Small dilatation pseudo-Anosov mapping classes coming from the simplest hyperbolic braid.

Eriko Hironaka

December 21, 2009

Abstract

In this paper we study the minimum dilatation pseudo-Anosov mapping classes coming from fibrations over the circle of a single 3-manifold, namely the mapping torus for the "simplest pseudo-Anosov braid". The dilatations that arise include the minimum dilatations for orientable mapping classes for genus g=2,3,4,5,8 as well as Lanneau and Thiffeault's conjectural minima for orientable mapping classes, when $g=2,4 \pmod{6}$. Our examples also show that the minimum dilatation for orientable mapping classes is strictly greater than the minimum dilatation for non-orientable ones when g=4,6,8.

1 Introduction

Let S_g be a closed oriented surface of genus $g \ge 1$, and let Mod_g be the mapping class group, that is, the group of orientation preserving homeomorphisms of S_g to itself up to isotopy. A mapping class $\phi \in \operatorname{Mod}_g$ is called pseudo-Anosov if S_g has a pair of ϕ -invariant, transversally measured, singular foliations on which ϕ acts by stretching along one and contracting along the other by a constant $\lambda(\phi) > 1$. The constant $\lambda(\phi)$ is called the (geometric) dilatation of ϕ . A mapping class is pseudo-Anosov if it is neither periodic nor reducible [Thu2] [FLP] [CB].

A pseudo-Anosov mapping class ϕ is defined to be *orientable* if its invariant foliations are orientable. Let $\lambda_{\text{hom}}(\phi)$ be the spectral radius of the action of ϕ on the first homology of S. Then

$$\lambda_{\text{hom}}(\phi) \leq \lambda(\phi),$$

with equality if and only if ϕ is orientable (see, for example, [LT] p. 5).

The dilatations $\lambda(\phi)$ satisfy reciprocal monic integer polynomials of degree bounded from above by 6g-6 [Thu2]. If ϕ is orientable the degree is bounded by 2g. For fixed g, it follows that $\lambda(\phi)$ achieves a minimum $\delta_g > 1$ in Mod_g (cf. [AY] [Iva]). Let δ_g^+ be the minimum dilatation among orientable pseudo-Anosov elements of Mod_g .

In this paper, we address the question:

Question 1.1 What is the behavior of δ_g and δ_g^+ as functions of g?

So far, exact values of δ_g have only been found for $g \leq 2$. For g = 1, $\mathrm{Mod}_1 = \mathrm{SL}(2; \mathbb{Z})$, and

$$\delta_1 = \frac{3 + \sqrt{5}}{2}.$$

For g = 2, Cho and Ham [CH] show that δ_2 is the largest real root of

$$t^4 - t^3 - t^2 - t + 1 = 0$$

or approximately 1.72208.

In the orientable case more is known due to recent results of Lanneau and Thiffeault [LT]. Given $(a,b) \in \mathbb{Z} \oplus \mathbb{Z}$ with 0 < a < b, let

$$LT_{(a,b)}(t) = t^{2b} - t^b(1 + x^a + x^{-a}) + 1,$$

and let $\lambda_{(a,b)}$ be the largest real root of $LT_{(a,b)}(t)$.

Theorem 1.2 (Lanneau-Thiffeault [LT] Thm. 1.2, Thm. 1.3) For g = 2, 3, 4, 6, 8,

$$\lambda_{(1,g)} \le \delta_g^+$$

with equality when g = 2, 3, 4.

For g = 2, the value of δ_2^+ was first determined by Zhirov [Zhi]. For g = 5, Lanneau and Thiffeault show that δ_5^+ equals Lehmer's number. This dilatation is realized as a product of multi-twists in along a curve arrangement dual to the E_{10} Coxeter graph [Lei], and as the monodromy of the (-2,3,7)-pretzel knot [Hir]. Lanneau and Thiffeault also find a lower bound for δ_7^+ , but so far no one has found an example with that dilatation.

Based on their calculations, Lanneau and Thiffeault ask: is $\delta_g^+ = \lambda_g$ for all even g? We call the affirmative answer to their question the LT-conjecture.

In our first result, we improve on the following previously known best bounds for minimum dilatation of infinite families

$$(\delta_g)^g \le (\delta_g^+)^g \le 2 + \sqrt{3}$$

(see [Min] [HK]).

Theorem 1.3 If $g = 0, 1, 3, 4 \pmod{6}$, $g \ge 3$, then

$$\delta_g \le \lambda_{(3,g+1)},$$

and if $g = 2, 5 \pmod{6}$ and $g \ge 5$, then

$$\delta_g \le \lambda_{(1,g+1)}.$$

For the orientable case, our results complement those of Lanneau and Thiffeault for $g = 2, 4 \pmod{6}$.

Theorem 1.4 Let $g \geq 3$. Then

- (i) $\delta_g^+ \le \lambda_{(3,g+1)}$ if $g = 1, 3 \pmod{6}$,
- (ii) $\delta_g^+ \le \lambda_{(1,g)}$ if $g = 2, 4 \pmod{6}$, and
- (iii) $\delta_g^+ \le \lambda_{(1,g+1)}$ if $g = 5 \pmod{6}$.

Putting Theorem 1.4 together with Lanneau and Thiffeault's lower bound for g = 8 gives

Corollary 1.5 For g = 8, we have

$$\delta_8^+ = \lambda_{(1,8)}.$$

For large g, it is known that δ_g and δ_g^+ converges to 1. Furthermore, we have

$$\log(\delta_g) \approx \frac{1}{g}$$
 and $\log(\delta_g^+) \approx \frac{1}{g}$ (1)

(see [Pen] [McM1] [Min] [HK]). The LT-conjecture together with (1) leads to the natural question:

Question 1.6 (e.g., [McM1], p.551, [Far], Problem 7.1) Do the sequences

$$(\delta_g)^g$$
 and $(\delta_g^+)^g$

converge as g grows? What is the limit?

The examples in this paper show the following.

Proposition 1.7 If the limit exists, then

$$\limsup_{g \to \infty} (\delta_g)^g \le \frac{3 + \sqrt{5}}{2}.$$

If the LT-conjecture is true, then δ_{2m}^+ is a monotone strictly decreasing sequence (see Proposi-

tion 4.4) that converges to $\frac{3+\sqrt{5}}{2}$. Thus, the LT-conjecture implies equality in Proposition 1.7. Lanneau and Thiffeault show that $\delta_5^+ \leq \delta_6^+$, and hence δ_g^+ is not strictly monotone decreasing (cf. [Far] Question 7.2). Theorem 1.4 shows the stronger statement.

Proposition 1.8 If the LT-conjecture is true, then $\delta_q^+ \leq \delta_{q+1}^+$, whenever $g = 5 \pmod{6}$.

Another example concerns the question of whether the inequality $\delta_g \leq \delta_g^+$ is strict for any or all q. Table 1 shows the following.

Proposition 1.9 For g = 4, 6, 8 we have

$$\delta_g < \delta_q^+$$
.

If the LT conjecture is true, then Theorem 1.3 and Proposition 4.4 imply that the phenomena revealed in Proposition 1.9 repeats itself periodically.

Proposition 1.10 If the LT-conjecture is true, then for all even $g \geq 4$ we have

$$\delta_g < \delta_q^+$$
.

We prove Theorem 1.3 and Theorem 1.4 by exhibiting a family of mapping classes $\phi_{(a,b)}$ that come from a fibered face of a single 3-manifold M. This is interesting in light of the Universal Finiteness Theorem due to Farb, Leininger and Margalit [FLM]. For any pseudo-Anosov mapping class $\phi \in \mathrm{Mod}_g$, let $M(\phi)$ be the mapping torus of ϕ after removing tubular neighborhoods of suspensions of the singularities. Let

$$\mathcal{T}_P = \{ M(\phi) : \lambda(\phi) \le P^g \}.$$

Then \mathcal{T}_P is a finite set for all P ([FLM] Thm. 1.1). The asymptotic equations (1) imply that

$$\mathcal{T} = \{M(\phi) : \phi \in \text{Mod}_q, \phi \text{ pseudo-Anosov}, \lambda(\phi) = \delta_q\}$$

and

$$\mathcal{T}^+ = \{M(\phi) : \phi \in \text{Mod}_g, \phi \text{ pseudo-Anosov}, \lambda(\phi) = \delta_g^+\}$$

are finite. For our examples, M is the complement of a two component link L, known as 6^2_2 in Rolfsen's table [Rolf]. (See also [KT] for another example of a single manifold producing small dilatations.)

The following is a table of the minimal dilatations that arise in this paper's examples for genus 1 through 12. All numbers in the table are truncated to 5 decimals. An asterisk * marks the numbers that have been verified to equal δ_g^+ (resp. δ_g). For singularity-type, we use the convention that (a_1, \ldots, a_k) means that the singularities of the invariant foliations have degrees a_1, \ldots, a_k (see Lanneau and Thiffeault's notation[LT], p.3). The singularity-types for our examples are derived from the formula given in Proposition 3.5.

g	orientable	degrees of singularities	unconstrained	degrees of singularities
1	2.61803*	no sing.	2.61803*	no sing.
2	1.72208*	(4)	1.72208*	(4)
3	1.40127*	(2,2,2,2)	1.40127	(2,2,2,2)
4	1.28064*	(10,2)	1.26123	(3,3,3,3)
5	1.17628*	(16)	1.17628	(16)
6	-	-	1.1617	(5,5,5,5)
7	1.13694	(6,6,6,6)	1.13694	(6,6,6,6)
8	1.12876*	(22,6)	1.1135	(25,1,1,1)
9	1.1054	(8.8.8.8)	1.1054	(8,8,8,8)
10	1.10149	(28,8)	1.09466	(9,9,9,9)
11	1.08377	(34,2,2,2)	1.08377	(34,2,2,2)
12	-	-	1.07874	(11,11,11,11)

Table 1: Minimal orientable and unconstrained dilatations coming from M

For g = 1, 2, 3, 4, 5, our orientable examples agree both in dilatation and in singularity-type with previously found minimizing examples. Thus, for example, we have shown that

$$M \in \mathcal{T} \cap \mathcal{T}^+$$
.

For g = 8, it agrees with the singularity-type anticipated by Lanneau and Thiffeault (see [LT]). For g = 6k, we do not get any orientable examples out of fibrations of M, and for g = 7, our minimal example gives a strictly larger dilatation than Lanneau and Thiffeault's lower bound.

Section 2 contains a brief review of Thurston norms, Alexander norms, and the Teichmüller polynomial. These are the basic tools used in this paper. In Section 3 we describe our family of examples, and in Section 4 we prove Theorem 1.3 and Theorem 1.4.

Acknowledgments: The author is grateful to Curt McMullen for many useful conversations and suggestions, and to Eiko Kin and Spencer Dowdall for corrections comments to an earlier draft.

2 Background and tools

We give a brief review of fibrations of a hyperbolic 3-manifold M and their invariants, emphasizing tools that we will use in the rest of the paper. For more details see, for example, [Thu1] [FLP] [McM1] [McM2].

The theory of fibered faces of the Thurston norm ball and Teichmuller polynomials gives rise to an atlas of all possible fibrations of a given hyperbolic manifold. Assume M is a compact hyperbolic 3-manifold with boundary. Given an embedded surface S on M, let $\chi_{-}(S)$ be the sum of $|\chi(S_i)|$, where S_i are the irreducible components of S with negative Euler characteristic. The Thurston norm of $\psi \in H^1(M; \mathbb{Z})$ is defined to be

$$||\psi||_T = \min \chi_-(S),$$

where the minimum is taken over oriented embedded surfaces $(S, \partial S) \subset (M, \partial M)$ such that the class of S in $H_2(M, \partial M; \mathbb{Z})$ is dual to ψ .

Elements of $H^1(M; \mathbb{Z})$ are canonically associated with epimorphisms

$$\pi_1(M;\mathbb{Z}) \to \mathbb{Z}$$

which factor through epimorphisms

$$H_1(M; \mathbb{Z}) \to \mathbb{Z}$$
.

Thus, we have a lattice $\Lambda_M \subset \mathbb{R}^{b_1(M)}$ equal to any of the following naturally identified objects.

$$\mathrm{H}^1(M;\mathbb{Z}) = \mathrm{Hom}(\pi_1(M) \to \mathbb{Z}) = \mathrm{Hom}(\mathrm{H}_1(M;\mathbb{Z}),\mathbb{Z}).$$

If $\psi \in \Lambda_M$ is induced by a fibration

$$M \to S^1$$

we say that ψ is fibered. In this case,

$$||\psi||_T = \chi_{-}(S),$$

where S is the fiber of ψ . The monodromy of ψ is the mapping class $\phi: S \to S$, such that M is the mapping torus of ϕ , and ψ is the natural projection to S^1 . Since M is hyperbolic, ϕ is automatically pseudo-Anosov.

Let Σ be the unit sphere in $\mathbb{R}^{b_1(M)}$ with respect to the extended Thurston norm. Then Σ is a polyhedron and Λ_M projects to a dense subset of Σ , called the *rational points* of Σ . The fibered elements of Λ_M project to the (open) faces of Σ . The faces that contain images of fibered elements are called *fibered faces*. Any element that projects to a fibered face is fibered.

Let $\psi \in \Lambda_M$ be a fibered element, and let ψ_0 be the element of Λ_M that lies closest to the origin along the ray containing ψ . Then

$$\psi = r(\psi_0),$$

for some positive integer r, and the fibration associated to ψ is obtained by taking the fibration associated to ψ_0 and composing with the r-cyclic covering of S^1 . It follows that ψ_0 has connected fibers, while the fibers of ψ have r-connected components. Such elements ψ_0 are called primitive elements. The dilatation of the monodromy ϕ is given by

$$\lambda(\phi) = \lambda(\phi_0)^{1/r},$$

where ϕ_0 is the monodromy of the associated primitive element.

Theorem 2.1 ([Fri], Theorem E) There is a continuous function $\mathcal{Y}(\psi)$ defined on the entire fibered cone in $\mathbb{R}^{b_1(M)}$, so that if ψ is fibered with monodromy ϕ , then

$$\mathcal{Y}(\psi) = \frac{1}{\log(\lambda(\phi))}.$$

The function \mathcal{Y} is homogeneous of degree one, and is a concave function tending to zero along the boundary of the cone.

The Alexander polynomial Δ_M of M is a polynomial in $\mathbb{Z}[G]$, where $G = \mathrm{H}_1(M;\mathbb{Z})$. Each element $\psi \in \Lambda_M$ determines an epimorphism of \mathbb{Z} -modules:

$$\rho: \mathbb{Z}[G] \to \mathbb{Z}[t, t^{-1}],$$

where we identify $\mathbb{Z}[t,t^{-1}]$ with the group ring over $\mathbb{Z}=\mathrm{H}_1(S^1;\mathbb{Z})$. This defines a specialization

$$\Delta_{(M,\psi)} = \rho(\Delta_M) \in \mathbb{Z}[t, t^{-1}].$$

The polynomial $\Delta_{(M,\psi)}$ is the characteristic polynomial for the monodromy ϕ of ψ acting on $H_1(S;\mathbb{Z})$, where S is the fiber of ψ . Thus, the degree of the Alexander polynomial specialized to a particular ψ is the rank of $H_1(S;\mathbb{Z})$. This is called the Alexander norm of ψ . The homological dilatation of ϕ , that is, the spectral radius of the action of ϕ on $H_1(S;\mathbb{Z})$, is the maximum among norms of roots of $\Delta_{(M,\phi)}$. We denote the homological dilatation by $\lambda_{\text{hom}}(\phi)$.

The Teichmuller polynomial Θ associated to a fibered face of Σ_M is analogous to the Alexander polynomial. It is a polynomial in $\mathbb{Z}[G]$ such that for each ψ in the cone over the fibered face, the geometric dilatation $\lambda(\phi)$ of the monodromy is the largest real root of Θ specialized to ψ [McM1].

3 The mapping torus for the simplest pseudo-Anosov braid

We now look at a particular 3-manifold, and study properties of its fibrations. This example has also been studied in ([McM1] §11), and the first part of this section will be a review of what is found there.

Let $M = S^3 \setminus N(L)$, where L is the link drawn in two ways in Figure 1, and N(L) is a tubular neighborhood. As seen from the left diagram in Figure 1, M fibers over the circle with fiber a four

Figure 1: Two diagrams for the link 6^2 .

times punctured sphere S. Let $\psi \in \Lambda_M$ be the associated element. Let K_1 be the component of L passing through S, and let K_2 be the other component of L.

The monodromy ϕ of ψ is the composition of two Dehn twists determined by 180 degree rotations as drawn in FIgure 2, and has dilatation

$$\lambda(\phi) = \frac{3 + \sqrt{5}}{2}.$$

Its lift to a torus realizes δ_1 , and its dilatation is smallest possible for mapping classes defined on S. The associated braid β (which can be written as $\sigma_1 \sigma_2^{-1}$ with respect to the standard basis for the braid group) has been called the "simplest pseudo-Anosov braid" ([McM1] §11).

The Thurston norm and the Alexander norm both are given by

$$||(a,b)|| = \max\{2|a|, 2|b|\},\tag{2}$$

Figure 2: Braid monodromy associated to $\beta = \sigma_1 \sigma_2^{-1}$.

where $(a, b) \in H^1(M; \mathbb{Z})$ denotes the class that evaluates to a on the meridian μ_1 of K_1 and b on the meridian μ_2 of K_2 .

The lattice points Λ_M in the fibered cone (of points projecting to the fibered face) defined by $\psi = (0,1)$ is the set

$$\Psi = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : b > 0, -b < a < b\}$$

as shown in Figure 3. For the rest of this paper, we will only be concerned with the subset $\Psi_0 \subset \Psi$ consisting of elements of Ψ with connected fibers. Thus,

$$\Psi_0 = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : b > 0, -b < a < b, \gcd(a, b) = 1\}.$$

The elements of Ψ_0 are in one-to-one correspondence with the rational points on the fibered face defined by ψ , which can be thought of as the projectivization of Ψ .

Figure 3: Fibered cone Ψ containing $\psi = (0, 1)$.

The Alexander polynomial for L is given by

$$\Delta_L(x, u) = u^2 - u(1 - x - x^{-1}) + 1 \tag{3}$$

(see Rolfsen's table [Rolf]), and the Teichmuller polynomial is given by

$$\Theta_L(x,u) = u^2 - u(1+x+x^{-1}) + 1. \tag{4}$$

Specialization to the element $(a,b) \in H^1(M;\mathbb{Z})$ discussed in Section 2 is the same as plugging (t^a,t^b) into the equations for the Alexander and Teichmuller polynomials.

Proposition 3.1 If $(a,b) \in \Psi_0$, then the associated monodromy $\phi_{(a,b)}$ is pseudo-Anosov and its homological dilatation is the maximum norm among roots of the polynomial

$$\Delta_L(t^a, t^b) = t^{2b} - t^b(1 - t^a - t^{-a}) + 1,$$

and the geometric dilatation is the largest real root $\lambda_{(a,b)}$ of

$$\Theta_L(t^a, t^b) = t^{2b} - t^b(1 + t^a + t^{-a}) + 1.$$

Corollary 3.2 If $(a,b) \in \Psi_0$, then the associated monodromy $\phi_{(a,b)}$ is orientable if a is odd and b is even.

Proof. If a is odd and b is even, then the roots of $\Theta_L(t^a, t^b)$ are the negatives of the roots of $\Delta_L(t^a, t^b)$. This implies that the geometric and homological dilatations of $\phi_{(a,b)}$ are equal, and therefore $\phi_{(a,b)}$ is orientable.

Later in this section, we will show the converse of Corollary 3.2. First we consider how the monodromy behaves near the boundary of $S_{(a,b)}$.

Proposition 3.3 Let $\phi_{(a,b)}: S_{(a,b)} \to S_{(a,b)}$ be the monodromy associated to (a,b). The boundary components of $S_{(a,b)}$ consists of gcd(3,a) components coming from $T(K_1)$ and gcd(3,b) coming from $T(K_2)$. Thus, the total number of boundary components of $S_{(a,b)}$ is given by

$$\begin{cases} 2 & if \gcd(3, ab) = 1 \\ 4 & if 3 \ divides \ ab \end{cases}$$

Proof. The number of components in $T(K_i) \cap S_{(a,b)}$ is the index of the image of $\pi_1(T(K_i))$ in \mathbb{Z} under the composition of maps

$$\pi_1(T(K_i)) \to \pi_1(M) \to \mathbb{Z}$$

induced by inclusion and $\psi_{(a,b)}$.

For i = 1, 2, let ℓ_i be the longitude of K_i that is contractible in $S^3 \setminus K_i$. Then, for $T(K_1)$ we have

$$\psi_{(a,b)}(\mu_1) = a$$
 and $\psi_{(a,b)}(\ell_1) = 3\psi_{(a,b)}(\mu_2) = 3b$,

so the number of boundary components contributed by $T(K_1)$ is

$$\gcd(a,3b) = \gcd(3,a),$$

since we are assuming that gcd(a,b) = 1. The contribution of $T(K_2)$ is computed similarly.

Proposition 3.4 The genus of $S_{(a,b)}$, for $(a,b) \in \Psi_0$ is given by

$$\begin{split} g(S_{(a,b)}) &= |b| + \left(1 - \frac{\gcd(3,a) + \gcd(3,b)}{2}\right) \\ &= \begin{cases} |b| & \text{if 3 does not divide ab} \\ |b| - 1 & \text{if 3|a or 3|b.} \end{cases} \end{split}$$

Proof. From (2) we have

$$2|b| = \chi_{-}(S_{(a,b)}) = 2g - 2 + \gcd(3,a) + \gcd(3,b).$$

Figure 4: Train track for $\phi: S \to S$.

Proposition 3.5 Let $(a,b) \in \Psi_0$, and let \mathcal{F} be a $\phi_{(a,b)}$ -invariant foliation. Then \mathcal{F}

- (i) has no interior singularities,
- (ii) has $(3b/\gcd(3,a))$ -pronged at the $\gcd(3,a)$ boundary components coming from $T(K_1)$, and
- (iii) has $(b/\gcd(3,b))$ -pronged at the $\gcd(3,b)$ boundary components coming from $T(K_2)$.

Proof. Let \mathcal{L} be the lamination of M defined by suspending \mathcal{F} over M considered as the mapping torus of ϕ . From the train track for ϕ (Figure 4), one sees that each of the boundary components of S are one-pronged, and that there are no other singularities. It follows that \mathcal{L} has no singularities outside a neighborhood of the K_i , and near each K_i the leaves of \mathcal{L} come together at a simple closed curve $\gamma_i \in H_1(T(K_i))$. Write

$$\gamma_i = r_i \mu_i + s_i \ell_i$$

for i = 1, 2.

For $(a,b) \in \Psi_0$, the number of intersections of γ_i with $S_{(a,b)}$ is the image of γ_i under the epimorphism

$$\psi_{(a,b)}:\pi_1(M)\to\mathbb{Z}$$

defining the fibration. Figure 4 shows that $s_1 = 1$ and $r_2 = 1$. Using the identities

$$s_1 = 1$$
 $\lambda_1 = 3\mu_2,$
 $r_2 = 1$ $\lambda_2 = 3\mu_1,$

we have

$$\psi_{(a,b)}(\gamma_1) = r_1 \psi_n(\mu_1) + 3\psi_n(\mu_2) = r_1 a + 3b$$

$$\psi_{(a,b)}(\gamma_2) = \psi_n(\mu_2) + 3s_2 \psi_n(\mu_1) = 3s_2 a + b.$$

This implies that $\phi_{(a,b)}$ is $(r_1a+3b)/m_1$ -pronged at m_1 boundary components and $(3s_2a+b)/m_2$ -pronged at m_2 boundary components. We find r_1 and s_2 by looking at some particular examples.

In general, if $f: \Sigma \to \Sigma$ is pseudo-Anosov on a compact oriented surface Σ with genus g and and n_1, \ldots, n_k are the number of prongs at the singularities and boundary components, then by the Poincaré-Hopf theorem

$$\sum_{i=1}^{k} (n_i - 2) = 4g - 4. \tag{5}$$

For (a,b) = (1,n), n not divisible by 3, we have two singularities with number of prongs given by:

$$\psi_n(\gamma_1) = r_1 + 3n$$

$$\psi_n(\gamma_2) = 3s_2 + n.$$

Plugging into (5) gives

$$r_1 + 3s_2 = 0.$$

Let $s = s_2$. The mapping class $\phi_{(1,2)}$ is the unique genus 2 pseudo-Anosov mapping class with dilatation equal to λ_2 [CH][LT], and has one 6-pronged singularity (see, for example, [HK]). Thus, s = 0 and we have

$$\gamma_1 = \ell_1 = 3\mu_2$$

and

$$\gamma_2 = \mu_2$$
.

The claim follows.

Corollary 3.6 The map $\phi_{(a,b)}$ has singularities with number of prongs (or prong-type) given by

$$\begin{cases} (3b, b) & \text{if } \gcd(3, ab) = 1\\ (3b, b/3, b/3, b/3) & \text{if } \gcd(3, b) = 3\\ (b, b, b, b) & \text{if } \gcd(3, a) = 3 \end{cases}$$

Corollary 3.7 If b is odd, then $\phi_{(a,b)}$ is not orientable.

Proof. By Corollary 3.6, the number of prongs at each boundary component is odd if b is odd. Thus, $\phi_{(a,b)}$ is not locally orientable near the boundary components.

Corollary 3.8 For $(a,b) \in \Psi_0$, $\phi_{(a,b)}$ is 1-pronged at one or more boundary components of $S_{(a,b)}$ if and only if $(a,b) \in \{(0,1), (\pm 1,3), (\pm 2,3)\}$.

Corollary 3.9 If $(a,b) \notin \{(0,1), (\pm 1,3), (\pm 2,3)\}$, then $\phi_{(a,b)}$ extends to the closure of $S_{(a,b)}$ over the boundary components to a mapping class $\overline{\phi}_{(a,b)}$ with the same dilatation as $\phi_{(a,b)}$.

Proposition 3.10 Table 2 below describes the pairs $(a,b) \in \Psi_0$ that give rise to an orientable (or non-orientable) genus g pseudo-Anosov mapping class. (Here $g \ge 4$.)

$g \pmod{6}$	orientable	non-orientable
0	no example	$b = g + 1, a = 0 \pmod{3}$
1	$b = g + 1, \ a = 3 \pmod{6}$	$b = g, a = 1, 2 \pmod{3}$
2	$b = g, a = 1, 5 \pmod{6}$	$b = g + 1, a = 1, 2 \pmod{3}$
3	$b = g + 1, \ a = 3 \pmod{6}$	no example
4	$b = g, \ a = 1, 5 \pmod{6}$	$b = g + 1, a = 0 \pmod{3}$
5	$b = g + 1, a = 1, 5 \pmod{6}$	$b = g, a = 1, 2 \pmod{3}$

Table 2: Fibrations of M according to genus.

4 Minimal dilatations for the fibered face.

Let Ψ_0 be the fibered cone discussed in Section 3. Let

 $\begin{array}{lll} d_g &=& \min\{\lambda(\psi): \psi \in \Psi_0, \text{genus of } \psi \text{ is } g\}, \text{and} \\ d_g^+ &=& \min\{\lambda(\psi): \psi \in \Psi_0, \text{genus of } \psi \text{ is } g, \text{ the monodromy of } \psi \text{ is orientable}\}. \end{array}$

In this section, we finish the proofs of Theorem 1.3 and Theorem 1.4 and their consequences by determining d_g and d_g^+ .

Proposition 4.1 Let $(a,b) \in \Psi_0$. Then

$$\lambda_{(a,b)} < \lambda_{(a',b')}$$

if either

(1)
$$|a| < |a'|$$
 and $|b| = |b'|$; or

(2)
$$|a| = |a'|$$
 and $|b| > |b'|$.

Proof. One compares the slopes of rays from the origin to (a,b) and (a',b'). The claim follows from Theorem 2.1.

Proposition 4.2 For $b \geq 3$, we have

$$\lambda_{(1,b)} \geq \lambda_{(3,b+1)}$$
,

with equality when b = 3.

Proof. Let $\lambda = \lambda_{(3,b+1)}$. We will show that $LT_{(1,b)}(\lambda) < 0$. Multiplying by λ^2 and using the fact that $LT_{(3,b+1)}(\lambda) = 0$ gives

$$\begin{split} \lambda^2 L T_{(1,b)}(\lambda) &= \lambda^2 L T_{(1,b)}(\lambda) - L T_{(3,b+1)}(\lambda) \\ &= \lambda^{b+4} - \lambda^{b+3} - \lambda b + 2 + \lambda^{b-2} + \lambda^2 - 1 \\ &= (\lambda - 1)(\lambda^{b+3} - \lambda^{b-2}(\lambda^3 + \lambda^2 + \lambda + 1) + \lambda + 1) \\ &= (\lambda - 1)\lambda^{b-2}[\lambda^5 - \lambda^3 - \lambda^2 - \lambda - 1 + \lambda^{2-b}(\lambda + 1)]. \end{split}$$

Thus, it is enough to show that

$$C = \lambda^5 - \lambda^3 - \lambda^2 - \lambda - 1 + \lambda^{2-b}(\lambda + 1) < 0.$$

Since $\lambda > 1$ and $b \ge 3$, we have

$$C < \lambda^5 - \lambda^3 - \lambda^2 = \lambda^2(\lambda^3 - \lambda - 1).$$

One can check that the right hand side is negative for $\lambda < 1.3$. By Proposition 4.1, λ decreases as b increases. A check shows that $\lambda_{(3,5)} < 1.3$, and hence C < 0 for $b \ge 4$. For b = 3, one checks directly that

$$\lambda_{(1,3)} = \lambda_{(3,4)}.$$

Remark 4.3 The mapping class $\phi_{(1,3)}$ is defined on a genus 2 surface with four boundary components, with prong-type (3,1,1,1). The mapping class $\phi_{(3,4)}$ is defined on a genus 3 surface with prong-type (4,4,4,4). By Proposition 4.2 these two examples have the same dilatation.

Putting together Proposition 4.1 and Proposition 4.2, we have the following.

Corollary 4.4 The sequences $\lambda_{(1,b)}$ and $\lambda_{(3,b)}$ satisfy:

$$\lambda_{(1,b)} > \lambda_{(3,b+1)} > \lambda_{(1,b+1)}.$$

Lemma 4.5 For $n \geq 2$, Then

$$\lim_{n\to\infty} (\lambda_{(a,n)})^n = \frac{3+\sqrt{5}}{2},$$

for any fixed a.

Proof. The projections of the lattice points $(a, n) \in \Lambda_M$ on the fibered face of ψ converge to (0, 1/2).

Corollary 4.6 For the minimal dilatations d_g and d_g^+ that are realized on M, we have

$$\lim_{g \to \infty} (d_g)^g = \lim_{g \to \infty} (d_g^+)^g = \frac{3 + \sqrt{5}}{2}.$$

Proposition 4.7 The following table describes the pairs $(a,b) \in \Psi_0$ that give rise to the minima d_g and d_q^+ realized on M. Here unconstrained means not constrained to be orientable.

$g \mod 6$	$\lambda(\phi_{(a,b)}) = d_g^+, \ \phi_{(a,b)} \ orientable$	$\lambda(\phi_{(a,b)}) = d_g$
0	$no\ example$	(3, g+1)
1	(3, g+1)	(3, g+1)
2	(1,g)	(1, g+1)
3	(3, g+1)	(3, g+1)
4	(1,g)	(3, g+1)
5	(1, g + 1)	(1, g + 1)

Table 3: Pairs (a,b) giving smallest dilatations.

Proposition 4.7 and Corollary 3.9 complete the proofs of Theorem 1.3 and Theorem 1.4. A pictorial view of how the elements of Ψ giving the least dilatations for each genus up to 12 lie on the "atlas" for M is shown in Figure 5.

Figure 5: Minima for d and d^+ in genus $g = 1, \ldots, 12$.

References

- [AY] P. Arnoux and J. Yoccoz. Construction de difféomorphisms pseudo-Anosov. C. R. Acad. Sci. Paris 292 (1980), 75–78.
- [CB] A. Casson and S. Bleiler. Automorphisms of surfaces after Nielsen and Thurston. Cambridge University Press, 1988.
- [CH] J. Cho and J. Ham. The minimal dilatation of a genus two surface. *Experiment. Math.* 17 (2008), 257–267.
- [Far] B. Farb. Some Problems on mapping class groups and moduli space. In Problems on Mapping Class Groups and Related Topics, volume 74 of Proc. Symp. Pure and Applied Math., pages 10–58. 2006.
- [FLM] B. Farb, C. Leininger, and D. Margalit. Small dilatation pseudo-Anosovs and 3-manifolds. *Preprint* (2009).
- [FLP] A. Fathi, F. Laudenbach, and V. Poenaru. *Travaux de Thurston sur les surfaces*, volume 66-67. Société Mathématique de France, Paris, 1979.
- [Fri] D. Fried. Growth Rate of surface homeomorphisms and flow equivalence. *Comment. Math. Helvetici* **57** (1982), 237–259.
- [Hir] E. Hironaka. The Lehmer Polynomial and Pretzel Knots. Bulletin of Canadian Math. Soc. 44 (2001), 440–451.

- [HK] E. Hironaka and E. Kin. A family of pseudo-Anosov braids with small dilatation. *Algebr. Geom. and Topol.* **6** (2006), 699–738.
- [Iva] N.V. Ivanov. Coefficients of expansion of pseudo-Anosov braids with small dilatation. J. Soviet Math. (transl) **52** (1990), 2819–2822.
- [KT] E. Kin and M. Takasawa. Pseudo-Anosov braids with small entropy and the magic 3-manifold. *Preprint* (2008).
- [LT] E. Lanneau and J-L Thiffeault. On the minimum dilatation of pseudo-Anosov homeomorphisms on surfaces of small genus. *Preprint* (2009).
- [Lei] C. Leininger. On groups generated by two positive multi-twists: Teichmuller curves and Lehmer's number. Geometry & Topology 88 (2004), 1301–1359.
- [McM1] C. McMullen. Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations. Ann. Sci. École Norm. Sup. 33 (2000), 519–560.
- [McM2] C. McMullen. The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology. Ann. Scient. Éc. Norm. Sup. 35 (2002), 153–171.
- [Min] H. Minakawa. Examples of pseudo-Anosov homeomorphisms with small dilatations. *J. Math. Sci. Univ. Tokyo* **13** (2006), 95–111.
- [Pen] R. Penner. Bounds on least dilatations. *Proceedings of the A.M.S.* **113** (1991), 443–450.
- [Rolf] D. Rolfsen. Knots and Links. Publish or Perish, Inc., Berkeley, 1976.
- [Thu1] W. Thurston. A norm for the homology of 3-manifolds. Mem. Amer. Math. Soc. 339 (1986), 99–130.
- [Thu2] W. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces. *Bull. Amer. Math. Soc.* (N.S.) **19** (1988), 417–431.
- [Zhi] A. Y. Zhirov. On the minimum dilatation of pseudo-Anosov diffeomorphisms on a double torus. *Uspekhi Mat. Nauk* **50** (1995), 297–198.

Eriko Hironaka Department of Mathematics Florida State University Tallahassee, FL 32306-4510 U.S.A.