
ADAPTIVE WEAK APPROXIMATION OF DIFFUSIONS WITH JUMPS

E. MORDECKI†, A. SZEPESSY‡, R. TEMPONE§ AND G. E. ZOURARIS¶

Abstract. This work develops Monte Carlo Euler adaptive time stepping methods for the weak ap-
proximation problem of jump diffusion driven stochastic differential equations. The main result is the
derivation of a new expansion for the computational error, with computable leading order term in a
posteriori form, based on stochastic flows and discrete dual backward problems which extends the re-
sults in [34]. These expansions lead to efficient and accurate computation of error estimates. Adaptive
algorithms for either stochastic time steps or quasi-deterministic time steps are described. Numerical
examples show the performance of the proposed error approximation and of the described adaptive
time-stepping methods.

September 6, 2006

1. Introduction

This work develops adaptive methods and proves a posteriori error expansions, with computable leading
order term, for weak approximation of jump-diffusions driven stochastic differential equations.

1.1. Problem’s setting. Consider X = {X(t) = (X1(t), . . . , Xd(t)) : t ∈ [0, T]}, a d-dimensional sto-
chastic process that is the solution of the stochastic differential equation

X(t) = X(0)+

∫ t

0

a(s, X(s−)) ds +

`0∑

`=1

∫ t

0

b`(s, X(s−)) dW `(s)

+

∫ t

0

∫

Z

c(s, X(s−), z) p(ds, dz),

(1.1)

on a time interval [0, T] (see III.2c in [18], or, [17]). The randomness in the equation is generated
by (i) an F0−measurable d-dimensional random variable X(0), (ii) a standard `0-dimensional Wiener
process W = {W (t) = (W 1(t), . . . , W `0(t)) : t ∈ [0, T]}, i.e. its coordinates are independent standard real
valued Wiener processes, and (iii) a Poisson random measure p on [0, T] × Z, where Z ≡ R

`1\{0}, with
deterministic time dependent intensity measure q(dt, dz) = λ(t)dt ⊗ µ(t, dz). Here λ : [0, T] → [0, λmax]
is the time intensity of jumps with λmax ∈ (0, +∞) and, for each t ≥ 0 fixed, µ(t, dz) is a probability
measure on Z. All processes are defined on a stochastic basis B = (Ω,FT , {Ft}0≤t≤T , P), and, as usual
in this framework, we assume that the Wiener process and the Poisson random measure are independent.
The coefficients a : [0, T]×R

d → R
d, b : [0, T]×R

d → R
d×`0 and c : [0, T]×R

d ×Z → R
d are assumed to

be Borel functions, satisfying regularity conditions defined in Lemma 2.1.
For a given scalar function g : R

d → R, the goal of our work is to construct approximations to the
expected value E

[
g
(
X(T))

]
by a Monte Carlo Euler method (cf., e.g., [21], [26]). In what respects the

1991 Mathematics Subject Classification. 65C30, 65Y20, 65L50, 65H35.
Key words and phrases. Itô stochastic differential equations, diffusions with jumps, Monte Carlo Euler method, a

posteriori error estimates, adaptive methods.
†Centro de Matemática, Facultad de Ciencias, Universidad de la República, Iguá 4225 C.P. 11400, Montevideo, Uruguay

(mordecki@cmat.edu.uy).
‡Matematiska Institutionen, Kungl. Tekniska Högskolan, S–100 44 Stockholm, Sweden (szepessy@nada.kth.se).
§Department of Mathematics and School of Computational Science and Information Technology, 400 Dirac Science

Library, Florida State University, Tallahassee, FL 32306–4120 (rtempone@scs.fsu.edu).
¶Department of Mathematics, University of Crete, GR–714 09 Heraklion, Crete, Greece and Institute of Applied and

Computational Mathematics, FO.R.T.H., GR–711 10 Heraklion, Crete, Greece (zouraris@math.uoc.gr).

1

dimension, although our developments are valid for all d ∈ N, we have in mind relatively high values of
d, taking into account the curse of dimensionality present in concurrent deterministic methods that solve
partial integro-differential equations. The computational approach presented is common in computing
option prices in mathematical finance and in simulating stochastic dynamics (cf., e.g., [8], [21], [22], [31]).

Remark 1.1 (Construction of the integral with respect to the Poisson random measure).
Consider a sequence e1, e2, . . . of independent random variables with common exponential distribution
with parameter 1. Define

(1.2) Λ(t) =

∫ t

0

λ(s) ds, t ∈ [0, T].

The number of jumps of the random Poisson measure p(dt, dz) in an interval [0, t] is determined as

N̂(t) = max
{
k :

k∑

j=1

ej ≤ Λ(t)
}

,

and the total number of jumps in [0, T] is denoted by N̂ ≡ N̂(T). The jump times of the Poisson measure

can be defined by τ0 = 0, and τk = Λ−1(e1 + · · · + ek) for k = 1, . . . , N̂ , and can be computed recursively
by

(1.3) ek =

∫ τk

τk−1

λ(s) dt, for k = 1, . . . , N̂ .

Once the jump times are computed, we proceed to sample the marks {Zk}, that, conditionally on the values
of the jumps times, are independent random variables distributed respectively according to {µ(τk, dz)}.
The random measure with intensity q(dt, dz) = λ(t)dt ⊗ µ(t, dz) can then be constructed as

p(ds, dz) =

bN∑

k=1

δ(τk,Zk)(ds, dz),

and, consequently, the stochastic integral with respect to the Poisson random measure, i.e. the last term
in (1.1), can be computed as

∫ t

0

∫

Z

c(s, X(s−), z) p(ds, dz) =

bN(t)∑

k=1

c
(
τk, X(τ−

k), Zk

)
, t ∈ [0, T].

Remark 1.2. Since the time intensity λ(t) is deterministic, the jump times {τk} can be directly obtained
before solving for the process X; it is enough then to find the function Λ by accurately integrating (1.2)
and then successively finding {τk} by solving (1.3). Furthermore, if λ is just a constant then we simply
sample τk = e1+ · · ·+ek from a sequence {ek} of independent random variables with common exponential
distribution with parameter λ.

1.2. The Monte Carlo Euler method. We now present the Monte Carlo Euler time stepping algorithm
which will be the building block for adaptive algorithms, with either quasi-deterministic or stochastic time
steps. For each realization we first construct the jumps and its marks, and conditioned on this information
we construct the approximate solution X as follows.

2

Monte Carlo Euler time stepping algorithm

Input: Give a number N + 1 of time nodes 0 = t̃0 < t̃1 < · · · < t̃N = T , and sample jump
times 0 < τ1(ω) < · · · < τcN(ω)(ω) < T with corresponding marks Z1(ω), . . . , ZcN(ω)(ω), as
explained in Remark 1.1.

Set the jump counter k = 1.

Time stepping: Consider an augmented partition given by the union

{tn(ω)}NA(ω)

n=0 = {t̃n}N

n=0 ∪ {τn(ω)}cN(ω)

n=0

where NA(ω) = N + N̂(ω) (a.s.) is the number of time steps.
Sample X0(ω) and set the initial condition X(t0, ω) = X0(ω).
For time steps n = 0, . . . , NA(ω) − 1

Compute the remainder approximate grid values, X(tn+1, ω),
by first constructing the left limit value of the approximated process,

(1.4)

X(t−n+1, ω) = X(tn, ω) + a(tn, X(tn, ω))(tn+1 − tn)

+

`0∑

`=1

b`(tn, X(tn, ω))(W `(tn+1, ω) − W `(tn, ω)).

When needed, introduce the correction due to jump discontinuities:
if (tn+1 = τk(ω)) then

X(tn+1, ω) = X(t−n+1, ω) + c
(
tn+1, X(t−n+1, ω), Zk(ω)

)
,(1.5)

increase k to k + 1

else

(1.6) X(tn+1, ω) = X(t−n+1, ω),

end-if

end-for

When the initial time nodes {t̃0, . . . , t̃N} are the same for all realizations, we refer to quasi-deterministic
time steps, or sometimes, simply deterministic time steps. Otherwise, we speak about stochastic time
steps.

Besides, in the particular case when a = b = 0 the approximate process X has the same law as X , due
to the form of the grid proposed in the numerical method (see [15]). A similar situation occurs when only

b = 0: there, conditioned to the realizations of N̂ , a higher order method for ODE integration should
be used to approximate X between jumps. It must be also noticed that the jump intensity λ does not
depend on the current value X(t) of the process. Such a dependence carries the necessity of implementing
a different Monte Carlo Euler algorithm, where the jumps and its marks are sampled simultaneously with
the trajectory of the process, generating an aditional error in the approximation scheme, as it does not
seems possible to have an exact simulation of the jump structure in law, something that is possible in
the present case.

1.3. Error Control and Adaptivity. The aim, for a given TOL > 0, is to choose the size of time
steps, either quasi-deterministic or stochastic,

∆t̃n = t̃n+1 − t̃n, n = 0, . . . , N − 1,

and the number M of independent identically distributed samples
{
X(· , ωj)

}M

j=1
such that the compu-

tational work, defined as M times the average of timesteps, i.e. M × E[NA] = M ×
(
E[N] + Λ(T)

)
, is

3

minimal, constrained by the condition that the computational error EC defined by

(1.7) EC = E[g(X(T))]− 1
M

M∑

j=1

g(X(T, ωj)),

is such that the event

(1.8)
∣∣EC

∣∣ ≤ TOL

has a probability close to one. The computational error EC naturally separates as the sum of the (deter-
ministic) time discretization error ET and the statistical error ES given by

ET = E
[
g(X(T))

]
− E

[
g(X(T))

]
,(1.9)

ES = E[g(X(T))] − 1
M

M∑

j=1

g(X(T, ωj)).(1.10)

The time steps to construct the trajectories X are determined from statistical approximations of the
time discretization error ET ; while the number M of independent realizations of X, is determined from
the statistical error ES . Therefore, the number M of realizations can be asymptotically determined by
standard limit theorems for sums of independent random variables.

Efficient adaptive time stepping methods, with theoretical basis, use a posteriori error information,
since the a priori knowledge can usually not be as precise as the a posteriori. The present work develops
adaptive time stepping methods by proving in Theorem 2.3 and Theorem 3.3 error estimates of ET with
leading order terms in computable a posteriori form.

The main reference of Theorems 2.3 and 3.3 is the work by Szepessy, Tempone and Zouraris [34] where
similar techniques were applied considering the solution of a stochastic differential equations, i.e. our
case when c = 0. The general inspiration of the presented results is the work by Talay and Tubaro in
[39] and its subsequent extension by Protter and Talay in [38] to stochastic differential equations driven
by Lévy processes.

The main new idea here is the extension of the efficient use of stochastic flows and dual functions to
obtain the error expansion with computable leading order term in Theorems 2.3 and 3.3 in presence of
jumps. The use of dual functions is standard in optimal control theory and in particular for adaptive
mesh control for ordinary and partial differential equations, see [3], [19], [20], [12], and [6], and was
successfully applied in the probabilistic context in [34], [29], [11] and in [27].

Concerning time steps, this work proposes adaptive algorithms that use either

• “quasi-deterministic” time steps (see section 4.3), in the sense that, although the grid is random,
its randomness only depends on the jumps, being in this sense is a strict generalization of the
deterministic time step algorithm in [34].

• “stochastic” time steps, meaning that the grid is random also with respect to the Wiener measure,
similarly as with the stochastic time steps introduced in [34].

Theorem 2.3 describes the basis of an adaptive algorithm to estimate the computational error; the
deterministic time steps are then chosen by

(∆t̃n)2|E[ρ(t̃n, ω)]| = constant,

– observe that we can only control the deterministic points t̃n and not the whole augmented grid
{tn(ω)}NA(ω)

n=0 – where ρ(t̃n, ω) is the function defined in (2.9), based on the weight functions ϕ and

ϕ′ defined in (A.1) – (A.4). Provided the path X(tn), n = 0, . . .NA, is stored, the leading order er-
ror bound can be evaluated by solving, step by step, the two backward problems (A.1) – (A.4). The
backward evolutions (A.1) – (A.4) of the weight functions ϕ and ϕ′ avoid solving for the two vari-

ables t, s present in ∂X(t)
∂x(s) , which appears in the forward t−evolution equation for ∂X(t)

∂x(s) in the identity

ϕi(tn) = ∂jg(X(T))∂Xj(tn)/∂xi(tn), cf. (2.34). A solution with two variables s and t would require work
of the order N2 for each realization, instead of the corresponding work of the order N in Theorem 2.3.

4

The second algorithm, presented in Section 4.4, is based on the expansion derived in Theorem 3.3 and
uses time steps which may vary for different realizations of the Wiener process. Stochastic time steps
are advantageous for problems with singularities at random times. The idea in this case is to choose the
steps by

(∆t̃n)2|ρ(t̃n, ω)| = constant,

(where, in comparison with the previous algorithm, there is no expectation), and this is achieved through
a test performed at each interval of each realization, to decide whether to refine or not the given interval.
In this case, when a node is added, the interpolation is carried through the consideration of a Brownian
bridge to obtain the value of the approximated process X in the new added point.

Besides, since their use entails more work per realization than the deterministic time steps they should
be judiciously used. A natural application of stochastic time steps appears in the weak approximation of
killed diffusions, see [11]. The optimal stochastic steps depend on the whole solution X(t), 0 < t < T ,
and in particular the step ∆t(t) at time t depends also on W (u) for t < u. In stochastic analysis the
concept of adaptedness means, intituively, that the values of the process at time t depend only on the
events generated by the sources of randomness up to time t, i.e. do not depend on future events. In
numerical analysis a method is said to be adaptive when the approximate solution is used to control the
error, e.g. to determine the time steps. Our stochastic time stepping algorithm is in this sense adaptive
and non adapted, since the time steps ∆t(t) depends on values of W (u) for t < u, i.e. on future values
of the Wiener process. The stochastic time stepping algorithm (that achives higher precision) requires,
on one side, an aditional theoretical developement including the introduction of Malliavin derivatives,
and, on the other, requires the approximate computation of derivatives of second order. This second
requirement is performed introducing the second derivatives ϕ′′ of the fluxes (the procedure is described
in the Appendix). This computation is performed also in linear time.

The focus in the paper is on error estimates for weak convergence of stochastic differential equations
for diffusions with jumps. Two particular important cases must be distinguished. In first place, taking
c = 0 we obtain previous estimates in [34]. More relevant in this instance is the situation when a = b = 0
and c 6= 0. In this case, we are considering a pure jump process, with finite number of jumps in the
time interval [0, T]. From the stochastic point of view, the situation is simpler, and the process X has
exactly the same distribution as X . This means that the time discretization error is null, and the problem
reduces to controlling the statistical error.

Furthermore, the deterministic problems associated with the computation of the expected value
E[g(X(T))] via the Feynman-Kac formula are non local, in the sense that they involve integro-differential
equations. Direct discretization of such time dependent integro-differential equations needs to approxi-
mate integrals at each time step, while the Euler Monte Carlo method avoids these expensive computa-
tions.

When d is small and the Fourier transform of X(t) is known (for instance, X is a Lévy process), it
is efficient to approximate E[g(X(T))] based on Parseval’s identity for this transform and the Fourier
transform of g [23, 9]. The work [2] uses operator splitting to approximate the integral term explicitly in
Fourier space, while approximating the other terms in the equation implicitly. The work [25] discretizes
the partial integro-differential equation by the θ-scheme in time and a wavelet Galerkin method in space.
The resulting full Galerkin matrix is then replaced with a sparse matrix in the wavelet basis, and the
linear systems for each time step are solved approximatively with GMRES in linear complexity. The
deterministic algorithm gives optimal convergence rates, up to logarithmic terms, for the computed
solution in the same complexity as finite difference approximations of the standard Black-Scholes equation.
Other works include [24], where weak convergence schemes are analyzed, [16] where two implicit numerical
methods for diffusion with jumps are presented, analyzing strong convergence and nonlinear stability;
and [7] that contains a survey, including some new results on weak approximation for jump diffusion
equations.

The technique used here is based on the Kolmogorov’s backward equation developed in [36] and [37]
to analyze uniqueness and dependence on initial conditions for weak solutions of stochastic differential
equations with jumps. The rest of the paper is as follows. Section 2 proves error estimates for quasi-
deterministic time steps. Section 3 proves error estimates for stochastic time steps. Section 4 presents

5

implementations of adaptive algorithms and, finally, Section 5 includes results from numerical experi-
ments.

2. An Error Estimate of the computational error with deterministic time steps

In this section we present in Theorem 2.3 an error expansion in a posteriori computable form for the
time discretization error ET . The starting point for the analysis is Lemma 2.1 below. It uses the fact that
the Euler method can be extended, for theoretical purposes only, by

X(t) − X(tn) =

∫ t

tn

a(s; X)ds +

`0∑

`=1

∫ t

tn

b
`
(s; X) dW `(s) ∀ t ∈

[
tn, tn+1

)
,(2.1)

where a and b
`

are the piecewise constant stochastic approximations

(2.2) a(s; X) = a(tn, X(tn)) and b
`
(s; X) = b`(tn, X(tn)) for s ∈ [tn, tn+1).

Observe that the presence of jumps is realized in X in (1.5), making possible not to introduce a modified
coefficient for c. For simplicity we introduce the notation

∂k ≡ ∂

∂xk
, ∂ki ≡

∂2

∂xk∂xi
, . . . ∂t ≡

∂

∂t
,

and use the summation convention, i.e., if the same subscript appears twice in a term, the term denotes

the sum over the range of this subscript, e.g. cik∂kbj ≡∑d
k=1 cik∂kbj , and consequently

dij ≡ 1

2

`0∑

`=1

b`
ib

`
j =

1

2
b`
ib

`
j , dij ≡ 1

2

`0∑

`=1

b
`

ib
`

j =
1

2
b
`

ib
`

j .

For a derivative ∂α the notation |α| is its order.

Lemma 2.1. Suppose that for some m0 > [d/2] + 10 there are positive constants k and C such that

(i) g ∈ Cm0

loc (Rd) with |∂αg(x)| ≤ C(1 + |x|k) for all |α| ≤ m0,

(ii) E
[
|X(0)|2k+d+1 + |X(0)|2k+d+1

]
≤ C, and

(iii) a and b are bounded in Cm0([0, T]× R
d) and the same holds uniformly for c(·, ·, z) for all z ∈ Z.

(iv) the initial data X(0) and its approximation X(0) have the same distribution.

Then, the time discretization error in (1.9) satisfy

(2.3) ET =

∫ T

0

E
[(

ak(t, X(t−)) − ak(t; X)
)
∂ku(t, X(t−)) +

(
dij(t, X(t−)) − dij(t; X)

)
∂iju(t, X(t−))

]
dt

where

(2.4) u(t, x) = E
[
g(X(T)) | X(t) = x

]
.

is the cost to go function.

Remark 2.2. We can relax condition (iv) in the assumptions of the Lemma, and get an additional term
of the form E[u(0, X(0))− u(0, X(0))] in the error expansion in (2.3).

Proof. There exists a unique solution u ∈ C1,6
loc ([0, T]× R

d) of the Kolmogorov backward equation

LXu(t, x) ≡ ∂tu(t, x) + ak∂ku(t, x) + dkn∂knu(t, x) + λ(t)

∫

Z

[u(t, x + c(t, x, z)) − u(t, x)]µ(t, dz) = 0

u(T, ·) = g,

(2.5)

satisfying the polynomial growth condition

max
0≤t≤T

|∂αu(t, x)| ≤ C
(

1 + |x|k+ d+1
2

)
∀ |α| ≤ 6,

6

for some positive k and C (cf. [14]). The Feynman-Kac formula without potential, implies that the
solution u of (2.5) can be represented by the expected value in (2.4). The Itô formula applied to (2.1)
(cf. [17], p. 66) gives

u(T, X(T)) − u(0, X(0)) =

∫ T

0

{
∂tu(t, X(t−)) + ai(t; X)∂iu(t, X(t−)) + dij∂iju(t, X(t−))

+ λ(t)

∫

Z

[u(t, X(t−) + c(t, X(t−), z)) − u(t, X(t−))]µ(t, dz)
}
dt

+

∫ T

0

b
`

i(t; X)∂iu(t, X(t−))dW `(t)

+

∫ T

0

∫

Z

[u(t, X(t−) + c(t, X(t−), z)) − u(t, X(t−))]
(
p(dt, dz) − q(dt, dz)

)

which, combined with (2.5) to substitute ∂tu(t, X(t−)), yields

u(0, X(0)) − g(X(T)) =

∫ T

0

(
ai(t, X(t−)) − ai(t; X)

)
∂iu(t, X(t−))dt

+

∫ T

0

(
dij(t, X(t−)) − dij(t; X)

)
∂iju(t, X(t−))dt

−
∫ T

0

b
`

i(t; X)∂iu(t, X(t−))dW `(t)

−
∫ T

0

∫

Z

[
u(t, X(t−) + c(t, X(t−), z)) − u(t, X(t−))]

(
p(dt, dz) − q(dt, dz)

)
.

(2.6)

The expected value of the last two integrals is zero, the first one by the martingale property of Itô
integrals, and the second one due to the fact that p(dt, dz)− q(dt, dz) is a compensated random measure
(i.e. a martingale measure). Condition (iv) in the Lemma, and the representation of u in (2.4) show that

E
[
u(0, X(0))

]
= E

[
u(0, X(0))

]
= E

[
g(X(T))

]
.

Therefore, taking expected values in both sides of (2.6) we arrive at the error representation (2.3). �

Lemma 2.1 is combined with stochastic flows to derive the a posteriori error expansion in Theorem 2.3
below. This error expansion is based on the variations of the processes X and X. For a process X , the
first variation of a function F (X(T)) with respect to a perturbation in the initial location of the path X,
at time s, is denoted by

(2.7) F ′(T ; s) = ∂x(s)F (X(T)) ≡
(
∂1F (X(T); X(s) = x), . . . , ∂dF (X(T); X(s) = x)

)
.

The proof of Theorem 2.3 uses mainly that the error in replacing g(X(T)) in Lemma 2.1 by g(X(T)),

in the representation (2.4) of ∂αu, yields the small deterministic remainder term
∫ T

0
O
(
(∆t)2

)
dt in (2.8)

of Theorem 2.3, which is analogous to the O(N−2) term in Talay and Tubaro’s expansion, cf. [39], and
needs some a priori estimate to be controlled. Lemma 2.1 can be applied to estimate this error. The
second important ingredient in the proof is the Markov property of X satisfied at the discrete times tn.
Based on the fact that X(tn) is Ftn

measurable, the nested expected values

E
[
aj(tn, X(tn))∂xj(tn)E[g(X(T)) | Ftn

]
]

in (2.3) can, by the definition of ϕ and its implication (2.34), be decoupled to

E
[
aj(tn, X(tn))ϕj(tn)

]
,

which reduces the computational complexity substantially, see Lemma 2.8.
7

Theorem 2.3 (Error expansion with deterministic time steps). Suppose that a, b, g, X and X, satisfy
the assumptions in Lemma 2.1. Then, the time discretization error in (1.9) has the expansion

(2.8) ET = E

[
N−1∑

m=0

ρ(t̃m, ω)(∆t̃m)2

]
+ E

[
N−1∑

m=0

(∆t̃m)2
{
O(∆t̃m) +

N−1∑

m=n

O((∆t̃m)2)
}]

where the leading order error term is in computable a posteriori form.

(2.9) ρ(t̃m, ω) ≡ 1

2

∑

n∈Jm

[(
ai(tn+1, X(t−n+1, ω)) − ai(tn, X(tn, ω))

)
ϕi(t

−
n+1, ω)

] ∆tn

(∆t̃m)2

+
1

2

∑

n∈Jm

[(
dik(tn+1, X(t−n+1, ω)) − dik(tn, X(tn, ω))

)
ϕ′

ik(t−n+1, ω)
] ∆tn

(∆t̃m)2

with Jm ≡ {n : t̃m ≤ tn < t̃m+1}, m = 0, . . . , N − 1, and based on the discrete dual functions ϕ(tn) ∈ R
d

and ϕ′(tn) ∈ R
d×d, which are determined as follows. The function ϕ and and its first variation

(2.10) ϕ′
ik(tn, ω) = ∂xk(tn)ϕi(tn, ω) ≡ ∂ϕi(tn; X(tn) = x)

∂xk

satisfies (A.1) – (A.4).

Remark 2.4. When implementing an algorithm based on this result the expectation of the sum of errors
in (2.8) is approximated by the mean of the errors along the M simulated trajectories, i.e.:

E

[
N−1∑

m=0

ρ(t̃m, ω)(∆t̃m)2

]
∼ 1

M

M∑

j=1

N−1∑

m=0

ρ(t̃m, ωj)

M
(∆t̃m)2.

The statistical error of this approximation can be expressed as

E

[
N−1∑

m=0

ρ(t̃m, ω)(∆t̃m)2

]
− 1

M

M∑

j=1

N−1∑

m=0

ρ(t̃m, ωj)

M
(∆t̃m)2 =

∫ T

0

(IM + IIM)dt

where the distributions of the statistical errors
√

MIM and
√

MIIM weakly converge to normal distribu-
tions with mean zero and time interval dependent variances given by

Var
[∑

n∈Jm

(ai(tn+1, X(t−n+1)) − ai(tn, X(tn)))ϕi(t
−
n+1)

]
= O(∆t̃m),

and
Var
[∑

n∈Jm

(dik(tn+1, X(t−n+1)) − dik(tn, X(tn)))ϕ′
ik(t−n+1)

]
= O(∆t̃m),

respectively.

Proof of Theorem 2.3. The main content of Theorem 2.3 is the replacement of the (non computable)
estimate in Lemma 2.1 by an expansion with computable leading order term. For this purpose the
derivatives of the expected value

∂αu(x, t) = ∂αE[g(X(T)) | X(t) = x]

appearing in the integral in Lemma 2.1 are approximated by the corresponding derivatives of

ū(x, t) ≡ E[g(X(T)) | X(t) = x],

that depends on the simulated solution X. The proof is divided into three steps:

(i) in Lemma 2.5 we estimate the quadrature error;
(ii) in Lemma 2.6 we bound the error in replacing ∂αu by ∂αū with the use of stochastic flows and

its variations;
(iii) in Lemma 2.8 we use the discrete dual functions ϕ and ϕ′ (that solve the backward evolution

problems see (A.1) – (A.4) in the Appendix) to derive a computable representation of ∂αū.

We begin with the first step.
8

Lemma 2.5 (Quadrature approximation). Suppose that the assumptions in Lemma 2.1 hold. Let Jm ≡
{n : t̃m ≤ tn < t̃m+1}, m = 0, . . . , N − 1. Then the quadrature error terms satisfy

∫ t̃m+1

t̃m

E
[(

ai(t, X(t−)) − ai(t; X)
)
∂iu(t, X(t−))

]
dt

− E
[∑

n∈Jm

(
ai(tn+1, X(t−n+1)) − ai(tn, X(tn))

)
∂iu(tn+1, X(t−n+1))

∆tn
2

]
= O

(
(∆t̃m)3

)
,

and
∫ t̃m+1

t̃m

E
[(

dij(t, X(t−)) − dij(t; X)
)
∂iju(t, X(t−))

]
dt

− E
[∑

n∈Jm

(
dij(tn+1, X(t−n+1)) − dij(tn, X(tn))

)
∂iju(tn+1, X(t−n+1))

∆tn
2

]
= O

(
(∆t̃m)3

)
.

Proof. Denote by G the σ-algebra generated by the jumps and marks in [0, T] constructed in Remark 1.1.
Then

(2.11)

∫ t̃m+1

t̃m

E
[(

dij(t, X(t−)) − dij(t; X)
)
∂iju(t, X(t−))

]
dt

= E
[∑

n∈Jm

∫ tn+1

tn

E
[(

dij(t, X(t−)) − dij(t; X)
)
∂iju(t, X(t−)) | G

]
dt
]
.

Observe that in [tn, tn+1) the conditioned process X has no jump discontinuities, and introduce the
notations

h(t, X(t−)) ≡
(
dij(t, X(t−)) − dij(t; X)

)
∂iju(t, X(t−)),

h̄(t) ≡ t − tn
∆tn

(
dij(tn+1, X(t−n+1)) − dij(tn; X)

)
∂iju(tn+1, X(t−n+1)).

Then the quadrature error satisfies

∫ tn+1

tn

E[h(t, X(t−)) − h̄(t) | G]dt =

∫ tn+1

tn

E
[(

dij(t, X(t−)) − dij(t; X)
)
∂iju(t, X(t−)) | G

]
dt

− E
[(

dij(tn+1, X(t−n+1)) − dij(tn; X)
)
∂iju(tn+1, X(t−n+1)) | G

]∆tn
2

,

and E[h̄(t) | G] is the linear nodal projection of the smooth function E[h(t, X(t−)) | G] in the interval
[tn, tn+1). Therefore, a standard interpolation estimate yields

(2.12)
∣∣∣
∫ tn+1

tn

E[h(t, X(t−)) − h̄(t) | G]dt
∣∣∣ ≤ 1

8
(∆tn)2

∫ tn+1

tn

∣∣ d2

dt2
E[h(t, X(t−)) | G]

∣∣dt.

Denoting Lh ≡ ∂th+ai∂ih+dij∂ijh, Itô’s formula and condition (iii) in Lemma 2.1 show that there exist
constants C1, C2 such that, for t ∈ (tn, tn+1)

(2.13)

d

dt
E[h(t, X(t−)) | G] = E[Lh(t, X(t−)) | G] ≤ C1,

d2

dt2
E[h(t, X(t−)) | G] = E[L2h(t, X(t−)) | G] ≤ C2,

which combined with (2.11) and (2.12) proves the estimate of the diffusion term in the lemma. The
estimate of the drift term follows analogously. �

In the second step of the proof the derivative ∂αu and its approximation ∂αū are evaluated respectively
through expected values of stochastic flows of X and X and its variations, that we now introduce. Recall

9

the definition (2.7) of the first variation, and let

δik ≡
{

0 i 6= k,

1 i = k.

The following equation for the first variation of the process X at time s > t hold:

(2.14)

dX ′
ij(s) = ∂kai(s, X(s−))X ′

kj(s
−)ds + ∂kb`

i(s, X(s−))X ′
kj(s

−)dW `(s)

+

∫

Z

∂kci(s, X(s−), z)X ′
kj(s

−) p(ds, dz),

X ′
ij(t) = δij .

Similarly, for the second variation of the process X at time s > t we have:

(2.15)

dX ′′
ijn(s) =

[
∂kai(s, X(s−))X ′′

kjn(s−) + ∂krai(s, X(s−))X ′
kj(s

−)X ′
rn(s−)

]
ds

+
[
∂kb`

i(s, X(s−))X ′′
kjn(s−) + ∂krb

`
i(s, X(s−))X ′

kj(s
−)X ′

rn(s−)
]
dW `(s)

+

∫

Z

[
∂kci(s, X(s−), z)X ′′

kjn(s−) + ∂krci(s, X(s−), z)X ′
kj(s

−)X ′
rn(s−)

]
p(ds, dz),

X ′′
ijn(t) = 0.

For the third variation of the process X at time s > t we have:

(2.16)

dX ′′′
ijnm(s) =

[
∂kai(s, X(s−))X ′′′

kjnm(s−) + ∂krai(s, X(s−))X ′
kj(s

−)X ′′
rnm(s−)

+ ∂krai(s, X(s−))X ′
kn(s−)X ′′

rjm(s−) + ∂krai(s, X(s−))X ′
km(s−)X ′′

rjn(s−)

+ ∂krvai(s, X(s−))X ′
kj(s

−)X ′
rn(s−)X ′

vm(s−)
]
ds

+
[
∂kb`

i(s, X(s−))X ′′′
kjnm(s−) + ∂krb

`
i(s, X(s−))X ′

kj(s
−)X ′′

rnm(s−)

+ ∂krb
`
i(s, X(s−))X ′

kn(s−)X ′′
rjm(s−) + ∂krb

`
i(s, X(s−))X ′

km(s−)X ′′
rjn(s−)

+ ∂krvb`
i(s, X(s−))X ′

kj(s
−)X ′

rn(s−)X ′
vm(s−)

]
dW `(s)

+

∫

Z

[
∂kci(s, X(s−))X ′′′

kjnm(s−) + ∂krci(s, X(s−), z)X ′
kj(s

−)X ′′
rnm(s−)

+ ∂krci(s, X(s−), z)X ′
kn(s−)X ′′

rjm(s−) + ∂krci(s, X(s−), z)X ′
km(s−)X ′′

rjn(s−)

+ ∂krvci(s, X(s−), z)X ′
kj(s

−)X ′
rn(s−)X ′

vm(s−)
]
p(ds, dz),

X ′′′
ijnm(t) = 0,

and similarly for the fourth variation of the process X at time s > t:

(2.17) dX ′′′′
ijnmp = . . . , X ′′′′

ijnmp(t) = 0.

This equations imply the representation of the derivatives of expectations with stochastic flows as follows
(cf. [33] and [35]). For the first derivatives:

(2.18) ∂ku(t, x) = E
[
∂ig(X(T))X ′

ik(T) | X ′
ij(t) = δij , X(t) = x

]
,

for the second derivatives:
(2.19)

∂knu(t, x) = E
[
∂ig(X(T))X ′′

ikn(T) + ∂irg(X(T))X ′
ik(T)X ′

rn(T) | X ′′
ikn(t) = 0, X ′

ij(t) = δij , X(t) = x],

for the third derivatives:

(2.20) ∂knmu(t, x) = E
[
∂ig(X(T))X ′′′

iknm(T) + ∂irg(X(T))X ′
ik(T)X ′′

rnm(T)

+ ∂irg(X(T))X ′
in(T)X ′′

rkm(T) + ∂irg(X(T))X ′
im(T)X ′′

rkn(T)

+ ∂irvg(X(T))X ′
ik(T)X ′

rn(T)X ′
vm(T) | X ′′′

iknm(t) = X ′′
ikn(t) = 0, X ′

ij(t) = δij , X(t) = x
]
,

and for the fourths derivatives:

(2.21) ∂knmpu(t, x) =
10

Let Y = (X, X ′, X ′′, X ′′′, X ′′′′)T and let I denote the d× d identity matrix. Then the system (2.14-2.17)
can be written

(2.22)
dY = A(t, Y (t−))dt + B`(t, Y (t−))dW `(t) +

∫

Z

C(t, Y (t−), z)p(dt, dz), t > t0

Y (t0) = (x, I, 0, 0, 0)T .

Furthermore, rewrite the representation (2.18-2.21) as

(2.23)

fi(Y) ≡ ∂kg(X)X ′
ki,

fij(Y) ≡ ∂kg(X)X ′′
kij + ∂kng(X)X ′

kiX
′
nj ,

fijm(Y) ≡ ∂kg(X)X ′′′
kijm + ∂kng(X)X ′

kiX
′′
njm

+ ∂kng(X)X ′
kjX

′′
nim + ∂kng(X)X ′

kmX ′′
nji

+ ∂knvg(X)X ′
kiX

′
njX

′
vm,

fijmn(Y) ≡

The Euler approximation of Y , the solution (2.22), is denoted by Y =
(
Y

0
, Y

1
, Y

2
, Y

3
, Y

4)T

and can be
extended as the solution of the stochastic differential equation with piecewise constant drift and diffusion
fluxes

(2.24) dY = A(t; Y)dt + B
`
(t; Y)dW `(t) +

∫

Z

C(t, Y , z)p(dt, dz),

defined as in (1.4), (1.6) and (2.1), with coefficients defined as in (2.2).
An important consequence of the Euler method is that the variation and the Euler discretization

commute. This yields for each α the representation

(2.25) ∂αu(t, x) − ∂αū(t, x) = E
[
fα(Y (T)) − fα(Y (T)) | Y (t) = Y (t) = (x, I, 0, 0, 0)T

]
.

Now we rely on Lemma 2.1 applied to the process Y to obtain the representation

E
[
fα(Y (T))−fα(Y (T)) | Y (t) = Y (t) = (x, I, 0, 0, 0)T

]

=

∫ T

t

E
[
(A − A)k∂kνα(s, Y (s−)) + (D − D)kn∂knνα(s, Y (s−)) | Y (t) = (x, I, 0, 0, 0)T

]
ds

(2.26)

to be used in Lemmas 2.6 and 2.8 below, where the cost to go function να is, for each fα in (2.23), defined
as

να(t, y) = E
[
fα(Y (T)) | Y (t) = y

]
,

we use the notation

Dkn = 1
2B`

kB`
n, Dkn = 1

2B
`

kB
`

n,

and the corresponding Kolmogorov Backward equation is

LY να ≡ ∂tν
α + Ak∂kνα + Dkn∂knνα + λ(t)

∫

Z

[να(t, Y + C(t, Y, z)) − να(t, Y)]µ(t, dz) = 0, t < T,

να(T, ·) = fα.

We are ready for the second step.

Lemma 2.6 (Approximation of ∂αu). Let the piecewise constant mesh function ∆t be defined by

∆t(s) ≡ ∆tn for s ∈ [tn, tn+1) and n = 0, . . . , NA(ω) − 1.

Suppose that the assumptions in Lemma 2.1 hold. Then the discretization errors of the stochastic flows,
for |α| ≤ 4, satisfy

(2.27) ∂α(u − ū)(tn, X(tn)) =

∫ T

tn

E[O(∆t(s)) | Ftn
]ds = O(∆t̃max).

11

Furthermore

(2.28)

E
[(

ai(tn+1, X(t−n+1)) − ai(tn; X)
)(

∂iu(tn+1, X(t−n+1)) − ∂iū(tn+1, X(t−n+1))
)
| G
]

= ∆tn

∫ T

tn+1

O(∆t(s))ds,

(2.29)

E
[(

dij(tn+1, X(t−n+1)) − dij(tn; X)
)(

∂iju(tn+1, X(t−n+1)) − ∂ij ū(tn+1, X(t−n+1))
)
| G
]

= ∆tn

∫ T

tn+1

O(∆t(s))ds.

Proof. The combination of (2.25) and (2.26) give

∂α(u − ū)(tn, X(tn)) =

∫ T

tn

E
[
(Ai − Ai)∂iν

α(s, Y (s−)) + (Dij − Dij)∂ijν
α(s, Y (s−)) | Ftn

]
ds(2.30)

Now, for tm ≤ t < tm+1, introduce the notation

h(t, Y (t)) ≡ (Ai − Ai)∂iν
α(t, Y (t)) + (Dij − Dij)∂ijν

α(t, Y (t)),

and

L0w(t, y) ≡
(
∂tw + An∂nw + Dkn∂knw

)
(t, y)

LY w(t, y) ≡ L0w(t, y) + λ(t)

∫

Z

[w(t, y + C(t, y, z)) − w(t, y)]µ(t, dz).

Observe that h(tm, Y (tm)) = 0, apply Itô’s formula in the interval [tm, t] to obtain

E[h(t, Y (t−)) | Ftm
] =

∫ t

tm

E[LY h(s, Y (s−)) | Ftm
]ds = O(∆tm), tm ≤ t < tm+1,

where the bound follows as in (2.13). This plugged into (2.30) proves (2.27).
The estimate (2.29) follows similarly by defining now

h̃(t, X(t)) ≡ (dij − dij)∂ij(u − ū)(t, X(t)).

Then the Itô’s formula shows as in (2.12-2.13)

E[h̃(t, X(t)) | G] =

∫ t

tn

E[L0h̃(s, X(s−)) | G]ds, tn ≤ t < tn+1.

The final step to prove (2.29) is to establish

E[L0 h̃(s, X(s−)) | G] =

∫ T

s

O(∆t(τ))dτ.

The function L0 h̃(s, X(s−)) splits into the two types of terms h1 ≡ (d − d)v and h2 ≡ v∂α(u − ū), with
smooth functions v of (s, X(s)). The Itô formula again shows that

E[h1(s, X(s−)) | G] =

∫ s

tn

E[L0h1(τ, X(τ−)) | G]dτ = O(∆tn), tn ≤ s < tn+1.

Moreover (2.27) implies

E[h2(s, X(s−)) | G] =

∫ T

s

O(∆t(τ))dτ,

and consequently (2.29) holds. The estimate (2.28) of the drift terms follows analogously. �

Definition 2.7 (Local discrete solution operator). Write the Euler time stepping for the time nodes
t = t0, t

−
1 , t1, t

−
2 , t2, . . . as

(2.31) X(tnext, ω) = Φ(t, X(t), ω)
12

where the next computation time is given by

tnext =

{
tn if t = t−n
t−n+1 if t = tn.

Observe that depending on ω and t, we may have

Φ(t, x, ω) =

x + a(t, x)∆t + b`(t, x)∆W `, if t = tn,

x + c(t, x, Zk(ω)), if t = t−n and tn is the k-th jump time,

x if t = t−n and tn is a not a jump time.

Lemma 2.8 (Representation with discrete duals). Suppose that the assumptions in Lemma 2.1 hold.
Then the dual functions ϕ and ϕ′, defined Appendix A, satisfy for t = tn and t = t−n+1

(2.32) ∂iū(t, X(t)) = E[ϕi(t) | Ft],

(2.33) ∂ij ū(t, X(t)) = E[ϕ′
ij(t) | Ft].

Proof. Equations (2.1), (2.14) and (2.18) show that the first variation of the Euler approximation X is
in fact equal to the Euler approximation of the first variation X ′ and consequently

∂iū(t, X(t)) = E[∂jg(X(T))X
′
ji(T ; t) | Ft],

where X
′
ji(s; t) (s > t), is the Euler approximation (2.24) of X ′ with initial data X

′
ji(t; t) = δji.

Let, for t = . . . , tn, t−n+1, . . .,

ϕi(t) ≡ ∂xi(t)g(X(T)),

i.e.

(2.34) ϕi(t) = ∂jg(X(T))X
′
ji(T ; t).

We prove inductively that ϕi(t) is the solution of the corresponding problem in (A.1)-(A.4). Since (A.1)
is trivially true it remains to prove the inductive step. By the chain rule we have

∂kg(X(T))X
′
ki(T ; t) =∂kg(X(T))X

′
kj(T ; tnext)X

′
ji(tnext; t)

or in other words

(2.35) ϕi(t) = ϕj(tnext)∂iΦj(t, X(t))

which is equivalent to (A.1)-(A.4), what we wanted to prove.
The equality (2.34) implies that

∂ij ū(t, X(t)) = E
[
∂xj(t)ϕi(t) | Ft].

The next step is to verify that the first variation of ϕ,

(2.36) ϕ′
ij(t) ≡ ∂xj(t)ϕi(t) ≡

∂ϕi(t; X(t) = x)

∂xj
,

satisfies the backward recursive equation (A.1)-(A.4). First, differentiate the equation (2.35) to obtain

(2.37)
ϕ′

ik(t) = ∂iΦj∂xk(t)ϕj(tnext) + ∂k∂iΦjϕj(tnext), t < T,

ϕ′
ik(T) = ∂ikg(X(T)).

Observe that the problem (A.1)-(A.4) shows that ϕ(tnext) depends only on the point values

{X(s) : tnext ≤ s ≤ T},
so that

(2.38) ∂xk(t)ϕj(tnext) = ∂xp(tnext)ϕj(tnext)∂xk(t)Xp(tnext).

Finally, the definitions of X and Φ in (2.1) and (2.31) imply

(2.39) ∂kΦp(t, X(t)) = ∂xk(t)Xp(tnext),
13

which together with (2.37-2.38) prove that ϕ′ satisfies the recursive equation

ϕ′
ik(t) = ∂iΦj ϕ′

jp(tnext)∂kΦp(t, X(t)) + ∂k∂iΦj ϕj(tnext), t < T,

ϕ′
ik(T) = ∂ikg(X(T)),

(2.40)

which is equivalent to (A.1)-(A.4). �

Remark 2.9. The measurability of
(
ai(t

−
n+1, X(t−n+1)) − ai(tn, X(tn))

)
∈ Ft−n+1

proves that for t = t−n+1

and any random variable β we have

E
[(

ai(t, X(t)) − ai(tn, X(tn))
)
E[β | Ft]

]
= E

[
E[
(
ai(t, X(t)) − ai(tn; X)

)
β | Ft]

]

= E
[(

ai(t, X(t)) − ai(tn; X)
)
β
]
,

and in a completely similar way we obtain the same result for the diffusion terms, i.e.

E
[(

dij(t, X(t)) − dij(tn; X)
)
E[β | Ft]

]
= E

[(
dij(t, X(t)) − dij(tn; X))

)
β
]
.

The proof of Theorem 2.3 is now concluded by combining Lemmas 2.5, 2.6,2.8, Remark 2.9, and the
Central Limit Theorem to estimate IM and IIM . We have

∫ t̃m+1

t̃m

E
[(

ai(t, X(t−)) − ai(t; X)
)
∂iu(t, X(t−))

]
dt

=E
[∑

n∈Jm

(
ai(tn+1, X(t−n+1)) − ai(tn, X(tn))

)
∂iu(tn+1, X(t−n+1))

∆tn
2

]

+
N−1∑

m=0

O
(
(∆t̃m)3

)

=E
[∑

n∈Jm

(
ai(tn+1, X(t−n+1)) − ai(tn, X(tn)

)
∂iū(tn+1, X(t−n+1))

∆tn
2

]

+
N−1∑

m=0

E[
∑

n∈Jm

(∆tn)2
∫ T

tn+1

O(∆t(s))ds] +
N−1∑

m=0

O
(
(∆t̃m)3

)

=E
[∑

n∈Jm

(
ai(tn+1, X(t−n+1)) − ai(tn, X(tn)

)
E[ϕi(tn+1−) | Ft−n+1

]
∆tn
2

]

+

N−1∑

m=0

E[
∑

n∈Jm

(∆tn)2
∫ T

tn+1

O(∆t(s))ds] +

N−1∑

m=0

O
(
(∆t̃m)3

)

=E
[∑

n∈Jm

(
ai(tn+1, X(t−n+1)) − ai(tn, X(tn)

)
ϕi(tn+1−)

∆tn
2

]

+

N−1∑

m=0

E[
∑

n∈Jm

(∆tn)2
∫ T

tn+1

O(∆t(s))ds] +

N−1∑

m=0

O
(
(∆t̃m)3

)

The expansion of the diffusion term appearing in (2.9) follows analogously. �

Observe that the number of realizations to determine a reliable error estimate is in general TOL−1,
much smaller than the, proportional to TOL−2, number of realizations to approximate E[g(X(T))]. For
more details on this and the statistical approximation of the error density ρ see Remark 2.7 in [34].

3. An Error Estimate with Stochastic Time Steps

This section derives error estimates with time steps which are stochastic and determined individually
for each realization by the whole solution path X. The analysis will use the Malliavin derivative, ∂W (t)Y ,
which is the first variation of a process Y with respect to a perturbation dW (t), at time t of the Wiener

14

process, cf. [30]. The Malliavin derivative for a stochastic integral X is related to the first variation,
∂x(t)X, for a perturbation of the position at time t by

∂W `(t)X(τ) = ∂Xk(t)
∂W `(t)

∂xk(t)X(τ) = b`
k(X(t))∂xk(t)X(τ), τ > t,

∂W `(t)X(τ) = 0 τ < t,
(3.1)

if dXk = ak(X(t))dt + b`
k(X(t))dW ` (cf. (2.7)).

We shall restrict the analysis to time steps which are constructed by first sampling the jump times to
augment an a priori given time-discretization ∆t̃, obtaining ∆t[0] (see (3.6)) and then using the refinement
criterion

(3.2)
∆t(t) = ∆t[0](t)/2n, for some natural number n = n(t, ω),

|ρ(t, ω)|
(
∆t(t)

)2
< constant,

with an approximate error density function, ρ, satisfying, for s ∈ [0, T], t ∈ [0, T] and all outcomes ω,
the uniform upper and lower bounds

(3.3)
c(TOL) ≤ |ρ(s, ω)| ≤ C(TOL),

|∂W (t)ρ(s, ω)| ≤ C(TOL),

for some positive functions c and C, with TOL/c(TOL) → 0 as TOL → 0. For each realization successive
subdivisions of the steps yield the largest time steps satisfying (3.2). The corresponding stochastic
increments ∆W will have the correct distribution, with the necessary independence, if the increments
∆W related to the new steps are generated by Brownian bridges, cf. [22], i.e. the time steps are generated
by conditional expected values of the Wiener process.

Let δ be a constant approximating TOL
E[N] , where E[N] is the expected number of steps. The analysis

in this section with adaptive non adapted time steps, satisfying (3.2)-(3.3), is based on the following
Stochastic time step algorithm described in next page.

Section 4.4 presents a more precise formulation of this algorithm. Lemma 3.1 and Theorem 3.3 below
show that although the steps generated by (3.2)-(3.3) through the algorithm above are not adapted, the
method indeed converges to the correct limit as the forward Euler method with adapted time steps.

Lemma 3.1 (Strong convergence). Suppose that a, b, g, X satisfy the assumptions in Lemma 2.1 and
that X is constructed by the forward Euler method, based on the stochastic time step algorithm above,
with step sizes ∆tn satisfying (3.2-3.3) and their corresponding ∆Wn are generated by Brownian bridges.
Assume also that X(0) = X(0). Then

sup
0≤t≤T

√
E[|X(t) − X(t)|2] = O(

√
∆tsup) = O(

√
TOL

c(TOL)
) → 0,

as TOL → 0, where ∆tsup ≡ supn,ω ∆tn(ω).

Proof. Let G be the σ-algebra generated by the jumps and marks constructed in Remark 1.1. Consider
the conditional expectation E[|X(t) − X(t)|2 | G] and apply Lemma 3.1 from [34], using also that there
is no time discretization error at the jump nodes. �

In addition to the dual functions ϕ and ϕ′ in Theorem 2.3, the new error expansion for stochastic time
steps in Theorem 3.3 below also uses, for t = t−n+1, the discrete dual variation

(3.4) ϕ′′
ikm(t) ≡ ∂xm(t)ϕ

′
ik(t) ≡ ∂ϕ′

ik(t;X(t)=x)
∂xm

,

which satisfies the backward problem (A.1) – (A.4), i.e.,

15

Lemma 3.2. Let Φ, ϕ and ϕ′ be defined by (2.31) and (A.1) – (A.4). Then ϕ′′ is given by

(3.5)

ϕ′′
ikm(t) = ∂iΦj(t, X(t))∂kΦp(t, X(t))∂mΦr(t, X(t))ϕ′′

jpr(tnext)

+ ∂imΦj(t, X(t))∂kΦp(t, X(t))ϕ′
jp(tnext)

+ ∂iΦj(t, X(t))∂kmΦp(t, X(t))ϕ′
jp(tnext)

+ ∂ikΦj(t, X(t))∂mΦp(t, X(t))ϕ′
jp(tnext)

+ ∂ikmΦj(t, X(t))ϕj(tnext), t < T,

ϕ′′
ikm(T) = ∂ikmg(X(T)).

which is equivalent to (A.1) – (A.4) with tnext as in Definition 2.7.

Stochastic time step algorithm:

Do for M realizations ωj , j = 1, . . . , M :
Sample jump times: 0 < τ1(ωj) < · · · < τ bN(ωj)

(ωj) < T .

Consider an augmented partition given by the union

(3.6) ∆t[0] = {tn(ωj)}NA(ωj)

n=0 = {t̃n}N

n=0 ∪ {τn(ωj)}
cN(ωj)

n=0

that has NA(ωj) = N + N̂(ωj) (a.s.) time steps.
STEP 1: Set k = 0. Start with the initial coarse mesh ∆t[0] and compute

∆W [0].

STEP 2: For the piecewise constant mesh function ∆t[k] with corresponding

noise ∆W [k], compute X[k] and the weight function ρ[k] defined in (3.8-3.9).

STEP 3: Define r(t) ≡ |ρ[k](t)|(∆t[k](t))2 and let for all t

∆t[k + 1](t) =

{
∆t[k](t), if r(t) < δ, (†)
∆t[k](t)/2, if r(t) ≥ δ, (?)

and in the refinement case (?) construct ∆W [k +1] by Brownian bridges based
on the already known ∆W [k].

STEP 4: If at least one step of ∆t[k] is refined by (?), increment k by 1 and
goto Step 2. Else all steps of ∆t[k] satisfy (†) and accept the approximation
g(X(T, ωj)) and goto the next realization of p and W .

Enddo
If the statistical error, E[g(X(T))]− 1

M

∑M
j=1 g(X(T, ωj)), is sufficiently small

stop, else restart with a larger M . Endif

Proof. Differentiation of the backward recursive equation (2.40) and the relations (2.34-2.39) together
with

(3.7) ∂xm(t)ϕ
′
jp(tnext) = ∂xr(tnext)ϕ

′
jp(tnext)∂xm(t)Xr(tnext),

prove as in (2.36)-(2.39) that ϕ′′ satisfies (3.5). Here, (3.7) holds since the linear system for the variable(
ϕ(tnext), ϕ

′(tnext)
)

depends only on the point values {X(s) : tnext ≤ s ≤ T}. �

The following theorem derives an error estimate applicable both to adaptive deterministic time steps
and to the stochastic time step algorithm; the assumptions and the proof of the theorem focus on
stochastic steps, however a modification to deterministic time steps is straightforward. The computable
error density |ρ̃| of this error estimate can then be cut-off for small and large values to satisfy (3.3), see
(4.17) and (4.6).

Theorem 3.3 (Stochastic time steps error expansion). Suppose that a, b, g, X satisfy the assumptions in
Lemma 2.1 and that X is constructed by the forward Euler method with step sizes ∆tn satisfying (3.2-
3.3) and the corresponding ∆Wn are generated by Brownian bridges, following the stochastic time step
algorithm in Lemma 3.1. Assume also that X(0) = X(0) and E[|X(0)|k0] ≤ C for some k0 ≥ 16. Then

16

the time discretization error has the following expansion, based on both the drift and diffusion fluxes and
the discrete dual functions ϕ, ϕ′ and ϕ′′ given in (A.1) – (A.4), with computable leading order terms

(3.8)

E[g(X(T))− g(X(T))] = E
[NA−1∑

n=0

ρ̃(tn, X)(∆tn)2
]

+ O
(√ TOL

c(TOL)

(C(TOL)

c(TOL)

)8/k0
)
E
[NA−1∑

n=0

(∆tn)2
]
,

where

(3.9)

ρ̃(tn, X) ≡ 1

2

((
∂tak + ∂jakaj + ∂ijakdij

)
ϕk(t−n+1)

+
(
∂tdkm + ∂jdkmaj + ∂ijdkmdij + 2∂jakdjm

)
ϕ′

km(t−n+1)

+
(
2∂jdkmdjr

)
ϕ′′

kmr(t
−
n+1)

)
,

and the terms in the sum of (3.9) are evaluated at the a posteriori known points (tn, X(tn)), i.e.

∂αa ≡ ∂αa(tn, X(tn)),

∂αb ≡ ∂αb(tn, X(tn)),

∂αd ≡ ∂αd(tn, X(tn)).

Proof. We consider the difference
g(X(t)) − g(X(t))

and apply Theorem 3.3 from [34], using also that there is no time discretization error at the jump nodes.
To this end, denote the set of stochastic time nodes by J ≡ {0 = t0, t

−
1 , t1, t

−
2 , t2, . . . , tN = T} and recall

that the notation

(3.10) X(tnext) = Φ(X(t)), t ∈ J ,

introduced in Definition 2.7 denotes one step with the Euler method. Write similarly one step with the
exact solution

(3.11) X(tnext) = Φ̂(X(t)), t ∈ J .

Introduce the notation X t ≡ X(t) and X
t ≡ X(t). Now verify the representation

(3.12) g(X(T))− g(X(T)) =

NA−1∑

n=0

(Φ̂(X(tn)) − Φ(X(tn)))iϕ̃i(t
−
n+1)

where the weight functions are defined recursively by the linear backward recursion

(3.13)

ϕ̃i(T) =

∫ 1

0

∂ig(sX(T) + (1 − s)X(T))ds,

ϕ̃i(t) =
(∫ 1

0

∂iΦ̂j(sX(t) + (1 − s)X(t))ds
)
ϕ̃j(tnext), t ∈ J .

To verify (3.12), first observe that by construction of the Euler method at every jump point t = t−n there
is no local error in computing the next X value at time tn, i.e.

Φ̂(X
t
) − Φ(X

t
) = 0

so (3.12) is equivalent to

(3.14) g(X(T)) − g(X(T)) =
∑

t∈J
(Φ̂(X

t
) − Φ(X

t
))iϕ̃i(tnext).

Then telescoping cancelation gives

(3.15) g(X(T)) − g(X(T)) =
∑

t∈J

(
(Xtnext − X

tnext
)iϕ̃i(tnext) − (Xt − X

t
)iϕ̃i(t)

)
.

17

Use the definitions (3.10,3.11) and split the first term in the sum of (3.15) into

(Φ̂(Xt) − Φ̂(X
t
) + Φ̂(X

t
) − Φ(X

t
))iϕ̃i(tnext).

The two first terms above and the last term in the sum of (3.15) combine to zero by (3.13):

(Φ̂(Xt) − Φ̂(X
t
))iϕ̃i(tnext)(X

t − X
t
)iϕ̃i(t),

which proves (3.12).
The next step is to use the Malliavin derivative to analyze the expectation of the representation (3.12)

by studying the dependence of X and ϕ̃ on a small increment dW . This follows exactly the lines of the
proof of Theorem 3.3 from [34], and it is not reproduced here. �

4. Adaptive time-stepping algorithms

Here, we describe two adaptive time-stepping algorithms for the weak approximation problem of (1.1)
based on the approximation error formulas described in the previous section. They are very similar
to those introduced in [29]. Algorithm-D is based on a quasi-deterministic mesh that is fixed for all
realizations and its adaptive strategy is based on averaged information from the a posteriori error formula.
On the other hand, Algorithm-S can adapt the time discretization differently for each realization. Proper
sample of the Wiener process is possible by means of Brownian bridges. Both adaptive algorithms choose
adaptively the number of realizations and the size of time steps to efficiently bound the approximation
error by a prescribed error tolerance.

4.1. Computational error splitting. The weak approximation computational error of the Monte Carlo

Euler method, EC ≡ E
[
g(X(T))

]
− 1

M

∑M
j=1 g

(
X(T, ωj)

)
, naturally separates to the time discretization

error ET ≡ E
[
g(X(T))

]
−E

[
g(X(T))

]
and the statistical error ES ≡ E

[
g(X(T))

]
− 1

M

∑M
j=1 g

(
X(T, ωj)

)
,

i.e., EC = ET + ES. Thus, the control the computational error is related to the a combined control of the
time discretization error via the choice of the time steps ∆t and of the statistical error via the choice of
the number M of the realizations. Therefore, we split a given computational error tolerance, TOL > 0,
into a statistical error tolerance TOLS and a time discretization error tolerance TOLT (see [34], [29]) by

(4.1) TOLT = 1
3 TOL and TOLS = 2

3TOL.

4.2. Control of the statistical error. For M independent samples {Y (ωj)}M

j=1 of a random variable

Y , with E
[
|Y |6

]
< ∞, define the sample average by

A(Y ; M) ≡ 1

M

M∑

j=1

Y (ωj)

and the sample standard deviation by

S(Y ; M) ≡
{
A(Y 2; M) − (A(Y ; M))2

} 1
2 .

Let σY ≡
{
E
[∣∣Y − E[Y]

∣∣2]
} 1

2

and ZM ≡
√

M
σY

(A(Y ; M) − E[Y]) with cumulative distribution function

FZM
(x) ≡ P (ZM ≤ x), x ∈ R. Let λ ≡ (E[|Y − E[Y]|3])1/3/σY < ∞, then the Berry-Esseen theorem,

cf. [10], gives the following estimation in the Central Limit Theorem

sup
x∈R

|FZM
(x) −N (x)| ≤ 3√

M
λ3

for the rate of convergence of FZM
to the distribution function N of a normal random variable with mean

zero and variance one, i.e.

N (x) =

∫ x

−∞

1√
2π

exp

(
−1

2
s2

)
ds.(4.2)

Since in the examples below M is sufficiently large, i.e. M � 36λ6, the statistical error

ES(Y ; M) ≡ E[Y] −A(Y ; M)
18

satisfies, by the Berry-Esseen theorem, the following probability approximation

P

([
|ES(Y ; M)| ≤ c0

σY√
M

])
' 2N (c0) − 1.

In practice choose some constant c
0
≥ 1.65, so the normal distribution satisfies 1 > 2N (c

0
) − 1 ≥ 0.901

and the event

|ES(Y ; M)| ≤ ES(Y ; M) ≡ c
0

S(Y ; M)√
M

(4.3)

has probability close to one, which involves the additional step to approximate σY by S(Y ; M), cf. [13].
Thus, in the computations ES(Y ; M) is a good approximation of the statistical error ES(Y ; M).

For a given TOLS > 0, the goal is to find M such that ES(Y ; M) ≤ TOLS. The following algorithm
adaptively finds the number of realizations M to compute the sample average A(Y ; M) as an approxima-
tion to E[Y]. With probability close to one, depending on c

0
, the statistical error in the approximation

is then bounded by TOLS. For technical reasons (see [29]) we choose M = 2n, n ∈ N.

routine Monte-Carlo(TOLS , M0; EY)
Set the batch counter m = 1, M [m] = M0 and ES [m] = +∞.
Do while (ES [m] > TOLS)

(4.4)

Compute M [m] new samples of Y , along with the sample
average EY ≡ A(Y ; M [m]), the sample standard deviation
S[m] ≡ S(Y ; M [m]) and the statistical error estimation
ES [m + 1] ≡ ES(Y, M [m]). Compute M [m + 1] by
change M (M [m], S[m], TOLS ; M [m + 1]).
Increase m by 1.

end-do

end of Monte-Carlo

routine change M (Min, Sin, TOLS ; Mout)

(4.5)
M∗ = min

{
integer part

(
c
0

Sin

TOLS

)2

, MCH × Min

}

n = integer part (log2 M∗) + 1
Mout = 2n.

end of change M

Here, M0 is a given initial value for M , and MCH > 1 is a positive integer parameter introduced to
avoid a large new number of realizations in the next batch due to a possibly inaccurate sample standard
deviation S[m]. Indeed, M [m + 1] cannot be greater than MCH × M [m].

4.3. Deterministic time stepping algorithm. Following closely [29] and [27], we present an adaptive
algorithm based on cut-off of the error density ρ̃ in (3.9) of Theorem 3.3, ρD, which is defined as

(4.6) ρn
D
≡ min

(
max

(∣∣∣ 1
(∆t̃n)2

∑

`∈Jn

(∆t`)
2ρ̃(t`, X)

∣∣∣, TOL
1
9

)
, TOL−1

)
, n = 1, . . . , N.

The error expansion in Theorem 3.3 motivates us to approximate the time discretization error by

(4.7) |ET | . E

[
N∑

n=1

rn

]

where the error indicator, rn, is defined by

(4.8) rn ≡ ρn
D

(∆t̃n)2 n = 1, . . . , N.

The main advantage of the deterministic time stepping algorithm over the stochastic time stepping
algorithm is that the number MT of realizations necessary to determine the optimal deterministic stepping

19

scheme is considerable smaller than M , whereas, in the stochastic time stepping algorithm, a refinement
of the partition is carried out in each one of the M trajectories, leading to a considerable larger amount
of computational work.

As pointed out before, the error expansion derived in Theorem 3.3 is also valid with deterministic
time steps. Therefore, we have some flexibility in the choice of error densities for the adaptive algorithm
with deterministic time steps because we can also use the results from Theorem 2.3. There are some
practical differences to mention. On the one hand, the variance of the averaged error density from (2.9) is
O(1

∆t̃nMT
). This feature has been observed in [28] and [34], where a local filtering procedure was proposed

to reduce the variance of the error density estimator. A positive feature of this error density is that it
does not require the computation of the second variation, ϕ′′, which may be computationally expensive
for large d. On the other hand, the averaged error density from (3.9) has a much smaller variance O(1

MT
)

which does not need filtering but it requires the computation of ϕ′′. In this work we will not discuss
further this choice and only show numerical results with adaptive deterministic time steps based on the
error density (3.9).

The approximation of the time discretization error in the right hand side of (4.7) can be separated
into two parts

E

[
N∑

n=1

rn

]
≤ A

(
N∑

n=1

rn; MT

)
+

∣∣∣∣∣E
[

N∑

n=1

rn

]
−A

(
N∑

n=1

rn; MT

)∣∣∣∣∣ ,(4.9)

where the second error term in the right hand side of (4.9) is with probability close to one asymptotically
bounded by

∣∣∣∣∣E
[

N∑

n=1

rn

]
−A

(
N∑

n=1

rn; MT

)∣∣∣∣∣ . ETS ≡ c0

S
(∑N

n=1 rn; MT

)

√
MT

(4.10)

and the first term defines ETT ≡ A
(∑N

n=1 rn; MT

)
. Then for a given TOLT > 0, the goal is to construct a

partition ∆t̃ of [0, T], with as few time steps and realizations MT as possible, such that ETT +ETS ≤ TOLT .
To this end, first split the time discretization tolerance TOLT in two positive parts TOLT T and TOLT S

for ETT and ETS, respectively. The statistical error of the time discretization using the density (4.6) is

O(
∆tsup√

MT
). Therefore the percentage of the tolerance, TOL, devoted to the control of the statistical time

discretization error can be arbitrary small as ∆tsup → 0. In practice we choose

(4.11) TOLTT =
2

3
TOLT =

2

9
TOL, TOLTS =

1

3
TOLT =

1

9
TOL.

The control of the statistical time discretization error determines the number of realizations MT necessary
to ensure a reliable choice of the time discretization in the deterministic time stepping algorithm. Similarly
as in [29], here it is optimal to equidistribute the error contributions from different time intervals. Thus,
the goal of the adaptive algorithm described below is to construct a deterministic time partition ∆t̃ of
[0, T] such that

r̄n ≡ A(rn; MT) ≤ d1
TOLTT

N
, n = 1, . . . , N,(4.12)

where d1 = 2, see Remark 3.9 in [29].
To achieve (4.12), start with an initial partition ∆t̃[1] and then specify iteratively a new partition

∆t̃[k + 1], from ∆t̃[k], using the following refinement strategy:
20

for n = 1, 2, . . . , N [k](4.13)

if r̄n[k] ≥ d1
TOLTT

N [k]
, then divide ∆t̃n[k] into 2 uniform substeps.(4.14)

else let the new step be the same as the old

endif.(4.15)

endfor.

until the following stopping criteria is satisfied:

if

(
max

1≤n≤N [k]
r̄n[k] < D1

TOLTT

N [k]

)
then stop.(4.16)

Here D1 is a given constant satisfying D1 > 2
cd1 where c ≈ 1/2, see [29]. The combination of (4.9) and

(4.16) asymptotically guarantees a given level of accuracy, ETT < D1TOLTT . The positive numbers D1

is motivated to avoid slow convergence in case almost all r̄n satisfy (4.16), as in Section 4.4.
Now we are ready for the detailed definition of the adaptive algorithm with deterministic steps:

Algorithm D

Initialization Choose:

(1) an error tolerance, TOL ≡ TOLS + TOLTT + TOLTS ,
(2) a number, N [1], of initial uniform steps ∆t̃[1] for [0, T],
(3) a number, M [1], of initial realizations and set MT [1] = M [1],
(4) a number, d1 = 2 in (4.14) and c = 1/2 + 1/20 to compute D1 using D1 > 2

cd1, and
(5) a constant c0 ≥ 1.65 and an integer MCH≥ 2 to determine the number of realizations in (4.5).

Set the iteration counter, k, for time refinement levels, to 1 and set the statistical
error, ETS = +∞ and r̄[k] = +∞.
Do while (r̄[k] violates the stopping (4.16) or ETS > TOLTS)

Compute the sample averages and the error estimates on ∆t̃[k]
by calling Euler. Set MT [k + 1] = MT [k] and ∆t̃[k + 1] = ∆t̃[k].
If (r̄[k] violates the stopping (4.16))

For all time steps i = 1, . . . , N [k], do the refinement process (4.14)
to update ∆t̃[k + 1] from ∆t̃[k].

elseif (ETS > TOLTS)
Update MT [k + 1] by change M (MT [k],STS [k], TOLTS ; MT [k + 1]).

end-if

Increase k by 1.
end-do

Compute an approximation, Eg, for E[g(X(T))] with fixed time mesh ∆t̃ = ∆t̃[k]
by Monte-Carlo(TOLS , MT [k]; Eg) in (4.4).
Accept Eg as an approximation of E[g(X(T))], since the estimate of the
computational error is bounded by TOL.

routine Euler

For each M
T
[k] new realizations, sample jump times with their corresponding marks.

As described in Section 1.2, use ∆t̃[k] to compute corresponding realizations of the Euler method.
Update the approximations of the time discretization error
indicators r̄[k] and the statistical time discretization error ETS[k] and
compute the sample standard deviation STS [k] ≡ S(g(X(T)); MT [k]).

end-of-Euler

21

4.4. The stochastic time stepping algorithm. Now we describe an adaptive algorithm with stochas-
tic time steps based on a cut-off of the error density ρ̃ introduced in (3.9) of Theorem 3.3, ρS, defined by
as

(4.17) ρn
S
≡ min

(
max

(
|ρ̃(tn, X)|, TOL

1
9

)
, TOL−1

)
, n = 1, . . . , NA.

Following the error expansion in Theorem 3.3, the time discretization error is approximated by

(4.18) |ET | . E

[
NA∑

n=1

rn

]

where the error indicator, rn, is defined by

(4.19) rn ≡ ρn
S

(∆tn)2, n = 1, . . . , NA.

In this case it is optimal, cf. [29], to equidistribute the error contributions among all time steps and all
realizations. In other words, the goal of the adaptive algorithm is to construct a time partition ∆t of
[0, T] for each realization such that

rn ≤ s1
TOLT

E[NA] , n = 1, . . . , NA,(4.20)

where s1 = 2, see Remark 3.1 in [29]. Note that in practice the quantity E[NA] is not known and we can
only estimate it by a sample average A(NA; M) from the previous batch of realizations. The statistical
error |E[NA] − A(NA; M)| is then bounded by ES(NA; M), with probability close to one, by the same
argument as in (4.3).

Let NA[j] ≡ A(NA; M [j]) be the sample average of the final number of time steps in the j-th batch
of M [j] realizations. To achieve (4.20) for each realization, start with an initial partition ∆t[1] and then
specify iteratively a new partition ∆t[k + 1], from ∆t[k], using the following refinement strategy:

for each realization in the j-th batch

for each time step n = 1, . . . , NA[k]

if rn[k] ≥ s1
TOLT

NA[j−1]
, then divide ∆tn[k] into 2 uniform substeps.

else let the new step be the same as the old

endif

endfor.

endfor.

(4.21)

The refinement strategy (4.21) motivates the following stopping criteria: for each realization of the
j-th batch

(4.22) if

(
max

1≤n≤NA[k]
rn[k] < S1

TOLT

NA[j−1]

)
then stop,

where S1 > 2
c s1 with c ≈ 1

2 , see [29].
Now we are ready for the detailed definition of the adaptive algorithm with stochastic steps:

Algorithm S

Initialization Choose:

(1) an error tolerance, TOL ≡ TOLS + TOLT ,
(2) a number N [1] of initial uniform steps ∆t[1] for [0, T] and set NA = N [1],
(3) a number M [1] of initial realizations,
(4) a number s1 = 2 in (4.21) and c = 1

2 + 1
20 to compute S1 using S1 > 2

c s1, and
(5) a constant c0 ≥ 1.65 and an integer MCH≥ 2 to determine the number of realizations in (4.5).

Set the iteration counter for batches m = 1 and the stochastic error ES [m] = +∞.
Do while (ES [m] > TOLS)

For realizations j = 1, . . . , M [m]
Set k = 1 and r[k] = +∞.

22

Generate the jump times and their marks (τ, Z) = {(τ`, Z`)} bN
`=1.

Start with the initial partition ∆t[k] and generate ∆W [k].
Compute g(X(T))[J] and N [J] by routine Control-Time-Error.

end-for

Compute the sample average Eg ≡ A
(
g(X(T)); M [m]

)
, the sample

standard deviation S[m] ≡ S(g(X(T)); M [m]) and the a posteriori bound
for the statistical error ES[m] ≡ ES(g(X(T)), M [m]) in (4.3).
if (ES [m] > TOLS)

Compute M [m + 1] by change M(M [m], S[m], TOLS ; M [m + 1]), cf.
(4.5), and update NA = A (NA[J]; M [m]), where the random variable
NA[J] is the final number of time steps on each realization.

end-if

Increase m by 1.
end-do

Accept Eg as an approximation of E[g(X(T))], since the estimate of the
computational error is bounded by TOL.

routine Control-Time-Error(∆t[k], ∆W [k], r[k], (τ, Z); g(X(T))[J], N [J])
Do while (r[k] violates the stopping (4.22))

Compute the Euler approximation X[k] in Section 1.2 and the error indicator
r[k] in (4.8) using the error density (4.17) on ∆t[k] with the known
Wiener increments ∆W [k].
If (r[k] violates the stopping (4.22))

For time steps i = 1, . . . , N [k]
Do the refinement process (4.21) to compute ∆t[k + 1] from ∆t[k]
and compute ∆W [k + 1] from ∆W [k] using Brownian bridges.

end-for

end-if

Increase k by 1.
end-do

Set the number of the final level J = k − 1.
end of Control-Time-Error

5. Numerical Experiments

This sections shows numerical results from the implementation of the a posteriori error approximation
formula presented in Section 2 and of the adaptive algorithms described in Section 4. The programs we
wrote uses double-precision FORTRAN 77 and is based on the code written for the numerical experiments
in [34]. For the numerical simulation of the uniform distribution U(0, 1) and the normal distribution
N (0, 1), it applies a double-precision modification of the functions ran1 and gasdev proposed in [32],
provided an initial seed which must be a negative integer. In particular we use iseed for the simulation of
the Wiener process increments, zseed for the simulation of the jump marks and tseed for the simulation
of the jump times.

To perform our computations, we consider a system of stochastic differential equations of the form
(1.1) with: d = 2, `0 = `1 = 1,

a(t, x) =
(
− x2, x1 + 1

2 λ(t) x2

)
, b1(t, x) =

(√
λ(t)
1+t sin(x1), 0

)
,

c(t, x, z) =
(
0, z cos(x1)√

t+1
− x2

)

and a time dependent intensity λ(t) = (1 + t)−1. The distribution for the jump marks is time dependent
and such that E[Z2

k] = 1. In particular, we use

Zk = cos(2πτk) + sin(2πτk) 2
√

3 (Uk − 1
2)

23

where {τk} are the jumps constructed in Remark 1.1 and {Uk} is a sequence a sequence of U(0, 1) i.i.d.
random variables. In this case, due to assumed for of λ(t) the inverse function Λ−1 is given explicitly by
Λ−1(s) = exp(s) − 1. This example is a generalization of Example 5.1 in [24], as here we admit a time
dependent intensity of the underlying Poisson process and also time dependent distribution of the marks.
Taking g(x) = |x|2, T = 1 and X(0) = (0, 0) the exact solution of the corresponding weak approximation
problem is given by the formula

E
[
g(X(T))

]
= |X(0)|2 +

∫ T

0

λ(s)
1+s ds = 1 − 1

1+T =
1

2
.

The value of the parameters needed in the simulations are MCH = 10, c0 = 1.65, iseed = −7, zseed =
−101 and tseed = −20. We note that the expected value of the number of jumps points equals Λ(T) =
Λ(1) = log(2) ' 0.693. Therefore, the computational cost of including the jump times of the process X in

our discretization is fairly low, see also the sampled values of max N̂ in Table 5.3, and it is asymptotically
negligible as the required accuracy, TOL, tends to zero.

5.1. Deterministic time step algorithm. First, we perform overkilling runs in order to test how
realistic is the a posteriori error approximation of the time discretization error described in Theorem 2.3.
The results, shown in Table 5.1, show that the ratio of the computational error and its computable
approximation tends to 1 as the number of uniform time steps N increases. For each value of N , we
choose the number of realizations M large enough in order to keep the total statistical error at the level
of 1% of the size of the obtained approximation of the time discretization error.

Alg. D c0 = 1.65 iseed = −7 A := ET−ES−ETS

Ec
B := ET +ES+ETS

Ec

N M ET ES + ET S [min{A, B}, max{A, B}]

5 10× 106 −0.0602 5.87× 10−4 [1.026, 1.046]

10 50× 106 −0.0314 2.33× 10−4 [1.019, 1.035]

20 100× 106 −0.0159 1.54× 10−4 [1.008, 1.028]

TABLE 5.1. Computing the efficient index of the Algorithm D.

Table 5.2 contains the results of the Algorithm D with an adaptive choice of both the deterministic
time steps and the number of realizations. The program starts with M = 100 and N = 5 subintervals
as an initial uniform partition of the time interval [0, T] = [0, 1]. The tolerance TOL = 0.02 is divided
into TOLS = 0.01333, TOLT = 0.00444 and TOLTS = 0.00222. When the algorithm stops, the size of
the total approximation error is less than 2TOL according to the stopping criterion (4.16) and it agrees
with the size of the computational error.

24

Alg. D c
0

= 1.65 MCH = 10 iseed=-7 TOL = 0.02

Iter. N M Ec ET ET S ES

1 5 100 -0.03272 -0.05889 0.02112 0.14602

2 5 1000 -0.04844 -0.06005 0.00684 0.04835

3 5 10000 -0.06592 -0.06070 0.00232 0.01675

4 5 12088 -0.05215 -0.05925 0.00204 0.01459

5 10 12088 -0.03738 -0.03196 0.00107 0.01403

6 20 12088 -0.02585 -0.01633 0.00054 0.01369

7 20 14122 -0.02559 − − 0.01261

TABLE 5.2. Adaptive choice of M and ∆t with Algorithm D.

5.2. Stochastic time step algorithm. To observe the performance of the stochastic time steps Algo-
rithm S, we apply it for different values of TOL, starting with a number of realizations M = 100 and a
number of uniform time steps N = 5. Table 5.3 contains the obtained results which show that Algorithm
S is also effective in giving us an approximation of the quantity of interest within the margin of 2TOL
due to the criterion (4.16).

TOL M A(NA; M) min NA max NA S(NA; M) max N̂ ES EC

0.040 3.2×103 8.3 5 41 5.2 6 2.5×10−2 −2.2×10−3

0.020 12.0×103 10.9 5 73 9.2 6 1.3×10−2 −6.0×10−3

0.010 47.9×103 20.5 10 146 16.9 6 6.6×10−3 −1.0×10−2

0.005 186.4×103 30.1 10 193 32.2 7 3.3×10−3 −3.2×10−3

TABLE 5.3. Adaptive choice of M and ∆t with Algorithm S.

Acknowledgements. The work has been supported by: (i) the Swedish Research Council for Enginee-
ring Science (TFR) Grant# 222-148, (ii) the Swedish National Network in Applied Mathematics (NTM),
(iii) the Project 10.101 FCE - DINACYT, Uruguay, (iv) CSIC - Udelar, Human Resources Program, and
(v) the Facultad de Ciencias, Udelar, Montevideo, Uruguay.

Appendix A. Discrete Dual Equations

This appendix section is dedicated to the determination of the discrete dual functions ϕ(t) ∈ R
d,

ϕ′(t) ∈ R
d×d and ϕ′′(t) ∈ R

d×d×d (see Theorem 2.3 and Theorem 3.3), where t is a node of the (stochastic)
partition of the time interval [0, T] which is used by the Euler method (see Section (1.2)). First, introduce

the auxiliary functions Âi and ĉi, defined by

Âi(tn, x) ≡ xi + ∆tnai(tn, x) + ∆W `
nb`

i(tn, x) ∀x ∈ R
d, i = 1, . . . , d,

ĉi(t, x, z) ≡ xi + ci(t, x, z) ∀x ∈ R
d, ∀ z ∈ Z, i = 1, . . . , d.

Then, for each realization, ϕ, ϕ′ and ϕ′′ are constructed by the following algorithm:
25

Dual backward time stepping algorithm.

Set the initial backward values

(A.1)
ϕi(tNA

) = ∂ig
(
X(tNA

)
)
, ϕ′

ik(tNA
) = ∂ikg

(
X(tNA

)
)
,

ϕ′′
ikm(tNA

) = ∂ikmg
(
X(tNA

)
)
.

for n = NA − 1, . . . , 0
if (tn+1 is a jump time) then set Pn+1 =

(
t−n+1, X(t−n+1), Zn+1

)
and

ϕi(t
−
n+1) = ∂iĉj(Pn+1) ϕj(tn+1),

ϕ′
ik(t−n+1) = ∂iĉj(Pn+1) ∂k ĉp(Pn+1) ϕ′

jp(tn+1) + ∂ik ĉj(Pn+1) ϕj(tn+1),

ϕ′′
ikm(t−n+1) = ∂iĉj(Pn+1) ∂k ĉp(Pn+1) ∂mĉr(Pn+1) ϕ′′

jpr(tn+1)

+ ∂imĉj(Pn+1) ∂k ĉp(Pn+1) ϕ′
jp(tn+1)

+ ∂iĉj(Pn+1) ∂kmĉp(Pn+1) ϕ′
jp(tn+1)

+ ∂ik ĉj(Pn+1) ∂mĉp(Pn+1) ϕ′
jp(tn+1)

+ ∂ikm ĉj(Pn+1) ϕj(tn+1),

(A.2)

else set

ϕi(t
−
n+1) = ϕi(tn+1), ϕ′

ij(t
−
n+1) = ϕ′

ij(tn+1), ϕ′′
ikm(t−n+1) = ϕ′

ikm(tn+1).(A.3)

end-if

Set P̂n = (tn, X(tn)) and

ϕi(tn) = ∂iÂj(P̂n) ϕj(t
−
n+1),

ϕ′
ik(tn) = ∂iÂj(P̂n) ∂kÂp(P̂n) ϕ′

jp(t−n+1) + ∂ikÂj(P̂n) ϕj(t
−
n+1),

ϕ′′
ikm(tn) = ∂iÂj(P̂n) ∂kÂp(P̂n) ∂mÂr(P̂n) ϕ′′

jpr(t
−
n+1)

+ ∂imÂj(P̂n) ∂kÂp(P̂n) ϕ′
jp(t−n+1)

+ ∂iÂj(P̂n) ∂kmÂp(P̂n) ϕ′
jp(t−n+1)

+ ∂ikÂj(P̂n) ∂mÂp(P̂n) ϕ′
jp(t−n+1) + ∂ikmÂj(P̂n) ϕj(t

−
n+1).

(A.4)

end-for

Observe that the estimate in Theorem 2.3 needs only the computation of ϕ and ϕ′ and it is therefore
less expensive per realization. Also, with respect to the actual implementation of the dual backward time

stepping it is useful to notice that the blocks (A.2) and (A.4) differ only in the function call ĉ and Â.

References

[1] V. M. Alekseev, An estimate for the perturbations of the solutions of ordinary differential equations. II, Vestnik
Moskov. Univ. Ser. I Mat. Mech 3 (1961), pp. 3–10 (in russian).

[2] Andersen and Andreasen, Jump diffusion models: volatility smile fitting and numerical methods for pricing. Review
of derivatives research. 4 (2000), pp. 231–262.

[3] I. Babuška, A. Miller and M. Vogelius, Adaptive methods and error estimation for elliptic problems of structural

mechanics in Adaptive computational methods for partial differential equations (College Park, Md., 1983), SIAM,
Philadelphia, Pa., (1983), pp. 57–73.

[4] V. Bally and D. Talay, The Euler scheme for stochastic differential equations: error analysis with Malliavin calculus.
Math. Comput. Simulation 38 (1995), pp. 35–41.

[5] V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations. II. Convergence rate of the

density Monte Carlo Methods Appl. 2 (1996), pp. 93–128.
[6] R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: basic analysis and

examples. East-West J. Numer. Math., 4 (1996), pp. 237–264.
[7] N. Bruti-Liberati and E. Platen, Weak Numerical Methods for Jump-Diffusion Processes with Applications in Finance

Presentation in the Conference: “Numerical Methods in Finance (Inria-Rocquencourt, France, 1/2/2006-3/2/2006)”
[8] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall, Financial Mathematics Series,

(2004).

26

[9] R. Cont and P. Tankov, Calibration of jump-diffusion option pricing models: a robust non-parametric approach,
working paper.

[10] R. Durett, Probability: theory and examples, Duxbury Press, Belmont CA, 1964.
[11] A. Dzougoutov, K.-S. Moon, E. von Schwerin, A. Szepessy, R. Tempone. Adaptive Monte Carlo algorithms for stopped

diffusion in Multiscale methods in science and engineering, pp. 59–88, Lect. Notes Comput. Sci. Eng., vol. 44, Springer,
Berlin, 2005.

[12] K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations, Acta
Numerica, (1995), 105–158.

[13] G. S. Fishman, Monte Carlo: Concepts, Algorithms, Applications, Springer-Verlag, New York, 1996.
[14] A. Friedman, Partial differential equations of parabolic type Prentice-Hall, Englewood Cliffs, New Jersey (1964)
[15] P. Glasserman and N. Merener. Numerical Solution of Jump-Diffusion LIBOR Market Models. Finance Stoch. 7 (2003),

no. 1, 1–27.
[16] D. J. Higham and P. E. Kloeden, Numerical methods for nonlinear stochastic differential equations with jumps. Numer.

Math. 101 (2005), no. 1, 101–119;
[17] N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, Second edition, North-Holland,

Amsterdam, (1989)
[18] Jacod, J. and Shiryaev, A.N., Limit Theorems for Stochastic Processes. Springer, Berlin, Heidelberg. (1987)
[19] C. Johnson, Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential

equations SIAM J. Numer. Anal. 25 (1988), pp. 908–926

[20] C. Johnson and A. Szepessy. Adaptive finite element methods for conservation laws based on a posteriori error esti-

mates. Comm. Pure Appl. Math. 48 (1995), pp. 199–234.
[21] P.E. Kloeden and E. Platen, Numerical solution of stochastic differential equations, Applications of Mathematics, 23,

Springer–Verlag, New York, 1992.
[22] I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus, Graduate Texts in Mathematics 113, Springer–

Verlag, New York, 1988.
[23] A. L. Lewis. A simple option formula for general jump-diffusion and other exponential Lévy processes. Envision

Financial Systems and OptionCity.net. September 2001.
[24] X. Q. Liu and C. W. Li. Weak approximation and extrapolations of stochastic differential equations with jumps. SIAM

J. Numer. Anal. 37 (2000), pp. 1747–1767.
[25] A.-M. Matache, T. von Petersdorff and C. Schwab, Fast deterministic pricing of options on Lévy driven assets, Report

2002-11.
[26] G. N. Milstein, Numerical integration of stochastic differential equations, Mathematics and its Applications, 313,

Kluwer Academic Publishers, Dordrrecht, 1995.
[27] K.-S. Moon, E. von Schwerin, A. Szepessy and R. Tempone, An adaptive algorithm for Ordinary, Stochastic and

Partial Differential Equations, Contemporary Mathematics 383 (2005), pp. 325–343.
[28] K.-S. Moon, A. Szepessy, R. Tempone and G.E. Zouraris, Hyperbolic differential equations and adaptive numerics, in

Theory and Numerics of Differential Equations (Durham, 2000) Eds. Blowey, J. F.; Coleman, J. P.; Craig, A. W. pp.
231–280, Universitext, Springer, Berlin, 2001.

[29] K.-S. Moon, A. Szepessy, R. Tempone and G.E. Zouraris, Convergence rates for adaptive weak approximation of

stochastic differential equations, Stochastic Analysis and Applications 23 (2005), pp. 511–558.
[30] D. Nualart, The Malliavin calculus and related topics, Probability and its Applications, Springer–Verlag, New York,

1995.
[31] B. Øksendal, Stochastic differential equations, Fifth edition, Springer–Verlag, Berlin, 1998.
[32] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical recipes in FORTRAN. The art of scientific

computing, Second edition, Cambridge University Press, Cambridge, 1992.
[33] P. Protter, Stochastic integration and differential equations, Applications of Mathematics 21, Springer–Verlag, Berlin,

1990.
[34] A. Szepessy, R. Tempone and G.E. Zouraris. Adaptive weak approximation of stochastic differential equations. Comm.

Pure Appl. Math. 54 (2001), pp. 1169–1214.
[35] D. W. Strook, Lectures on topics in stochastic differential equations, TATA Institute of Fundamental Research, Bombay,

India, 1982.
[36] D.W. Strook and S.R.S. Varadhan. Multidimensional diffusion processes. Grundlehren der mathematischen Wis-

senschaften 233, Springer–Verlag, Berlin-New York, 1979.
[37] D.W. Strook and S.R.S. Varadhan, Diffusion processes with continuous coefficients, I and II Comm. Pure Appl. Math.

22 (1969), pp. 345-400 and 479-530.
[38] P. Protter and D. Talay. The Euler scheme for Lévy driven stochastic differential equations. Ann. Probab. 25 (1997),

pp. 393–423.
[39] D. Talay and L. Tubaro. Expansion of the global error for numerical schemes solving stochastic differential equations.

Stochastic Anal. Appl. 8 (1990), pp. 483–509.

27

