Links in S^3 of S^1 -category 2

J. C. Gómez-Larrañaga^{*} F. González-Acuña[†]

Wolfgang Heil[‡]

July 30, 2009

Abstract

A non-splittable link of $S^1\mbox{-}category \ 2$ is a Burde-Murasugi link. $^{1-2}$

1 Introduction

A subset W in an n-manifold M is S^1 -contractible if there are maps $f: W \to S^1$ and $\alpha: S^1 \to M$ such that the inclusion map $i: W \to M$ is homotopic to $\alpha \cdot f$. The S^1 -category $cat_{S^1}M$ of M is the smallest number of sets, open and S^1 contractible needed to cover M. Note that if M is closed, $2 \leq cat_{S^1}M \leq n+1$.

For dimension 3 it was shown in [3] that a closed 3-manifold M^3 has $cat_{S^1}M^3 = 2$ if and only if $\pi_1(M^3)$ is cyclic. By results of Olum [7] and Perelman [6] this implies that $cat_{S^1}M^3 = 2$ if and only if M^3 is a lens space or M^3 is the non-orientable S^2 -bundle over S^1 .

In this paper we consider the question of S^1 -category for knot spaces and more generally for compact irreducible 3-manifolds with boundary. Note that if $\partial M \neq \emptyset$ and $cat_{S^1}M^3 = 1$ then $\pi_1(M)$ is trivial or cyclic and it follows from [6] that M is a ball, a solid torus or a solid Kleinbottle. Our main result is that an orientable and irreducible 3-manifold M with $cat_{S^1}M^3 = 2$ is a Seifert fiber space with handles and at most 2 exceptional fibers. In particular M can then be obtained from two solid tori by glueing their boundaries along incompressible annuli and disks. As a corollary we obtain that the space of a non-splittable

^{*}Centro de Investigación en Matemáticas, A.P. 402, Guanajuato 36000, G
to. México. jcarlos@cimat.mx

[†]Instituto de Matemáticas, UNAM, Ciudad Universitaria, 04510 México, D.F. México and Centro de Investigación en Matemáticas, A.P. 402, Guanajuato 36000, Gto. México. fico@math.unam.mx

 $^{^{\}ddagger} \mathrm{Department}$ of Mathematics, Florida State University, Tallahasee, FL 32306, USA. heil@math.fsu.edu

¹AMS classification numbers: 57N10, 57N13, 57N15, 57M30

 $^{^2{\}rm Key}$ words and phrases: Lusternik-Schnirelmann category, coverings of manifolds with open $S^1\text{-}{\rm contractible}$ subsets, torus knots

link L in S^3 has S^1 -category 2 if and only if L is a Burde-Murasugi link different from the trivial knot. (For the definition of Burde-Murasugi link see section 3 and [1]).

2 Irreducible and incompressible S¹-contractible submanifolds.

When $cat_{S^1}M = 2$, there are two open subsets W_0 , W_1 of M such that $M = W_0 \cup W_1$ and for i = 0, 1, there are maps f_i and α_i such that the inclusion $W_i \hookrightarrow M$ is homotopic to $\alpha_i \cdot f_i$. Note that a compact 3-submanifold of an S^1 -contractible subset is S^1 -contractible.

In [3] (Corollary 1) it was shown that the open sets W_i can be replaced by compact submanifolds meeting only along their boundaries (the hypothesis that M be closed is not used in the proof):

Proposition 1. Let M be an n-manifold with $\operatorname{cat}_{S^1} M = 2$. Then M can be expressed as a union of two compact S^1 -contractible n-submanifolds W_0 , W_1 such that $W_0 \cap W_1 = \partial W_0 \cap \partial W_1$ is a properly embedded (n-1)-submanifold F.

From now on we assume that $M = W_0 \cup W_1$ is a compact 3-manifold, where W_0 and W_1 are S^1 -contractible 3-submanifolds as in Proposition 1; so there are maps f_i and α_i such that the diagram (*) is homotopy commutative.

Proposition 2. For i = 0, 1, we can take α_i so that $\alpha_i(S^1) \cap F = \emptyset$.

Proof. This is proposition 1 of [3]. (The hypothesis that M be closed is not used in the proof).

Lemma 1. Suppose that M is a compact, orientable, irreducible and $\partial M \neq \emptyset$. Then there is a decomposition $M = W_0^* \cup W_1^*$ where W_0^* and W_1^* are S^1 -contractible 3-submanifolds as in Proposition 1 such that every component F^* of $W_0^* \cap W_1^*$ is incompressible in W_0^* and W_1^* or a 2-sphere.

Proof. Suppose there is a compressing disk $D \subset W_0$, $\partial D = D \cap \partial W_0$ not $\simeq 0$ on ∂W_0 . For a regular neighborhood U(D) in W_0 let $W'_0 = W_0 - N(D)$, $W'_1 = W_1 \cup N(D)$. Then $W'_0 \subset W_0$ is S^1 -contractible and we claim that W'_1 is S^1 -contractible as well.

Consider the diagram (*) for W_1 with a homotopy $H : W_1 \times I \to M$ from $\alpha_1 f_1$ to the inclusion. Extend H to $D \times 1$ by inclusion. For a loop t representing

a generator of $\pi_1(S^1)$ we have $f_1(\partial D) \simeq t^m$ for some integer m.

If $f_1(\partial D) \simeq 0$ then f_1 extends to $f'_1 : W'_1 \to S^1$ and we define H on $D \times 0$ to be $\alpha_1 f'_1$. Now H is defined on $W_1 \times I \cup (D \times \partial I) \cup (\partial D \times I)$ and since $\pi_2(M) = 0$, H can be extended to $H' : W'_1 \times I \to M$, which is a homotopy from $\alpha_1 f'_1$ to the inclusion.

If $f_1(\partial D)$ is not homotopic to 0 then since $\alpha_1 f_1(\partial D) \simeq 0$ it follows that $\alpha_1(t^m) \simeq 0$. Since M is aspherical, $\pi_1(M)$ is torsion free. Hence $\alpha_1(t) \simeq 0$ and we can replace α_1 and hence f_1 in diagram (*) by a constant map. Then extending f_1 and H by the constant map on $D \times 0$ we can again extend H to H' since $\pi_2(M) = 0$.

For the new decomposition $M = W'_0 \cup W'_1$ into S^1 -contractible subspaces the Euler characteristic $-\kappa(W'_0 \cap W'_1) < -\kappa(W_0 \cap W_1)$. Hence the Lemma follows.

Lemma 2. Suppose that M is compact, orientable, irreducible and $\partial M \neq \emptyset$. Then there is a decomposition $M = W_0 \cup W_1$ as in Lemma 1 and such that each component of W_0 and W_1 is irreducible.

Proof. Let $M = W_0 \cup W_1$ be as in Lemma 1 such that the sum $c(W_0, W_1)$ of the number of components of W_0 and W_1 is minimal.

Suppose there is a 2-sphere Σ in a component W_0^i of W_0 that does not bound a ball in W_0^i . Let B be the ball in M bounded by Σ , let $W' = \overline{W_0^i - W_0^i \cap B}$, and let $W'' = W' \cup B$. Then W' is S^1 -contractible and we have maps f', α' as in (*) with a homotopy $H: W' \times I \to M$ from $\alpha' f'$ to the inclusion. f' can be extended to $f'': W'' \to S^1$ and we get a homotopy $H: W' \times I \cup (B \times \partial I) \cup (\partial B \times I) \to M$. Since $\pi_3(M) = 0$, H can be extended to $H: W'' \times I \to M$. Now let W'_0 be obtained from W_0 by replacing the component W_0^i with W'' and let W'_1 be obtained from W_1 by deleting all components that lie in B. Note that $M = W'_0 \cup W'_1$ is as in Lemma 1 and $c(W'_0, W'_1) < c(W_1, W_1)$, contradicting minimality.

Corollary 1. Suppose that M is compact, orientable, irreducible and $\partial M \neq \emptyset$. If $\operatorname{cat}_{S^1}(M) = 2$ then there is a decomposition $M = W_0 \cup W_1$ such that $W_0 \cap W_1 = \partial W_0 \cap \partial W_1$ and every component of W_0 and W_1 is a ball or a solid torus. Furthermore each component of $W_0^i \cap W_1^j$ is incompressible in both W_0^i and W_1^j .

Proof. By lemmas 1 and 2 we may assume that every component of W_0 and W_1 is irreducible and every component of $W_0 \cap W_1$ is incompressible in W_0 and W_1 . It follows that that for each component W_l^k of W_k the inclusion induces an injection $\pi_1(W_l^k) \to \pi_1(M)$. Since each W_l^k is S^1 -contractible, $im(\pi_1(W_l^k) \to \pi_1(M))$ is cyclic. Hence W_l^k is irreducible with trivial or infinite cyclic fundamental group and the Lemma follows.

3 Main Theorem

By a *Seifert fiber space with handles* we mean a 3-manifold that is a Seifert fiber space or is obtained from a Seifert fiber space by attaching 1-handles along the boundary.

Theorem 1. (a) A compact, orientable, irreducible 3-manifold with S^1 -category 2 is a Seifert fiber space with handles and with at most two exceptional fibers.

(b) A Seifert fiber space with handles and with at most two exceptional fibers has S^1 -category ≤ 2 .

Proof. (a) If M is closed then by [3] $\pi_1(M)$ is cyclic and by Perelman ([6]) Mis a lens space. Thus assume $\partial M \neq \emptyset$. By Corollary 1, $M = W_0 \cup W_1$ such that $W_0 \cap W_1 = \partial W_0 \cap \partial W_1$ and every component of W_0 and W_1 is a ball or solid torus and each component of $W_0^i \cap W_1^j$ is a disk or an annulus, incompressible in both W_0^i and W_1^j . Let N be a regular neighborhood of the disk components of $W_0 \cap W_1$ and let B be the union of the ball components of W_0 and W_1 . We choose a Seifert fibration of the solid torus components of W_0 and W_1 such that $M' = \overline{M - (N \cup B)}$ is a Seifert fiber space (not necessarily connected) and M is obtained from M' by attaching 1-handles. Hence M is a "Seifert web" (see [4]) of the form $M = S_1 \cup \cdots \cup S_n \cup H$, where the S_i 's are disjoint Seifert fiber spaces obtained from solid torus components of W_0 and W_1 by identifying along essential annuli, H is a collection of 1-handles, and $H \cap (S_1 \cup \cdots \cup S_n)$ is a collection of disks.

We first show that M is a Seifert fiber space with handles.

If every S_i is a solid torus then M is a handlebody and we can think of M as being a Seifert fiber space S_1 with handles. Thus assume at least one S_i is not a solid torus. Then we may assume that no S_i is a solid torus, otherwise we put it together with H. Hence each S_i contains solid torus components of both W_0 and W_1 . We show that n = 1.

Assume n > 1 and let $\beta = \alpha_0(S^1) \subset W_i^j$ (i = 0 or 1) and let $W_i^j \subset \overline{M - S_1}$, say. Let $W_0^k \subset S_1$ be a solid torus component of W_0 and let γ represent a generator of $\pi_1(W_0^k)$. Since $S_1 \cap \overline{M - S_1}$ consists of disks, $H_1(S_1 \cap \overline{M - S_1}) \to H_1(S_1)$ is not onto and so γ is not 0 in $H_1(S_1, S_1 \cap \overline{M - S_1})$. Now $\gamma \simeq \alpha_0 f_0 \gamma \simeq \beta^m$ for some $m \in \mathbb{Z}$ and so γ is 0 in $H_1(M, \overline{M - S_1})$. By excision, inclusion induces an isomorphism $H_1(S_1, S_1 \cap \overline{M - S_1}) \to H_1(M, \overline{M - S_1})$, a contradiction.

We complete the proof by showing that at most one solid torus component of W_0 and at most one solid torus component of W_1 is exceptionally fibered.

First assume $\beta = \alpha_0(S^1) \subset W_0^j \subset W_0$. Suppose some W_0^i for $i \neq j$ is exceptionally fibered with exceptional fiber γ of multiplicity q > 1. It follows that $H_1(W_0^i \cap \overline{M - W_0^i}) \to H_1(W_0^i)$ is not onto and so γ is not 0 in $H_1(W_0^i, W_0^i \cap \overline{M - W_0^i})$. As before $\gamma \simeq \beta^m$ is 0 in $H_1(M, \overline{M - W_0^i})$ and inclusion induces an isomorphism $H_1(W_0^i, W_0^i \cap \overline{M - W_0^i}) \to H_1(M, \overline{M - W_0^i})$, a contradiction.

Hence W_0^j is the only component of W_0 that could be exceptionally fibered.

Now assume $\beta = \alpha_0(S^1) \subset W_1$.

The above argument shows that in this case no component of W_0 is exceptionally fibered.

The same proof applies to the components of W_1 .

(b) Let $M = S \cup H$ be a Seifert fiber space with handles and with at most two exceptional fibers. Decompose the orbit surface of S into two disks D_0 , D_1 , each with at most one exceptional point and $D_0 \cap D_1 = \partial D_0 \cap \partial D_1$ (see e.g. [5]). Then $S = V_0 \cap V_1$, where V_i is the solid torus corresponding to D_i . For each handle $H_k \approx D^2 \times [-1, 1]$ whose ends $D^2 \times \{-1\}$ and $D^2 \times \{1\}$ are attached to V_i and V_{1-i} resp., replace V_i by the solid torus $V_i \cup D^2 \times [-1, 0]$ and V_{1-i} by $V_{1-i} \cup D^2 \times [0, 1]$. Then let $W_i = V_i \cup$ all handles for which both ends are attached to V_{1-i} . Now $M = W_0 \cup W_1$ and each W_i is S^1 -contractible.

Corollary 2. Let M be a compact, orientable, irreducible 3-manifold with $H_1(M) = \mathbb{Z}$. If $\operatorname{cat}_{S^1}(M) = 2$ then M is a Seifert fiber space with orbit surface a disk and at most 2 exceptional fibers.

Proof. M is not closed since otherwise M would be a lens space. Since $H_1(M) = \mathbb{Z}$ the boundary of M is a torus. By Theorem 1, M is a Seifert fiber space with at most two exceptional fibers. The projection of M to the orbit surface \overline{M} induces an epimorphism $H_1(M) \to H_1(\overline{M})$ and it follows that \overline{M} is a disk.

We say that a link L in S^3 that is not the unlink of more than one component is a *Burde-Murasugi link* if the components of L can be chosen to be fibers of some Seifert fibration of S^3 , including the singular fibration and its unknotted circle (see [1]). Such a link is non-splittable and the components are components of a torus link on the boundary of an unknotted solid torus V in S^3 , possibly together with the core curve of V and a curve isotopic to a meridian curve of V.

We say that a link $L \subset S^3$ is of S^1 -category m if its space $\overline{S^3 - N(L)}$ has S^1 -category m.

Corollary 3. (a) A non-splittable link L of at least two components in S³ has S¹-category 2 if and only if L is a Burde-Murasugi link.
(b) A knot in S³ has S¹-category 2 if and only if it is a non-trivial torus knot.

Proof. The trivial knot has S^1 -category 1. In any other case, since L is non-splittable, $M = \overline{S^3 - N(L)}$ is irreducible. If L is of S^1 -category 2 then by Theorem 1, M a Seifert fiber space and the result follows from [1] and [2]. Conversely the complements of these links are Seifert fiber-spaces with at most two exceptional fibers.

References

- G. Burde and K. Murasugi, *Links and Seifert Fiber Spaces*, Duke Math. J. (1970), 89–93.
- [2] G. Burde and H. Zieschang, Eine Kennzeichnung der Torus Knoten, Math. Ann. (1966), 169–176.
- [3] J. C. Gómez-Larrañaga, F. González-Acuña and Wolfgang Heil, Fundamental groups of manifolds with S¹-category 2, Math. Z. 259 (2008), 419–432.
- [4] J.C. Gómez-Larrañaga and Wolfgang H. Heil, Seifert unions of solid tori, Math. Z. 240 (2002), no. 4, 767–785.
- [5] J. C. Gómez-Larrañaga, W. Heil, V. Nuñez, Stiefel-Whitney surfaces and decompositions of 3-manifolds into handlebodies, Topology Appl. 60 (1994), 267-280
- [6] John Morgan and Gang Tian, Ricci Flow and the Poincarè Conjecture, AMS Clay Math. Monographs, vol 3 (2007).
- [7] Paul Olum, Mappings of manifolds and the notion of degree, Ann. of Math.
 (2) 58, (1953). 458–480