Links in S^{3} of S^{1}-category 2

J. C. Gómez-Larrañaga*
F. González-Acuña ${ }^{\dagger}$
Wolfgang Heil ${ }^{\ddagger}$

July 30, 2009

Abstract

A non-splittable link of S^{1}-category 2 is a Burde-Murasugi link. ${ }^{1}{ }^{2}$

1 Introduction

A subset W in an n-manifold M is S^{1}-contractible if there are maps $f: W \rightarrow S^{1}$ and $\alpha: S^{1} \rightarrow M$ such that the inclusion map $i: W \rightarrow M$ is homotopic to $\alpha \cdot f$. The S^{1}-category cat $_{S^{1}} M$ of M is the smallest number of sets, open and S^{1} contractible needed to cover M. Note that if M is closed, $2 \leq c a t_{S^{1}} M \leq n+1$.

For dimension 3 it was shown in [3] that a closed 3-manifold M^{3} has cat ${S^{1}} M^{3}=$ 2 if and only if $\pi_{1}\left(M^{3}\right)$ is cyclic. By results of Olum [7] and Perelman [6] this implies that $\operatorname{cat}_{S^{1}} M^{3}=2$ if and only if M^{3} is a lens space or M^{3} is the nonorientable S^{2}-bundle over S^{1}.

In this paper we consider the question of S^{1}-category for knot spaces and more generally for compact irreducible 3 -manifolds with boundary. Note that if $\partial M \neq \emptyset$ and $\operatorname{cat}_{S^{1}} M^{3}=1$ then $\pi_{1}(M)$ is trivial or cyclic and it follows from [6] that M is a ball, a solid torus or a solid Kleinbottle. Our main result is that an orientable and irreducible 3 -manifold M with $\mathrm{cat}_{S^{1}} M^{3}=2$ is a Seifert fiber space with handles and at most 2 exceptional fibers. In particular M can then be obtained from two solid tori by glueing their boundaries along incompressible annuli and disks. As a corollary we obtain that the space of a non-splittable

[^0]link L in S^{3} has S^{1}-category 2 if and only if L is a Burde-Murasugi link different from the trivial knot. (For the definition of Burde-Murasugi link see section 3 and [1]).

2 Irreducible and incompressible S^{1}-contractible submanifolds.

When $\operatorname{cat}_{S^{1}} M=2$, there are two open subsets W_{0}, W_{1} of M such that $M=$ $W_{0} \cup W_{1}$ and for $i=0,1$, there are maps f_{i} and α_{i} such that the inclusion $W_{i} \hookrightarrow M$ is homotopic to $\alpha_{i} \cdot f_{i}$. Note that a compact 3 -submanifold of an S^{1}-contractible subset is S^{1}-contractible.

In [3] (Corollary 1) it was shown that the open sets W_{i} can be replaced by compact submanifolds meeting only along their boundaries (the hypothesis that M be closed is not used in the proof):

Proposition 1. Let M be an n-manifold with cat $_{S^{1}} M=2$. Then M can be expressed as a union of two compact S^{1}-contractible n-submanifolds W_{0}, W_{1} such that $W_{0} \cap W_{1}=\partial W_{0} \cap \partial W_{1}$ is a properly embedded $(n-1)$-submanifold F.

From now on we assume that $M=W_{0} \cup W_{1}$ is a compact 3-manifold, where W_{0} and W_{1} are S^{1}-contractible 3 -submanifolds as in Proposition 1; so there are maps f_{i} and α_{i} such that the diagram $(*)$ is homotopy commutative.

Proposition 2. For $i=0,1$, we can take α_{i} so that $\alpha_{i}\left(S^{1}\right) \cap F=\emptyset$.
Proof. This is proposition 1 of [3]. (The hypothesis that M be closed is not used in the proof).

Lemma 1. Suppose that M is a compact, orientable, irreducible and $\partial M \neq \emptyset$. Then there is a decomposition $M=W_{0}^{*} \cup W_{1}^{*}$ where W_{0}^{*} and W_{1}^{*} are S^{1} contractible 3-submanifolds as in Proposition 1 such that every component F^{*} of $W_{0}^{*} \cap W_{1}^{*}$ is incompressible in W_{0}^{*} and W_{1}^{*} or a 2 -sphere.

Proof. Suppose there is a compressing disk $D \subset W_{0}, \partial D=D \cap \partial W_{0}$ not $\simeq 0$ on ∂W_{0}. For a regular neighborhood $U(D)$ in W_{0} let $W_{0}^{\prime}=\overline{W_{0}-N(D)}$, $W_{1}^{\prime}=W_{1} \cup N(D)$. Then $W_{0}^{\prime} \subset W_{0}$ is S^{1}-contractible and we claim that W_{1}^{\prime} is S^{1}-contractible as well.

Consider the diagram $(*)$ for W_{1} with a homotopy $H: W_{1} \times I \rightarrow M$ from $\alpha_{1} f_{1}$ to the inclusion. Extend H to $D \times 1$ by inclusion. For a loop t representing
a generator of $\pi_{1}\left(S^{1}\right)$ we have $f_{1}(\partial D) \simeq t^{m}$ for some integer m.
If $f_{1}(\partial D) \simeq 0$ then f_{1} extends to $f_{1}^{\prime}: W_{1}^{\prime} \rightarrow S^{1}$ and we define H on $D \times 0$ to be $\alpha_{1} f_{1}^{\prime}$. Now H is defined on $W_{1} \times I \cup(D \times \partial I) \cup(\partial D \times I)$ and since $\pi_{2}(M)=0, H$ can be extended to $H^{\prime}: W_{1}^{\prime} \times I \rightarrow M$, which is a homotopy from $\alpha_{1} f_{1}^{\prime}$ to the inclusion.

If $f_{1}(\partial D)$ is not homotopic to 0 then since $\alpha_{1} f_{1}(\partial D) \simeq 0$ it follows that $\alpha_{1}\left(t^{m}\right) \simeq 0$. Since M is aspherical, $\pi_{1}(M)$ is torsion free. Hence $\alpha_{1}(t) \simeq 0$ and we can replace α_{1} and hence f_{1} in diagram $(*)$ by a constant map. Then extending f_{1} and H by the constant map on $D \times 0$ we can again extend H to H^{\prime} since $\pi_{2}(M)=0$.

For the new decomposition $M=W_{0}^{\prime} \cup W_{1}^{\prime}$ into S^{1}-contractible subspaces the Euler characteristic $-\kappa\left(W_{0}^{\prime} \cap W_{1}^{\prime}\right)<-\kappa\left(W_{0} \cap W_{1}\right)$. Hence the Lemma follows.

Lemma 2. Suppose that M is compact, orientable, irreducible and $\partial M \neq \emptyset$. Then there is a decomposition $M=W_{0} \cup W_{1}$ as in Lemma 1 and such that each component of W_{0} and W_{1} is irreducible.

Proof. Let $M=W_{0} \cup W_{1}$ be as in Lemma 1 such that the sum $c\left(W_{0}, W_{1}\right)$ of the number of components of W_{0} and W_{1} is minimal.

Suppose there is a 2 -sphere Σ in a component W_{0}^{i} of W_{0} that does not bound a ball in W_{0}^{i}. Let B be the ball in M bounded by Σ, let $W^{\prime}=\overline{W_{0}^{i}-W_{0}^{i} \cap B}$, and let $W^{\prime \prime}=W^{\prime} \cup B$. Then W^{\prime} is S^{1}-contractible and we have maps $f^{\prime}, \alpha^{\prime}$ as in (*) with a homotopy $H: W^{\prime} \times I \rightarrow M$ from $\alpha^{\prime} f^{\prime}$ to the inclusion. f^{\prime} can be extended to $f^{\prime \prime}: W^{\prime \prime} \rightarrow S^{1}$ and we get a homotopy $H: W^{\prime} \times I \cup(B \times \partial I) \cup(\partial B \times I) \rightarrow M$. Since $\pi_{3}(M)=0, H$ can be extended to $H: W^{\prime \prime} \times I \rightarrow M$. Now let W_{0}^{\prime} be obtained from W_{0} by replacing the component W_{0}^{i} with $W^{\prime \prime}$ and let W_{1}^{\prime} be obtained from W_{1} by deleting all components that lie in B. Note that $M=W_{0}^{\prime} \cup W_{1}^{\prime}$ is as in Lemma 1 and $c\left(W_{0}^{\prime}, W_{1}^{\prime}\right)<c\left(W_{)}, W_{1}\right)$, contradicting minimality.

Corollary 1. Suppose that M is compact, orientable, irreducible and $\partial M \neq$ \emptyset. If $\operatorname{cat}_{S^{1}}(M)=2$ then there is a decomposition $M=W_{0} \cup W_{1}$ such that $W_{0} \cap W_{1}=\partial W_{0} \cap \partial W_{1}$ and every component of W_{0} and W_{1} is a ball or a solid torus. Furthermore each component of $W_{0}^{i} \cap W_{1}^{j}$ is incompressible in both W_{0}^{i} and W_{1}^{j}.

Proof. By lemmas 1 and 2 we may assume that every component of W_{0} and W_{1} is irreducible and every component of $W_{0} \cap W_{1}$ is incompressible in W_{0} and W_{1}. It follows that that for each component W_{l}^{k} of W_{k} the inclusion induces an injection $\pi_{1}\left(W_{l}^{k}\right) \rightarrow \pi_{1}(M)$. Since each W_{l}^{k} is S^{1}-contractible, $i m\left(\pi_{1}\left(W_{l}^{k}\right) \rightarrow \pi_{1}(M)\right)$ is cyclic. Hence W_{l}^{k} is irreducible with trivial or infinite cyclic fundamental group and the Lemma follows.

3 Main Theorem

By a Seifert fiber space with handles we mean a 3-manifold that is a Seifert fiber space or is obtained from a Seifert fiber space by attaching 1-handles along the boundary.
Theorem 1. (a) A compact, orientable, irreducible 3-manifold with S^{1}-category 2 is a Seifert fiber space with handles and with at most two exceptional fibers.
(b) A Seifert fiber space with handles and with at most two exceptional fibers has S^{1}-category ≤ 2.

Proof. (a) If M is closed then by [3] $\pi_{1}(M)$ is cyclic and by Perelman ([6]) M is a lens space. Thus assume $\partial M \neq \emptyset$. By Corollary $1, M=W_{0} \cup W_{1}$ such that $W_{0} \cap W_{1}=\partial W_{0} \cap \partial W_{1}$ and every component of W_{0} and W_{1} is a ball or solid torus and each component of $W_{0}^{i} \cap W_{1}^{j}$ is a disk or an annulus, incompressible in both W_{0}^{i} and W_{1}^{j}. Let N be a regular neighborhood of the disk components of $W_{0} \cap W_{1}$ and let B be the union of the ball components of W_{0} and W_{1}. We choose a Seifert fibration of the solid torus components of W_{0} and W_{1} such that $M^{\prime}=\overline{M-(N \cup B)}$ is a Seifert fiber space (not necessarily connected) and M is obtained from M^{\prime} by attaching 1-handles. Hence M is a "Seifert web" (see [4]) of the form $M=S_{1} \cup \cdots \cup S_{n} \cup H$, where the S_{i} 's are disjoint Seifert fiber spaces obtained from solid torus components of W_{0} and W_{1} by identifying along essential annuli, H is a collection of 1-handles, and $H \cap\left(S_{1} \cup \cdots \cup S_{n}\right)$ is a collection of disks.

We first show that M is a Seifert fiber space with handles.
If every S_{i} is a solid torus then M is a handlebody and we can think of M as being a Seifert fiber space S_{1} with handles. Thus assume at least one S_{i} is not a solid torus. Then we may assume that no S_{i} is a solid torus, otherwise we put it together with H. Hence each S_{i} contains solid torus components of both W_{0} and W_{1}. We show that $n=1$.

Assume $n>1$ and let $\beta=\alpha_{0}\left(S^{1}\right) \subset W_{i}^{j}(i=0$ or 1$)$ and let $W_{i}^{j} \subset \overline{M-S_{1}}$, say. Let $W_{0}^{k} \subset S_{1}$ be a solid torus component of W_{0} and let γ represent a generator of $\pi_{1}\left(W_{0}^{k}\right)$. Since $S_{1} \cap \overline{M-S_{1}}$ consists of disks, $H_{1}\left(S_{1} \cap \overline{M-S_{1}}\right) \rightarrow H_{1}\left(S_{1}\right)$ is not onto and so γ is not 0 in $H_{1}\left(S_{1}, S_{1} \cap \overline{M-S_{1}}\right)$. Now $\gamma \simeq \alpha_{0} f_{0} \gamma \simeq \beta^{m}$ for some $m \in \mathbb{Z}$ and so γ is 0 in $H_{1}\left(M, \overline{M-S_{1}}\right)$. By excision, inclusion induces an isomorphism $H_{1}\left(S_{1}, S_{1} \cap \overline{M-S_{1}}\right) \rightarrow H_{1}\left(M, \overline{M-S_{1}}\right)$, a contradiction.

We complete the proof by showing that at most one solid torus component of W_{0} and at most one solid torus component of W_{1} is exceptionally fibered.

First assume $\beta=\alpha_{0}\left(S^{1}\right) \subset W_{0}^{j} \subset W_{0}$.
Suppose some W_{0}^{i} for $i \neq j$ is exceptionally fibered with exceptional fiber γ of multiplicity $q>1$. It follows that $H_{1}\left(W_{0}^{i} \cap \overline{M-W_{0}^{i}}\right) \rightarrow H_{1}\left(W_{0}^{i}\right)$ is
not onto and so γ is not 0 in $H_{1}\left(W_{0}^{i}, W_{0}^{i} \cap \overline{M-W_{0}^{i}}\right)$. As before $\gamma \simeq \beta^{m}$ is 0 in $H_{1}\left(M, \overline{M-W_{0}^{i}}\right)$ and inclusion induces an isomorphism $H_{1}\left(W_{0}^{i}, W_{0}^{i} \cap\right.$ $\left.\overline{M-W_{0}^{i}}\right) \rightarrow H_{1}\left(M, \overline{M-W_{0}^{i}}\right)$, a contradiction.

Hence W_{0}^{j} is the only component of W_{0} that could be exceptionally fibered.
Now assume $\beta=\alpha_{0}\left(S^{1}\right) \subset W_{1}$.
The above argument shows that in this case no component of W_{0} is exceptionally fibered.

The same proof applies to the components of W_{1}.
(b) Let $M=S \cup H$ be a Seifert fiber space with handles and with at most two exceptional fibers. Decompose the orbit surface of S into two disks D_{0}, D_{1}, each with at most one exceptional point and $D_{0} \cap D_{1}=\partial D_{0} \cap \partial D_{1}$ (see e.g. [5]). Then $S=V_{0} \cap V_{1}$, where V_{i} is the solid torus corresponding to D_{i}. For each handle $H_{k} \approx D^{2} \times[-1,1]$ whose ends $D^{2} \times\{-1\}$ and $D^{2} \times\{1\}$ are attached to V_{i} and V_{1-i} resp., replace V_{i} by the solid torus $V_{i} \cup D^{2} \times[-1,0]$ and V_{1-i} by $V_{1-i} \cup D^{2} \times[0,1]$. Then let $W_{i}=V_{i} \cup$ all handles for which both ends are attached to V_{1-i}. Now $M=W_{0} \cup W_{1}$ and each W_{i} is S^{1}-contractible.

Corollary 2. Let M be a compact, orientable, irreducible 3-manifold with $H_{1}(M)=\mathbf{Z}$. If cat $S_{S^{1}}(M)=2$ then M is a Seifert fiber space with orbit surface a disk and at most 2 exceptional fibers.

Proof. M is not closed since otherwise M would be a lens space. Since $H_{1}(M)=$ \mathbf{Z} the boundary of M is a torus. By Theorem $1, M$ is a Seifert fiber space with at most two exceptional fibers. The projection of M to the orbit surface \bar{M} induces an epimorphism $H_{1}(M) \rightarrow H_{1}(\bar{M})$ and it follows that \bar{M} is a disk.

We say that a link L in S^{3} that is not the unlink of more than one component is a Burde-Murasugi link if the components of L can be chosen to be fibers of some Seifert fibration of S^{3}, including the singular fibration and its unknotted circle (see [1]). Such a link is non-splittable and the components are components of a torus link on the boundary of an unknotted solid torus V in S^{3}, possibly together with the core curve of V and a curve isotopic to a meridian curve of V.

We say that a link $L \subset S^{3}$ is of S^{1}-category m if its space $\overline{S^{3}-N(L)}$ has S^{1}-category m.

Corollary 3. (a) A non-splittable link L of at least two components in S^{3} has S^{1}-category 2 if and only if L is a Burde-Murasugi link.
(b) A knot in S^{3} has S^{1}-category 2 if and only if it is a non-trivial torus knot.

Proof. The trivial knot has S^{1}-category 1. In any other case, since L is nonsplittable, $M=\overline{S^{3}-N(L)}$ is irreducible. If L is of S^{1}-category 2 then by Theorem 1, M a Seifert fiber space and the result follows from [1] and [2]. Conversely the complements of these links are Seifert fiber-spaces with at most two exceptional fibers.

References

[1] G. Burde and K. Murasugi, Links and Seifert Fiber Spaces, Duke Math. J. (1970), 89-93.
[2] G. Burde and H. Zieschang, Eine Kennzeichnung der Torus Knoten, Math. Ann. (1966), 169-176.
[3] J. C. Gómez-Larrañaga, F. González-Acuña and Wolfgang Heil, Fundamental groups of manifolds with S^{1}-category 2, Math. Z. 259 (2008), 419-432.
[4] J.C. Gómez-Larrañaga and Wolfgang H. Heil, Seifert unions of solid tori, Math. Z. 240 (2002), no. 4, 767-785.
[5] J. C. Gómez-Larrañaga, W. Heil, V. Nuñez, Stiefel-Whitney surfaces and decompositions of 3-manifolds into handlebodies, Topology Appl. 60 (1994), 267-280
[6] John Morgan and Gang Tian, Ricci Flow and the Poincarè Conjecture, AMS Clay Math. Monographs, vol 3 (2007).
[7] Paul Olum, Mappings of manifolds and the notion of degree, Ann. of Math. (2) 58, (1953). 458-480

[^0]: * Centro de Investigación en Matemáticas, A.P. 402, Guanajuato 36000, Gto. México. jcarlos@cimat.mx
 ${ }^{\dagger}$ Instituto de Matemáticas, UNAM, Ciudad Universitaria, 04510 México, D.F. México and Centro de Investigación en Matemáticas, A.P. 402, Guanajuato 36000, Gto. México. fico@math.unam.mx
 ${ }^{\ddagger}$ Department of Mathematics, Florida State University, Tallahasee, FL 32306, USA. heil@math.fsu.edu
 ${ }^{1}$ AMS classification numbers: $57 \mathrm{~N} 10,57 \mathrm{~N} 13,57 \mathrm{~N} 15,57 \mathrm{M} 30$
 ${ }^{2}$ Key words and phrases: Lusternik-Schnirelmann category, coverings of manifolds with open S^{1}-contractible subsets, torus knots

