

∥∆
(

φn+1
i − φni

)
∥

∥

2
, (70)

for i = 1, 2. Moreover, the numerical solutions converge to the exact solution as
k ց 0 on any finite time interval [0, T ], and the solution of the schemes converge to
critical points of the corresponding energy functionals as time approaches infinity.

Proof. The well-posedness of the schemes and their unconditional stability as well as
the monotonic decay of the energies follows from the stability theorem (Thm. ??)
directly with the convex-concave decomposition given above. As for the local in
time convergence and the long-time behavior, we need to to verify the growth as-
sumptions (??, ??). Since (??) is obvious, we simply check (??).

For the free energy (??) (without slope selection), a direct Taylor expansion for
ln gives

F1 (y) = −
1

2
ln
(

1 + |y|
2
)

≥ −β |y|
2
− Cβ . (71)

For the free energy (??) (with a slope selection), the estimate is more straightfor-
ward:

F2 (y) =
1

4

(

|y|
2
− 1
)2

≥ 0 . (72)

Remark 4. Note that a lower bound for the energy E1 is straightforward to obtain.
For simplicity, we take Ω = (0, L)×(0, L). Then the (independently) sharp estimates

F1 (y) = −
1

2
ln
(

1 + |y|
2
)

≥ −
1

2

(

α |y|
2
− ln(α) + α− 1

)

, ∀ α ≤ 1 , (73)

and

‖∆φ‖2 ≥ 8
π2

L2
‖∇φ‖2 , ∀ φ ∈ H2

per(Ω) , (74)

are obtained. Thus choosing α = 8ǫ2π2

L2 , we obtain the lower bound

E1(φ) ≥
L2

2

(

ln

(

8ǫ2π2

L2

)

−
8ǫ2π2

L2
+ 1

)

=: γ . (75)

This lower bound is not, in general, sharp.
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Figure 1. Time snapshots of the evolution of the model with slope
selection. Parameters are given in the text. The left-hand column
shows the filled contour plot of φ; the right-hand column, the filled
contour plot of ∆φ. The latter gives an indication of the curvature
of the surface z = φ(x, y). The pyramid/anti-pyramid shapes of
the hills and valleys are evident in the plots, and the system clearly
saturates by time 6000.
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Figure 2. Log-log plots of the temporal evolution of (a) the stan-
dard deviation of φ, denoted w(t) in the plot and defined in the
text, and (b) the energy for the model with slope selection. The
standard deviation is a good measure of the feature size scale (the
wavelength), because in this model the slopes of the pyramids are
nearly fixed. Notice w(t) grows like t1/3 until saturation. The
energy decreases like t−1/3 until saturation.

3.2. Preliminary Computations. Now we show some preliminary computations
using our convexity splitting schemes for models with and without slope selection.
Space is discretized using second-order accurate finite differences. This leads to
discrete energies that approximate (??) and (??). The schemes, in turn, are con-
structed so that (discrete) energy stability is preserved. In other words, one still
obtains energy estimates like (??) but in terms of the discrete energies and space-
discrete norms. Many of the details are similar to those presented in our previous
work [?, ?] and will be discussed in a forthcoming paper.

For the simulations we use the parameters ǫ = 0.03, Lx = Ly = 12.8, and
h = Lx/512, where h is the uniform spatial step size. With these numbers, our
lower bound on E1 is discovered to be γ ≈ −552.43. For the temporal step size k,
we use k = 0.001 on the time interval [0, 400] and k = 0.01 on the time interval
[400, 6000]. To solve the resulting nonlinear finite-difference equations at the im-
plicit time level, we employ a nonlinear conjugate gradient method, using the Polak
Ribiére formula [?] to determine the line search direction.

Output for a simulation using the slope-selection model is presented in Figs. ??

and ??. The corresponding simulation results for the model without slope selection
are shown Figs. ?? and ??. Figures ?? and ?? show contour plots of φ (on the left)
and ∆φ (on the right). Figures ?? and ?? show the time evolution of the discrete
standard deviation w(t) of the computed height function φ (on the left) and discrete
energy (on the right). The standard deviation is defined as

w(tn) =

√

√

√

√

h2

LxLy

Nx
∑

i=1

Ny
∑

j=1

(

φni,j − φ̄
)2
, (76)

where Nx and Ny are the number of grid points in the x and y direction and φ is
the average value of φ on the uniform grid. The initial data for the simulations is
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Figure 3. Time snapshots of the evolution of the model without
slope selection. The plots are as in Fig. ??, with φ on the left-hand-
side and ∆φ on the right-hand-side. The system does not saturate
by time 6000.
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Figure 4. (a) The log-log plot of the standard deviation of φ,
denoted w(t), and (b) the semi-log plot of the energy for the model
without slope selection. Here the standard deviation is not such a
good measure of the feature size scale (the wavelength), because in
this model the slopes of the pyramids grow in time. Notice w(t)
grows like t1/2, much faster than the t1/3 growth for the model
with slope selection. However, the feature size grows more slowly
in time. The energy decays like − ln(t). Such decay cannot persist,
since the energy is bounded below. The rate will slow down near
saturation.

taken as φ0
i,j = φ̄ + ri,j , where the ri,j are uniformly distributed random numbers

in [−0.05, 0.05].
A couple of aspects of the simulations are worth pointing out. First the slope

selection mechanism of the model corresponding to energy (??) is evident in Fig. ??.
Mounds are observed to have nearly flat sides with slightly rounded edges where
the faces meet. Fine length scale structures coarsen over time until the system
saturates. The steady state of the system consists of a single pyramid and anti-
pyramid configuration. As predicted by Moldovan and Golubovic [?], Kohn and
Yan [?], and Li and Liu [?] and as observed in Fig. ??, the standard deviation (or
the roughness as Li and Liu refer to it) w(t) grows approximately like t1/3 until
around the saturation time when the system feels the finite size of the periodic
domain. The energy, plotted on the right-hand-side of Fig ??, is observed to decrease
approximately like t−1/3, which is also expected [?].

Referring now to Figs. ?? and ??, for the model with no slope selection (asso-
ciated to energy (??)) mounds have curved sides with very steep faces. Unlike the
previous case, saturation is not reached by time t = 6000. This is because, while
the roughness w(t) grows faster then for the slope selection case (like t1/2, left-
hand-side of Fig. ??), the feature size (not shown) only grows like t1/4 [?, ?]. The
energy for the system decays rather rapidly, like − ln(t) before saturation. This is
expected from the work in [?]. However, such decay cannot persist, since the energy
is bounded below on a periodic domain. It is expect that the rate of energy decay
will slow down dramatically near the saturation point.

4. Summary. We derived a class of unconditionally uniquely solvable, uncon-
ditionally stable schemes for certain phenomenological thin film epitaxial growth
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models. The key ingredient is a proper generalization of Eyre’s idea of decom-
posing the energy functional into convex and concave parts, with the convex part
treated implicitly and the concave part treated explicitly in the time discretization.
We have shown that the derived scheme converges to the gradient flow associated
with the energy functional as the time step approaches zero, provided certain nat-
ural growth conditions are satisfied by the Ehrlich-Schwoebel energy. We have also
demonstrated that the solutions of the scheme converges to exact steady states of
the underlying gradient flow as time approaches infinity. We concluded the paper
with some preliminary computational results using the proposed schemes.

Although the schemes herein are first order in time, the same ideas can be used to
derive higher order unconditionally stable schemes [?]. The examination of higher
order schemes together with extensive numerical experiments and the comparison
with experimental data will be presented in a subsequent work.
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