Small dilatation pseudo-Anosov mapping classes coming from the simplest hyperbolic braid.

Eriko Hironaka

December 21, 2009

Abstract

In this paper we study the minimum dilatation pseudo-Anosov mapping classes coming from fibrations over the circle of a single 3-manifold, namely the mapping torus for the "simplest pseudo-Anosov braid". The dilatations that arise include the minimum dilatations for orientable mapping classes for genus $g=2,3,4,5,8$ as well as Lanneau and Thiffeault's conjectural minima for orientable mapping classes, when $g=2,4(\bmod 6)$. Our examples also show that the minimum dilatation for orientable mapping classes is strictly greater than the minimum dilatation for nonorientable ones when $g=4,6,8$.

1 Introduction

Let S_{g} be a closed oriented surface of genus $g \geq 1$, and let Mod_{g} be the mapping class group, that is, the group of orientation preserving homeomorphisms of S_{g} to itself up to isotopy. A mapping class $\phi \in \operatorname{Mod}_{g}$ is called pseudo-Anosov if S_{g} has a pair of ϕ-invariant, transversally measured, singular foliations on which ϕ acts by stretching along one and contracting along the other by a constant $\lambda(\phi)>1$. The constant $\lambda(\phi)$ is called the (geometric) dilatation of ϕ. A mapping class is pseudo-Anosov if it is neither periodic nor reducible [Thu2] [FLP] [CB].

A pseudo-Anosov mapping class ϕ is defined to be orientable if its invariant foliations are orientable. Let $\lambda_{\text {hom }}(\phi)$ be the spectral radius of the action of ϕ on the first homology of S. Then

$$
\lambda_{\text {hom }}(\phi) \leq \lambda(\phi)
$$

with equality if and only if ϕ is orientable (see, for example, [LT] p. 5).
The dilatations $\lambda(\phi)$ satisfy reciprocal monic integer polynomials of degree bounded from above by $6 g-6$ [Thu2]. If ϕ is orientable the degree is bounded by $2 g$. For fixed g, it follows that $\lambda(\phi)$ achieves a minimum $\delta_{g}>1$ in Mod_{g} (cf. [AY] [Iva]). Let δ_{g}^{+}be the minimum dilatation among orientable pseudo-Anosov elements of Mod_{g}.

In this paper, we address the question:
Question 1.1 What is the behavior of δ_{g} and δ_{g}^{+}as functions of g ?
So far, exact values of δ_{g} have only been found for $g \leq 2$. For $g=1, \operatorname{Mod}_{1}=\operatorname{SL}(2 ; \mathbb{Z})$, and

$$
\delta_{1}=\frac{3+\sqrt{5}}{2} .
$$

For $g=2$, Cho and Ham $[\mathrm{CH}]$ show that δ_{2} is the largest real root of

$$
t^{4}-t^{3}-t^{2}-t+1=0
$$

or approximately 1.72208 .
In the orientable case more is known due to recent results of Lanneau and Thiffeault [LT]. Given $(a, b) \in \mathbb{Z} \oplus \mathbb{Z}$ with $0<a<b$, let

$$
L T_{(a, b)}(t)=t^{2 b}-t^{b}\left(1+x^{a}+x^{-a}\right)+1,
$$

and let $\lambda_{(a, b)}$ be the largest real root of $L T_{(a, b)}(t)$.
Theorem 1.2 (Lanneau-Thiffeault [LT] Thm. 1.2, Thm. 1.3) For $g=2,3,4,6,8$,

$$
\lambda_{(1, g)} \leq \delta_{g}^{+}
$$

with equality when $g=2,3,4$.
For $g=2$, the value of δ_{2}^{+}was first determined by Zhirov [Zhi]. For $g=5$, Lanneau and Thiffeault show that δ_{5}^{+}equals Lehmer's number. This dilatation is realized as a product of multi-twists in along a curve arrangement dual to the E_{10} Coxeter graph [Lei], and as the monodromy of the (-2,3,7)-pretzel knot [Hir]. Lanneau and Thiffeault also find a lower bound for δ_{7}^{+}, but so far no one has found an example with that dilatation.

Based on their calculations, Lanneau and Thiffeault ask: is $\delta_{g}^{+}=\lambda_{g}$ for all even g ? We call the affirmative answer to their question the LT-conjecture.

In our first result, we improve on the following previously known best bounds for minimum dilatation of infinite families

$$
\left(\delta_{g}\right)^{g} \leq\left(\delta_{g}^{+}\right)^{g} \leq 2+\sqrt{3}
$$

(see [Min] [HK]).
Theorem 1.3 If $g=0,1,3,4(\bmod 6), g \geq 3$, then

$$
\delta_{g} \leq \lambda_{(3, g+1)}
$$

and if $g=2,5(\bmod 6)$ and $g \geq 5$, then

$$
\delta_{g} \leq \lambda_{(1, g+1)}
$$

For the orientable case, our results complement those of Lanneau and Thiffeault for $g=2,4(\bmod 6)$.
Theorem 1.4 Let $g \geq 3$. Then
(i) $\delta_{g}^{+} \leq \lambda_{(3, g+1)}$ if $g=1,3(\bmod 6)$,
(ii) $\delta_{g}^{+} \leq \lambda_{(1, g)}$ if $g=2,4(\bmod 6)$, and
(iii) $\delta_{g}^{+} \leq \lambda_{(1, g+1)}$ if $g=5(\bmod 6)$.

Putting Theorem 1.4 together with Lanneau and Thiffeault's lower bound for $g=8$ gives
Corollary 1.5 For $g=8$, we have

$$
\delta_{8}^{+}=\lambda_{(1,8)} .
$$

For large g, it is known that δ_{g} and δ_{g}^{+}converges to 1. Furthermore, we have

$$
\begin{equation*}
\log \left(\delta_{g}\right) \asymp \frac{1}{g} \quad \text { and } \quad \log \left(\delta_{g}^{+}\right) \asymp \frac{1}{g} \tag{1}
\end{equation*}
$$

(see [Pen] [McM1] [Min] [HK]). The LT-conjecture together with (1) leads to the natural question:

Question 1.6 (e.g., [McM1], p.551, [Far], Problem 7.1) Do the sequences

$$
\left(\delta_{g}\right)^{g} \quad \text { and } \quad\left(\delta_{g}^{+}\right)^{g}
$$

converge as g grows? What is the limit?
The examples in this paper show the following.
Proposition 1.7 If the limit exists, then

$$
\limsup _{g \rightarrow \infty}\left(\delta_{g}\right)^{g} \leq \frac{3+\sqrt{5}}{2}
$$

If the LT-conjecture is true, then $\delta_{2 m}^{+}$is a monotone strictly decreasing sequence (see Proposition 4.4) that converges to $\frac{3+\sqrt{5}}{2}$. Thus, the LT-conjecture implies equality in Proposition 1.7.

Lanneau and Thiffeault show that $\delta_{5}^{+} \leq \delta_{6}^{+}$, and hence δ_{g}^{+}is not strictly monotone decreasing (cf. [Far] Question 7.2). Theorem 1.4 shows the stronger statement.

Proposition 1.8 If the LT-conjecture is true, then $\delta_{g}^{+} \leq \delta_{g+1}^{+}$, whenever $g=5(\bmod 6)$.
Another example concerns the question of whether the inequality $\delta_{g} \leq \delta_{g}^{+}$is strict for any or all g. Table 1 shows the following.

Proposition 1.9 For $g=4,6,8$ we have

$$
\delta_{g}<\delta_{g}^{+}
$$

If the LT conjecture is true, then Theorem 1.3 and Proposition 4.4 imply that the phenomena revealed in Proposition 1.9 repeats itself periodically.

Proposition 1.10 If the LT-conjecture is true, then for all even $g \geq 4$ we have

$$
\delta_{g}<\delta_{g}^{+}
$$

We prove Theorem 1.3 and Theorem 1.4 by exhibiting a family of mapping classes $\phi_{(a, b)}$ that come from a fibered face of a single 3 -manifold M. This is interesting in light of the Universal Finiteness Theorem due to Farb, Leininger and Margalit [FLM]. For any pseudo-Anosov mapping class $\phi \in \operatorname{Mod}_{g}$, let $M(\phi)$ be the mapping torus of ϕ after removing tubular neighborhoods of suspensions of the singularities. Let

$$
\mathcal{T}_{P}=\left\{M(\phi): \lambda(\phi) \leq P^{g}\right\} .
$$

Then \mathcal{T}_{P} is a finite set for all $P([F L M]$ Thm. 1.1). The asymptotic equations (1) imply that

$$
\mathcal{T}=\left\{M(\phi): \phi \in \operatorname{Mod}_{g}, \phi \text { pseudo-Anosov, } \lambda(\phi)=\delta_{g}\right\}
$$

and

$$
\mathcal{T}^{+}=\left\{M(\phi): \phi \in \operatorname{Mod}_{g}, \phi \text { pseudo-Anosov, } \lambda(\phi)=\delta_{g}^{+}\right\}
$$

are finite. For our examples, M is the complement of a two component link L, known as 6_{2}^{2} in Rolfsen's table [Rolf]. (See also [KT] for another example of a single manifold producing small dilatations.)

The following is a table of the minimal dilatations that arise in this paper's examples for genus 1 through 12. All numbers in the table are truncated to 5 decimals. An asterisk $*$ marks the numbers that have been verified to equal δ_{g}^{+}(resp. δ_{g}). For singularity-type, we use the convention that $\left(a_{1}, \ldots, a_{k}\right)$ means that the singularities of the invariant foliations have degrees a_{1}, \ldots, a_{k} (see Lanneau and Thiffeault's notation[LT], p.3). The singularity-types for our examples are derived from the formula given in Proposition 3.5.

g	orientable	degrees of singularities	unconstrained	degrees of singularities
1	2.61803^{*}	no sing.	2.61803^{*}	no sing.
2	1.72208^{*}	(4)	1.72208^{*}	(4)
3	1.40127^{*}	$(2,2,2,2)$	1.40127	$(2,2,2,2)$
4	1.28064^{*}	$(10,2)$	1.26123	$(3,3,3,3)$
5	1.17628^{*}	(16)	1.17628	(16)
6	-	-	1.1617	$(5,5,5,5)$
7	1.13694	$(6,6,6,6)$	1.13694	$(6,6,6,6)$
8	1.12876^{*}	$(22,6)$	1.1135	$(25,1,1,1)$
9	1.1054	$(8.8 .8 .8)$	1.1054	$(8,8,8,8)$
10	1.10149	$(28,8)$	1.09466	$(9,9,9,9)$
11	1.08377	$(34,2,2,2)$	1.08377	$(34,2,2,2)$
12	-	-	1.07874	$(11,11,11,11)$

Table 1: Minimal orientable and unconstrained dilatations coming from M
For $g=1,2,3,4,5$, our orientable examples agree both in dilatation and in singularity-type with previously found minimizing examples. Thus, for example, we have shown that

$$
M \in \mathcal{T} \cap \mathcal{T}^{+}
$$

For $g=8$, it agrees with the singularity-type anticipated by Lanneau and Thiffeault (see [LT]). For $g=6 k$, we do not get any orientable examples out of fibrations of M, and for $g=7$, our minimal example gives a strictly larger dilatation than Lanneau and Thiffeault's lower bound.

Section 2 contains a brief review of Thurston norms, Alexander norms, and the Teichmüller polynomial. These are the basic tools used in this paper. In Section 3 we describe our family of examples, and in Section 4 we prove Theorem 1.3 and Theorem 1.4.

Acknowledgments: The author is grateful to Curt McMullen for many useful conversations and suggestions, and to Eiko Kin and Spencer Dowdall for corrections comments to an earlier draft.

2 Background and tools

We give a brief review of fibrations of a hyperbolic 3-manifold M and their invariants, emphasizing tools that we will use in the rest of the paper. For more details see, for example, [Thu1] [FLP] [McM1] [McM2].

The theory of fibered faces of the Thurston norm ball and Teichmuller polynomials gives rise to an atlas of all possible fibrations of a given hyperbolic manifold. Assume M is a compact hyperbolic 3-manifold with boundary. Given an embedded surface S on M, let $\chi_{-}(S)$ be the sum of $\left|\chi\left(S_{i}\right)\right|$, where S_{i} are the irreducible components of S with negative Euler characteristic. The Thurston norm of $\psi \in \mathrm{H}^{1}(M ; \mathbb{Z})$ is defined to be

$$
\|\psi\|_{T}=\min \chi_{-}(S)
$$

where the minimum is taken over oriented embedded surfaces $(S, \partial S) \subset(M, \partial M)$ such that the class of S in $\mathrm{H}_{2}(M, \partial M ; \mathbb{Z})$ is dual to ψ.

Elements of $\mathrm{H}^{1}(M ; \mathbb{Z})$ are canonically associated with epimorphisms

$$
\pi_{1}(M ; \mathbb{Z}) \rightarrow \mathbb{Z}
$$

which factor through epimorphisms

$$
\mathrm{H}_{1}(M ; \mathbb{Z}) \rightarrow \mathbb{Z} .
$$

Thus, we have a lattice $\Lambda_{M} \subset \mathbb{R}^{b_{1}(M)}$ equal to any of the following naturally identified objects.

$$
\mathrm{H}^{1}(M ; \mathbb{Z})=\operatorname{Hom}\left(\pi_{1}(M) \rightarrow \mathbb{Z}\right)=\operatorname{Hom}\left(\mathrm{H}_{1}(M ; \mathbb{Z}), \mathbb{Z}\right)
$$

If $\psi \in \Lambda_{M}$ is induced by a fibration

$$
M \rightarrow S^{1}
$$

we say that ψ is fibered. In this case,

$$
\|\psi\|_{T}=\chi_{-}(S)
$$

where S is the fiber of ψ. The monodromy of ψ is the mapping class $\phi: S \rightarrow S$, such that M is the mapping torus of ϕ, and ψ is the natural projection to S^{1}. Since M is hyperbolic, ϕ is automatically pseudo-Anosov.

Let Σ be the unit sphere in $\mathbb{R}^{b_{1}(M)}$ with respect to the extended Thurston norm. Then Σ is a polyhedron and Λ_{M} projects to a dense subset of Σ, called the rational points of Σ. The fibered elements of Λ_{M} project to the (open) faces of Σ. The faces that contain images of fibered elements are called fibered faces. Any element that projects to a fibered face is fibered.

Let $\psi \in \Lambda_{M}$ be a fibered element, and let ψ_{0} be the element of Λ_{M} that lies closest to the origin along the ray containing ψ. Then

$$
\psi=r\left(\psi_{0}\right)
$$

for some positive integer r, and the fibration associated to ψ is obtained by taking the fibration associated to ψ_{0} and composing with the r-cyclic covering of S^{1}. It follows that ψ_{0} has connected fibers, while the fibers of ψ have r-connected components. Such elements ψ_{0} are called primitive elements. The dilatation of the monodromy ϕ is given by

$$
\lambda(\phi)=\lambda\left(\phi_{0}\right)^{1 / r},
$$

where ϕ_{0} is the monodromy of the associated primitive element.
Theorem 2.1 ([Fri], Theorem E) There is a continuous function $\mathcal{Y}(\psi)$ defined on the entire fibered cone in $\mathbb{R}^{b_{1}(M)}$, so that if ψ is fibered with monodromy ϕ, then

$$
\mathcal{Y}(\psi)=\frac{1}{\log (\lambda(\phi))}
$$

The function \mathcal{Y} is homogeneous of degree one, and is a concave function tending to zero along the boundary of the cone.

The Alexander polynomial Δ_{M} of M is a polynomial in $\mathbb{Z}[G]$, where $G=\mathrm{H}_{1}(M ; \mathbb{Z})$. Each element $\psi \in \Lambda_{M}$ determines an epimorphism of \mathbb{Z}-modules:

$$
\rho: \mathbb{Z}[G] \rightarrow \mathbb{Z}\left[t, t^{-1}\right],
$$

where we identify $\mathbb{Z}\left[t, t^{-1}\right]$ with the group ring over $\mathbb{Z}=H_{1}\left(S^{1} ; \mathbb{Z}\right)$. This defines a specialization

$$
\Delta_{(M, \psi)}=\rho\left(\Delta_{M}\right) \in \mathbb{Z}\left[t, t^{-1}\right] .
$$

The polynomial $\Delta_{(M, \psi)}$ is the characteristic polynomial for the monodromy ϕ of ψ acting on $\mathrm{H}_{1}(S ; \mathbb{Z})$, where S is the fiber of ψ. Thus, the degree of the Alexander polynomial specialized to a particular ψ is the rank of $\mathrm{H}_{1}(S ; \mathbb{Z})$. This is called the Alexander norm of ψ. The homological dilatation of ϕ, that is, the spectral radius of the action of ϕ on $\mathrm{H}_{1}(S ; Z)$, is the maximum among norms of roots of $\Delta_{(M, \phi)}$. We denote the homological dilatation by $\lambda_{\text {hom }}(\phi)$.

The Teichmuller polynomial Θ associated to a fibered face of Σ_{M} is analogous to the Alexander polynomial. It is a polynomial in $\mathbb{Z}[G]$ such that for each ψ in the cone over the fibered face, the geometric dilatation $\lambda(\phi)$ of the monodromy is the largest real root of Θ specialized to ψ [McM1].

3 The mapping torus for the simplest pseudo-Anosov braid

We now look at a particular 3-manifold, and study properties of its fibrations. This example has also been studied in ([McM1] §11), and the first part of this section will be a review of what is found there.

Let $M=S^{3} \backslash N(L)$, where L is the link drawn in two ways in Figure 1, and $N(L)$ is a tubular neighborhood. As seen from the left diagram in Figure 1, M fibers over the circle with fiber a four

Figure 1: Two diagrams for the link 6_{2}^{2}.
times punctured sphere S. Let $\psi \in \Lambda_{M}$ be the associated element. Let K_{1} be the component of L passing through S, and let K_{2} be the other component of L.

The monodromy ϕ of ψ is the composition of two Dehn twists determined by 180 degree rotations as drawn in FIgure 2, and has dilatation

$$
\lambda(\phi)=\frac{3+\sqrt{5}}{2} .
$$

Its lift to a torus realizes δ_{1}, and its dilatation is smallest possible for mapping classes defined on S. The associated braid β (which can be written as $\sigma_{1} \sigma_{2}^{-1}$ with respect to the standard basis for the braid group) has been called the "simplest pseudo-Anosov braid" ([McM1] §11).

The Thurston norm and the Alexander norm both are given by

$$
\begin{equation*}
\|(a, b)\|=\max \{2|a|, 2|b|\} \tag{2}
\end{equation*}
$$

Figure 2: Braid monodromy associated to $\beta=\sigma_{1} \sigma_{2}^{-1}$.
where $(a, b) \in \mathrm{H}^{1}(M ; \mathbb{Z})$ denotes the class that evaluates to a on the meridian μ_{1} of K_{1} and b on the meridian μ_{2} of K_{2}.

The lattice points Λ_{M} in the fibered cone (of points projecting to the fibered face) defined by $\psi=(0,1)$ is the set

$$
\Psi=\{(a, b) \in \mathbb{Z} \times \mathbb{Z}: b>0,-b<a<b\}
$$

as shown in Figure 3. For the rest of this paper, we will only be concerned with the subset $\Psi_{0} \subset \Psi$ consisting of elements of Ψ with connected fibers. Thus,

$$
\Psi_{0}=\{(a, b) \in \mathbb{Z} \times \mathbb{Z}: b>0,-b<a<b, \operatorname{gcd}(a, b)=1\}
$$

The elements of Ψ_{0} are in one-to-one correspondence with the rational points on the fibered face defined by ψ, which can be thought of as the projectivization of Ψ.

Figure 3: Fibered cone Ψ containing $\psi=(0,1)$.

The Alexander polynomial for L is given by

$$
\begin{equation*}
\Delta_{L}(x, u)=u^{2}-u\left(1-x-x^{-1}\right)+1 \tag{3}
\end{equation*}
$$

(see Rolfsen's table [Rolf]), and the Teichmuller polynomial is given by

$$
\begin{equation*}
\Theta_{L}(x, u)=u^{2}-u\left(1+x+x^{-1}\right)+1 \tag{4}
\end{equation*}
$$

Specialization to the element $(a, b) \in \mathrm{H}^{1}(M ; \mathbb{Z})$ discussed in Section 2 is the same as plugging $\left(t^{a}, t^{b}\right)$ into the equations for the Alexander and Teichmuller polynomials.

Proposition 3.1 If $(a, b) \in \Psi_{0}$, then the associated monodromy $\phi_{(a, b)}$ is pseudo-Anosov and its homological dilatation is the maximum norm among roots of the polynomial

$$
\Delta_{L}\left(t^{a}, t^{b}\right)=t^{2 b}-t^{b}\left(1-t^{a}-t^{-a}\right)+1
$$

and the geometric dilatation is the largest real root $\lambda_{(a, b)}$ of

$$
\Theta_{L}\left(t^{a}, t^{b}\right)=t^{2 b}-t^{b}\left(1+t^{a}+t^{-a}\right)+1
$$

Corollary 3.2 If $(a, b) \in \Psi_{0}$, then the associated monodromy $\phi_{(a, b)}$ is orientable if a is odd and b is even.

Proof. If a is odd and b is even, then the roots of $\Theta_{L}\left(t^{a}, t^{b}\right)$ are the negatives of the roots of $\Delta_{L}\left(t^{a}, t^{b}\right)$. This implies that the geometric and homological dilatations of $\phi_{(a, b)}$ are equal, and therefore $\phi_{(a, b)}$ is orientable.

Later in this section, we will show the converse of Corollary 3.2. First we consider how the monodromy behaves near the boundary of $S_{(a, b)}$.

Proposition 3.3 Let $\phi_{(a, b)}: S_{(a, b)} \rightarrow S_{(a, b)}$ be the monodromy associated to (a, b). The boundary components of $S_{(a, b)}$ consists of $\operatorname{gcd}(3, a)$ components coming from $T\left(K_{1}\right)$ and $\operatorname{gcd}(3, b)$ coming from $T\left(K_{2}\right)$. Thus, the total number of boundary components of $S_{(a, b)}$ is given by

$$
\begin{cases}2 & \text { if } \operatorname{gcd}(3, a b)=1 \\ 4 & \text { if } 3 \text { divides } a b\end{cases}
$$

Proof. The number of components in $T\left(K_{i}\right) \cap S_{(a, b)}$ is the index of the image of $\pi_{1}\left(T\left(K_{i}\right)\right)$ in \mathbb{Z} under the composition of maps

$$
\pi_{1}\left(T\left(K_{i}\right)\right) \rightarrow \pi_{1}(M) \rightarrow \mathbb{Z}
$$

induced by inclusion and $\psi_{(a, b)}$.
For $i=1,2$, let ℓ_{i} be the longitude of K_{i} that is contractible in $S^{3} \backslash K_{i}$. Then, for $T\left(K_{1}\right)$ we have

$$
\psi_{(a, b)}\left(\mu_{1}\right)=a \quad \text { and } \quad \psi_{(a, b)}\left(\ell_{1}\right)=3 \psi_{(a, b)}\left(\mu_{2}\right)=3 b,
$$

so the number of boundary components contributed by $T\left(K_{1}\right)$ is

$$
\operatorname{gcd}(a, 3 b)=\operatorname{gcd}(3, a),
$$

since we are assuming that $\operatorname{gcd}(a, b)=1$. The contribution of $T\left(K_{2}\right)$ is computed similarly.

Proposition 3.4 The genus of $S_{(a, b)}$, for $(a, b) \in \Psi_{0}$ is given by

$$
\begin{aligned}
g\left(S_{(a, b)}\right) & =|b|+\left(1-\frac{\operatorname{gcd}(3, a)+\operatorname{gcd}(3, b)}{2}\right) \\
& = \begin{cases}|b| & \text { if } 3 \text { does not divide } a b \\
|b|-1 & \text { if } 3 \mid \text { a or } 3 \mid b .\end{cases}
\end{aligned}
$$

Proof. From (2) we have

$$
2|b|=\chi_{-}\left(S_{(a, b)}\right)=2 g-2+\operatorname{gcd}(3, a)+\operatorname{gcd}(3, b) .
$$

Figure 4: Train track for $\phi: S \rightarrow S$.

Proposition 3.5 Let $(a, b) \in \Psi_{0}$, and let \mathcal{F} be a $\phi_{(a, b) \text {-invariant foliation. Then } \mathcal{F} \text {. }}$
(i) has no interior singularities,
(ii) has $(3 b / \operatorname{gcd}(3, a))$-pronged at the $\operatorname{gcd}(3, a)$ boundary components coming from $\left.T\left(K_{1}\right)\right)$, and (iii) has $(b / \operatorname{gcd}(3, b))$-pronged at the $\operatorname{gcd}(3, b)$ boundary components coming from $T\left(K_{2}\right)$.

Proof. Let \mathcal{L} be the lamination of M defined by suspending \mathcal{F} over M considered as the mapping torus of ϕ. From the train track for ϕ (Figure 4), one sees that each of the boundary components of S are one-pronged, and that there are no other singularities. It follows that \mathcal{L} has no singularities outside a neighborhood of the K_{i}, and near each K_{i} the leaves of \mathcal{L} come together at a simple closed curve $\gamma_{i} \in \mathrm{H}_{1}\left(T\left(K_{i}\right)\right.$. Write

$$
\gamma_{i}=r_{i} \mu_{i}+s_{i} \ell_{i}
$$

for $i=1,2$.
For $(a, b) \in \Psi_{0}$, the number of intersections of γ_{i} with $S_{(a, b)}$ is the image of γ_{i} under the epimorphism

$$
\psi_{(a, b)}: \pi_{1}(M) \rightarrow \mathbb{Z}
$$

defining the fibration. Figure 4 shows that $s_{1}=1$ and $r_{2}=1$. Using the identities

$$
\begin{array}{ll}
s_{1}=1 & \lambda_{1}=3 \mu_{2}, \\
r_{2}=1 & \lambda_{2}=3 \mu_{1},
\end{array}
$$

we have

$$
\begin{aligned}
\psi_{(a, b)}\left(\gamma_{1}\right) & =r_{1} \psi_{n}\left(\mu_{1}\right)+3 \psi_{n}\left(\mu_{2}\right)=r_{1} a+3 b \\
\psi_{(a, b)}\left(\gamma_{2}\right) & =\psi_{n}\left(\mu_{2}\right)+3 s_{2} \psi_{n}\left(\mu_{1}\right)=3 s_{2} a+b .
\end{aligned}
$$

This implies that $\phi_{(a, b)}$ is $\left(r_{1} a+3 b\right) / m_{1}$-pronged at m_{1} boundary components and $\left(3 s_{2} a+b\right) / m_{2}-$ pronged at m_{2} boundary components. We find r_{1} and s_{2} by looking at some particular examples.

In general, if $f: \Sigma \rightarrow \Sigma$ is pseudo-Anosov on a compact oriented surface Σ with genus g and and n_{1}, \ldots, n_{k} are the number of prongs at the singularities and boundary components, then by the Poincaré-Hopf theorem

$$
\begin{equation*}
\sum_{i=1}^{k}\left(n_{i}-2\right)=4 g-4 \tag{5}
\end{equation*}
$$

For $(a, b)=(1, n), n$ not divisible by 3 , we have two singularities with number of prongs given by:

$$
\begin{aligned}
& \psi_{n}\left(\gamma_{1}\right)=r_{1}+3 n \\
& \psi_{n}\left(\gamma_{2}\right)=3 s_{2}+n .
\end{aligned}
$$

Plugging into (5) gives

$$
r_{1}+3 s_{2}=0 .
$$

Let $s=s_{2}$. The mapping class $\phi_{(1,2)}$ is the unique genus 2 pseudo-Anosov mapping class with dilatation equal to $\lambda_{2}[\mathrm{CH}][\mathrm{LT}]$, and has one 6 -pronged singularity (see, for example, [HK]). Thus, $s=0$ and we have

$$
\gamma_{1}=\ell_{1}=3 \mu_{2}
$$

and

$$
\gamma_{2}=\mu_{2} .
$$

The claim follows.
Corollary 3.6 The map $\phi_{(a, b)}$ has singularities with number of prongs (or prong-type) given by

$$
\begin{cases}(3 b, b) & \text { if } \operatorname{gcd}(3, a b)=1 \\ (3 b, b / 3, b / 3, b / 3) & \text { if } \operatorname{gcd}(3, b)=3 \\ (b, b, b, b) & \text { if } \operatorname{gcd}(3, a)=3\end{cases}
$$

Corollary 3.7 If b is odd, then $\phi_{(a, b)}$ is not orientable.
Proof. By Corollary 3.6, the number of prongs at each boundary component is odd if b is odd. Thus, $\phi_{(a, b)}$ is not locally orientable near the boundary components.

Corollary 3.8 For $(a, b) \in \Psi_{0}, \phi_{(a, b)}$ is 1-pronged at one or more boundary components of $S_{(a, b)}$ if and only if $(a, b) \in\{(0,1),(\pm 1,3),(\pm 2,3)\}$.

Corollary 3.9 If $(a, b) \notin\{(0,1),(\pm 1,3),(\pm 2,3)\}$, then $\phi_{(a, b)}$ extends to the closure of $S_{(a, b)}$ over the boundary components to a mapping class $\bar{\phi}_{(a, b)}$ with the same dilatation as $\phi_{(a, b)}$.

Proposition 3.10 Table 2 below describes the pairs $(a, b) \in \Psi_{0}$ that give rise to an orientable (or non-orientable) genus g pseudo-Anosov mapping class. (Here $g \geq 4$.)

$g(\bmod 6)$	orientable	non-orientable
0	no example	$b=g+1, a=0(\bmod 3)$
1	$b=g+1, a=3(\bmod 6)$	$b=g, a=1,2(\bmod 3)$
2	$b=g, a=1,5(\bmod 6)$	$b=g+1, a=1,2(\bmod 3)$
3	$b=g+1, a=3(\bmod 6)$	no example
4	$b=g, a=1,5(\bmod 6)$	$b=g+1, a=0(\bmod 3)$
5	$b=g+1, a=1,5(\bmod 6)$	$b=g, a=1,2(\bmod 3)$

Table 2: Fibrations of M according to genus.

4 Minimal dilatations for the fibered face.

Let Ψ_{0} be the fibered cone discussed in Section 3. Let

$$
\begin{aligned}
d_{g} & =\min \left\{\lambda(\psi): \psi \in \Psi_{0}, \text { genus of } \psi \text { is } g\right\}, \text { and } \\
d_{g}^{+} & =\min \left\{\lambda(\psi): \psi \in \Psi_{0}, \text { genus of } \psi \text { is } g, \text { the monodromy of } \psi \text { is orientable }\right\} .
\end{aligned}
$$

In this section, we finish the proofs of Theorem 1.3 and Theorem 1.4 and their consequences by determining d_{g} and d_{g}^{+}.

Proposition 4.1 Let $(a, b) \in \Psi_{0}$. Then

$$
\lambda_{(a, b)}<\lambda_{\left(a^{\prime}, b^{\prime}\right)}
$$

if either
(1) $|a|<\left|a^{\prime}\right|$ and $|b|=\left|b^{\prime}\right|$; or
(2) $|a|=\left|a^{\prime}\right|$ and $|b|>\left|b^{\prime}\right|$.

Proof. One compares the slopes of rays from the origin to (a, b) and $\left(a^{\prime}, b^{\prime}\right)$. The claim follows from Theorem 2.1.

Proposition 4.2 For $b \geq 3$, we have

$$
\lambda_{(1, b)} \geq \lambda_{(3, b+1)},
$$

with equality when $b=3$.
Proof. Let $\lambda=\lambda_{(3, b+1)}$. We will show that $L T_{(1, b)}(\lambda)<0$. Multiplying by λ^{2} and using the fact that $L T_{(3, b+1)}(\lambda)=0$ gives

$$
\begin{aligned}
\lambda^{2} L T_{(1, b)}(\lambda) & =\lambda^{2} L T_{(1, b)}(\lambda)-L T_{(3, b+1)}(\lambda) \\
& =\lambda^{b+4}-\lambda^{b+3}-\lambda b+2+\lambda^{b-2}+\lambda^{2}-1 \\
& =(\lambda-1)\left(\lambda^{b+3}-\lambda^{b-2}\left(\lambda^{3}+\lambda^{2}+\lambda+1\right)+\lambda+1\right) \\
& =(\lambda-1) \lambda^{b-2}\left[\lambda^{5}-\lambda^{3}-\lambda^{2}-\lambda-1+\lambda^{2-b}(\lambda+1)\right] .
\end{aligned}
$$

Thus, it is enough to show that

$$
C=\lambda^{5}-\lambda^{3}-\lambda^{2}-\lambda-1+\lambda^{2-b}(\lambda+1)<0 .
$$

Since $\lambda>1$ and $b \geq 3$, we have

$$
C<\lambda^{5}-\lambda^{3}-\lambda^{2}=\lambda^{2}\left(\lambda^{3}-\lambda-1\right) .
$$

One can check that the right hand side is negative for $\lambda<1.3$. By Proposition 4.1, λ decreases as b increases. A check shows that $\lambda_{(3,5)}<1.3$, and hence $C<0$ for $b \geq 4$. For $b=3$, one checks directly that

$$
\lambda_{(1,3)}=\lambda_{(3,4)} .
$$

Remark 4.3 The mapping class $\phi_{(1,3)}$ is defined on a genus 2 surface with four boundary components, with prong-type (3,1,1,1). The mapping class $\phi_{(3,4)}$ is defined on a genus 3 surface with prong-type (4,4,4,4). By Proposition 4.2 these two examples have the same dilatation.

Putting together Proposition 4.1 and Proposition 4.2, we have the following.
Corollary 4.4 The sequences $\lambda_{(1, b)}$ and $\lambda_{(3, b)}$ satisfy:

$$
\lambda_{(1, b)}>\lambda_{(3, b+1)}>\lambda_{(1, b+1)} .
$$

Lemma 4.5 For $n \geq 2$, Then

$$
\lim _{n \rightarrow \infty}\left(\lambda_{(a, n)}\right)^{n}=\frac{3+\sqrt{5}}{2}
$$

for any fixed a.
Proof. The projections of the lattice points $(a, n) \in \Lambda_{M}$ on the fibered face of ψ converge to $(0,1 / 2)$.

Corollary 4.6 For the minimal dilatations d_{g} and d_{g}^{+}that are realized on M, we have

$$
\lim _{g \rightarrow \infty}\left(d_{g}\right)^{g}=\lim _{g \rightarrow \infty}\left(d_{g}^{+}\right)^{g}=\frac{3+\sqrt{5}}{2} .
$$

Proposition 4.7 The following table describes the pairs $(a, b) \in \Psi_{0}$ that give rise to the minima d_{g} and d_{g}^{+}realized on M. Here unconstrained means not constrained to be orientable.

$g \bmod 6$	$\lambda\left(\phi_{(a, b)}\right)=d_{g}^{+}, \phi_{(a, b)}$ orientable	$\lambda\left(\phi_{(a, b)}\right)=d_{g}$
0	no example	$(3, g+1)$
1	$(3, g+1)$	$(3, g+1)$
2	$(1, g)$	$(1, g+1)$
3	$(3, g+1)$	$(3, g+1)$
4	$(1, g)$	$(3, g+1)$
5	$(1, g+1)$	$(1, g+1)$

Table 3: Pairs (a, b) giving smallest dilatations.
Proposition 4.7 and Corollary 3.9 complete the proofs of Theorem 1.3 and Theorem 1.4. A pictorial view of how the elements of Ψ giving the least dilatations for each genus up to 12 lie on the "atlas" for M is shown in Figure 5.

Figure 5: Minima for d and d^{+}in genus $g=1, \ldots, 12$.

References

[AY] P. Arnoux and J. Yoccoz. Construction de difféomorphisms pseudo-Anosov. C. R. Acad. Sci. Paris 292 (1980), 75-78.
[CB] A. Casson and S. Bleiler. Automorphisms of surfaces after Nielsen and Thurston. Cambridge University Press, 1988.
[CH] J. Cho and J. Ham. The minimal dilatation of a genus two surface. Experiment. Math. 17 (2008), 257-267.
[Far] B. Farb. Some Problems on mapping class groups and moduli space. In Problems on Mapping Class Groups and Related Topics, volume 74 of Proc. Symp. Pure and Applied Math., pages 10-58. 2006.
[FLM] B. Farb, C. Leininger, and D. Margalit. Small dilatation pseudo-Anosovs and 3-manifolds. Preprint (2009).
[FLP] A. Fathi, F. Laudenbach, and V. Poenaru. Travaux de Thurston sur les surfaces, volume 66-67. Société Mathématique de France, Paris, 1979.
[Fri] D. Fried. Growth Rate of surface homeomorphisms and flow equivalence. Comment. Math. Helvetici 57 (1982), 237-259.
[Hir] E. Hironaka. The Lehmer Polynomial and Pretzel Knots. Bulletin of Canadian Math. Soc. 44 (2001), 440-451.
[HK] E. Hironaka and E. Kin. A family of pseudo-Anosov braids with small dilatation. Algebr. Geom. and Topol. 6 (2006), 699-738.
[Iva] N.V. Ivanov. Coeffiicents of expansion of pseudo-Anosov braids with small dilatation. J. Soviet Math. (transl) 52 (1990), 2819-2822.
[KT] E. Kin and M. Takasawa. Pseudo-Anosov braids with small entropy and the magic 3manifold. Preprint (2008).
[LT] E. Lanneau and J-L Thiffeault. On the minimum dilatation of pseudo-Anosov homeomorphisms on surfaces of small genus. Preprint (2009).
[Lei] C. Leininger. On groups generated by two positive multi-twists: Teichmuller curves and Lehmer's number. Geometry ${ }^{\circ}$ Topology 88 (2004), 1301-1359.
[McM1] C. McMullen. Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations. Ann. Sci. École Norm. Sup. 33 (2000), 519-560.
[McM2] C. McMullen. The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology. Ann. Scient. Éc. Norm. Sup. 35 (2002), 153-171.
[Min] H. Minakawa. Examples of pseudo-Anosov homeomorphisms with small dilatations. J. Math. Sci. Univ. Tokyo 13 (2006), 95-111.
[Pen] R. Penner. Bounds on least dilatations. Proceedings of the A.M.S. 113 (1991), 443-450.
[Rolf] D. Rolfsen. Knots and Links. Publish or Perish, Inc, Berkeley, 1976.
[Thu1] W. Thurston. A norm for the homology of 3-manifolds. Mem. Amer. Math. Soc. 339 (1986), 99-130.
[Thu2] W. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc. (N.S.) 19 (1988), 417-431.
[Zhi] A. Y. Zhirov. On the minimum dilatation of pseudo-Anosov diffeomorphisms on a double torus. Uspekhi Mat. Nauk 50 (1995), 297-198.

Eriko Hironaka
Department of Mathematics
Florida State University
Tallahassee, FL 32306-4510
U.S.A.

