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The Manin constant

Amod Agashe Kenneth Ribet William A. Stein1

Abstract.

The Manin constant of an elliptic curve is an invariant that arises in
connection with the conjecture of Birch and Swinnerton-Dyer. One
conjectures that this constant is 1; it is known to be an integer. After
surveying what is known about the Manin constant, we establish a
new sufficient condition that ensures that the Manin constant is an
odd integer. Next, we generalize the notion of the Manin constant to
certain abelian variety quotients of the Jacobians of modular curves;
these quotients are attached to ideals of Hecke algebras. We also
generalize many of the results for elliptic curves to quotients of the new
part of J0(N), and conjecture that the generalized Manin constant is 1
for newform quotients.

1 Introduction

Let E be an elliptic curve over Q, and and let N be the conductor of E.
By [BCDT01], we may view E as a quotient of the modular Jacobian J0(N).
After possibly replacing E by an isogenous curve, we may assume that the
kernel of the map J0(N) → E is connected, i.e., that E is an optimal quotient
of J0(N).

Let ω be the unique (up to sign) minimal differential on a minimal Weier-
strass model of E. The pullback of ω is a rational multiple c of the differ-
ential associated to the normalized new cuspidal eigenform fE ∈ S2(Γ0(N))
associated to E. The absolute value of c is the Manin constant cE of E.
The Manin constant plays a role in the conjecture of Birch and Swinnerton-
Dyer (see, e.g., [GZ86, p. 130]) and in work on modular parametrizations
(see [Ste89, SW04, Vat05]). It is known that the Manin constant is an in-
teger; this fact is important to Cremona’s computations of elliptic curves (see
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[Cre97, pg. 45]), and algorithms for computing special values of elliptic curve
L-functions. Manin conjectured that cE = 1. In Section 2, we summarize
known results about cE , and give the new result that 2 - cE if if 2 is not a
congruence prime and 4 - N .

In Section 3, we generalize the definition of the Manin constant and many
of the results mentioned so far to optimal quotients of J0(N) and J1(N) of
any dimension associated to ideals of the Hecke algebra. The generalized
Manin constant comes up naturally in studying the conjecture of Birch and
Swinnerton-Dyer for such quotients (see [AS05, §4]), which is our motivation
for studying the generalization. We state what we can prove about the gen-
eralized Manin constant, and make a conjecture that the constant is also 1
for quotients associated to newforms. The proofs of the theorems stated in
Section 3 are in Section 4. Section 5 is an appendix written by J. Cremona
about computational verification that the Manin constant is 1 for many elliptic
curves.

Acknowledgment. The authors are grateful to A. Abbes, K. Buzzard,
R. Coleman, B. Conrad, B. Edixhoven, A. Joyce, L. Merel, and R. Taylor
for discussions and advice regarding this paper.

2 Optimal Elliptic Curve Quotients

Let N be a positive integer and let X0(N) be the modular curve over Q that
classifies isomorphism classes of elliptic curves with a cyclic subgroup of or-
der N . The Hecke algebra T of level N is the subring of the ring of endo-
morphisms of J0(N) = Jac(X0(N)) generated by the Hecke operators Tn for
all n ≥ 1. Suppose f is a newform of weight 2 for Γ0(N) with integer Fourier
coefficients, and let If be kernel of the homomorphism T → Z[. . . , an(f), . . .]
that sends Tn to an(f). Then the quotient E = J0(N)/IfJ0(N) is an elliptic
curve over Q. We call E the optimal quotient associated to f . Composing
the embedding X0(N) ↪→ J0(N) that sends ∞ to 0 with the quotient map
J0(N) → E, we obtain a surjective morphism of curves φE : X0(N) → E.

Definition 2.1 (Modular Degree). The modular degree mE of E is the
degree of φE.

Let EZ denote the Néron model of E over Z (see, e.g., [Sil92, App. C, §15],
[Sil94] and [BLR90]). Let ω be a generator for the rank 1 Z-module of invariant
differential 1 forms on EZ. The pullback of ω to X0(N) is a differential φ∗

E
ω

on X0(N). The newform f defines another differential 2πif(z)dz = f(q)dq/q
on X0(N). Because the action of Hecke operators is compatible with the map
X0(N) → E, the differential φ∗

E
ω is a T-eigenvector with the same eigenvalues

as f(z), so by [AL70] we have φ∗
E
ω = c · 2πif(z)dz for some c ∈ Q∗ (see also

[Man72, §5]).

Definition 2.2 (Manin Constant). The Manin constant cE of E is the
absolute value of the rational number c defined above.
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The following conjecture is implicit in [Man72, §5].

Conjecture 2.3 (Manin). We have cE = 1.

Significant progress has been made towards this conjecture. In the following
list of theorems, p denotes a prime and N denotes the conductor of E.

Theorem 2.4 (Edixhoven [Edi91, Prop. 2]). The constant cE is an integer.

Edixhoven proved this using an integral q-expansion map, whose existence
and properties follow from results in [KM85]. We generalize his theorem to
quotients of arbitrary dimension in Section 3.

Theorem 2.5 (Mazur, [Maz78, Cor. 4.1]). If p | cE, then p2 | 4N .

Mazur proved this by applying theorems of Raynaud about exactness of
sequences of differentials, then using the “q-expansion principle” in character-
istic p and a property of the Atkin-Lehner involution. We generalize Mazur’s
theorem in Section 3.

The following two results refine the above results at p = 2.

Theorem 2.6 (Raynaud [AU96, Prop. 3.1]). If 4 | cE, then 4 | N .

Theorem 2.7 (Abbes-Ullmo [AU96, Thm. A]). If p | cE, then p | N .

We generalize Theorem 2.6 in Section 3. However, it is not clear if Theo-
rem 2.7 generalizes to dimension greater than 1. It would be fantastic if the
theorem could be generalized. It would imply that the Manin constant is 1 for
newform quotients Af of J0(N), with N odd and square free, which be useful
for computations regarding the conjecture of Birch and Swinnerton-Dyer.

B. Edixhoven also has unpublished results (see [Edi89]) which assert that
the only primes that can divide cE are 2, 3, 5, and 7; he also gives bounds that
are independent of E on the valuations of cE at 2, 3, 5, and 7. His arguments
rely on the construction of certain stable integral models for X0(p

2).
See the appendix (Section 5) for a discussion of the following computational

theorem:

Theorem 2.8 (Cremona). If E is an optimal elliptic curve over Q with
conductor at most 60000 (or with conductor < 130000, except possibly for 14
exceptions), then cE = 1.

To the above list of theorems we add the following:

Theorem 2.9. If p | cE then p2 | N or p | mE.

This theorem is a special case of Theorem 3.9 below. In view of Theorem 2.5,
our new contribution is that if mE is odd and ord2(N) = 1, then cE is odd.
This hypothesis is very stringent—of the optimal elliptic curve quotients of
conductor ≤ 120000, only 56 of them satisfy the hypothesis. In the notation of
[Cre], they are
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14a, 46a, 142c, 206a, 302b, 398a, 974c, 1006b, 1454a, 1646a, 1934a, 2606a,
2638b, 3118b, 3214b, 3758d, 4078a, 7054a, 7246c, 11182b, 12398b, 12686c,
13646b, 13934b, 14702c, 16334b, 18254a, 21134a, 21326a, 22318a, 26126a,
31214c, 38158a, 39086a, 40366a, 41774a, 42638a, 45134a, 48878a, 50894b,
53678a, 54286a, 56558f, 58574b, 59918a, 61454b, 63086a, 63694a, 64366b,
64654b, 65294a, 65774b, 71182b, 80942a, 83822a, 93614a

Each of the curves in this list has conductor 2p with p ≡ 3 (mod 4) prime.
The situation is similar to that of [SW04, Conj. 4.2], which suggests there are
infinitely many such curves. See also [CE05] for a classification of elliptic curves
with odd modular degree.

3 Quotients of arbitrary dimension

For N ≥ 4, let Γ be either Γ0(N) or Γ1(N), let X be the modular curve over Q

associated to Γ, and let J be the Jacobian of X. Let I be a saturated ideal of the
corresponding Hecke algebra T, so T/I is torsion free. Then A = AI = J/IJ
is an optimal quotient of J since IJ is an abelian subvariety.

For a newform f =
∑

an(f)qn ∈ S2(Γ), consider the ring homomorphism
T → Z[. . . , an(f), . . .] that sends Tn to an(f). The kernel If ⊂ T of this
homomorphism is a prime ideal of T.

Definition 3.1 (Newform quotient). The newform quotient Af associated
to f is the quotient J/IfJ .

Shimura introduced Af in [Shi73] where he proved that Af is an abelian
variety over Q of dimension equal to the degree of the field Q(. . . , an(f), . . .).
He also observed that there is a natural map T → End(Af ) with kernel If .

For the rest of this section, fix a quotient A associated to a saturated ideal I
of T; note that A may or may not be attached to a newform.

3.1 Generalization to quotients of arbitrary dimension

If R is a subring of C, let S2(R) = S2(Γ;R) denote the T-submodule of S2(Γ;C)
consisting of cuspforms whose Fourier expansions at ∞ have coefficients in R.
Note that S2(R) ∼= S2(Z) ⊗ R. If B is an abelian variety over Q and n is a
positive integer, we denote by BZ[1/n] the Néron model of B over Z[1/n].

The inclusion X ↪→ J that sends the cusp ∞ to 0 induces an isomorphism

H0(X,ΩX/Q) ∼= H0(J,ΩJ/Q).

Let φ2 denote our fixed choice of optimal quotient map J → A. Then φ∗
2

induces an inclusion ψ : H0(AZ,ΩA/Z) ↪→ H0(J,ΩJ/Q)[I] ∼= S2(Q)[I], and we
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have the following commutative diagram:

H0(A,ΩA/Q) Â Ä // H0(J,ΩJ/Q)[I]
∼= // S2(Q)[I]

H0(AZ,Ω
1
A/Z)

?Â

OO

%
¦ ψ

33ggggggggggggggggggggggggg

S2(Z)[I]
?Â

OO

Definition 3.2. The Manin constant of A is the (lattice) index

cA = [S2(Z)[I] : ψ(H0(AZ,Ω
1
A/Z))].

Theorem 3.3 below asserts that cA ∈ Z, so we may also consider the Manin
module of A, which is the quotient M = S2(Z)[I]/ψ(H0(AZ,Ω

1
A/Z)), and the

Manin ideal of A, which is the annihilator of M in T.
If A is an elliptic curve, then cA is the usual Manin constant as in Defini-

tion 2.2. The constant c as defined above was also considered by Gross [Gro82,
2.5, p.222] and Lang [Lan91, III.5, p.95]. The constant cA was defined for
the winding quotient in [Aga99], where it was called the generalized Manin
constant. A Manin constant is defined in the context of Q-curves in [GL01].

3.2 Motivation: connection with the conjecture of Birch and
Swinnerton-Dyer

On a Néron model, the global differentials are the same as the invariant dif-
ferentials, so H0(AZ,Ω

1
A/Z) is a free Z-module of rank d = dim(A). The real

measure ΩA of A is the measure of A(R) with respect to the measure given by
∧d

H0(AZ,Ω
1
A/Z). This quantity is of interest because it appears in the conjec-

ture of Birch and Swinnerton-Dyer, which expresses the ratio L(r)(A, 1)/ΩA, in
terms of arithmetic invariants of A, where r = ords=1 L(A, s) (see, e.g., [Lan91,
Chap. III, §5] and [AS05, §2.3]).

The differentials corresponding to a Z-basis of S2(Z)[I] give a Q-basis
of H0(A,Ω1

A/Q); let Ω′

A denote the measure of A(R) with respect to the
wedge product of the elements of this basis. In doing calculations or prov-
ing formulas regarding the ratio in the Birch and Swinnerton-Dyer conjecture
mentioned above, it is easier to work with the volume Ω′

A instead of working
with ΩA (see, e.g., [AS05, §4.2]). If one works with the easier-to-compute vol-
ume Ω′

A instead of ΩA, it is necessary to obtain information about cA in order
to make conclusions regarding the conjecture of Birch and Swinnerton-Dyer,
since ΩA = cA · Ω′

A.
The method of Section 5 for verifying that cA = 1 for specific elliptic curves

is of little use when applied to general abelian varieties, since there is no simple
analogue of the minimal Weierstrass model (but see [GL01] for Q-curves). This
emphasizes the need for general theorems regarding the Manin constant of
quotients of dimension bigger than one.



6 Agashe, Ribet, Stein

3.3 Results and a conjecture

We start by giving several results regarding the Manin constant for quotients
of arbitrary dimension. The proofs of the theorems are given in Section 4.

We have the following generalization of Edixhoven’s Theorem 2.4; we give
its proof in Section 4.1.

Theorem 3.3. The Manin constant cA is an integer.

For each prime ` | N with ord`(N) = 1, let W` be the `th Atkin-Lehner
operator. In the following theorem, we view W` as an operator on S2(Q`).

Theorem 3.4. Recall that A is an optimal quotient of J = J0(N). Let ` be an
odd prime such that `2 - N . If ` | N , then suppose that W` · H

0(AZ`
,ΩAZ`

) ⊆
S2(Z`). Under these hypotheses, ` - cA.

We will prove this theorem in Section 4.3.
Let Jold denote the abelian subvariety of J generated by the images of the

degeneracy maps from levels that properly divide N (see, e.g., [Maz78, §2(b)])
and let Jnew denote the quotient of J by Jold. A new quotient is a quotient
J → A that factors through the map J → Jnew. The following corollary
generalizes Mazur’s Theorem 2.5:

Corollary 3.5. If A is an optimal new quotient of J0(N) and ` | cA is a
prime, then ` = 2 or `2 | N .

Proof. We verify the hypothesis of Theorem 3.4. Since W` = −T` on the new
subvariety of J = J0(N), it suffices to show that the kernel B = ker(J → A) is
T-stable, since then T would act on A hence preserve H0(AZ`

,ΩAZ`
) and its

image in S2(Z`). We have Jold ⊂ B and Jold is T-stable, so it suffices to show
that B/Jold is T-stable. This follows because the newform abelian subvarieties
A∨

f occur with multiplicity one in J , and B/Jold is isogenous to a product of
simple abelian varieties.

Remark 3.6. Note that the hypothesis in the third sentence of Theorem 3.4 is
satisfied ifW` preserves S2(Z`) (as a subgroup of S2(Q`)). This latter condition
need not be hold when A is not new. For example, if A = J0(33), then

W3 =





1 0 0
1
3

1
3 − 4

3
1
3 − 2

3 − 1
3





with respect to the basis

f1 = q − q5 − 2q6 + 2q7 + · · · ,

f2 = q2 − q4 − q5 − q6 + 2q7 + · · · ,

f3 = q3 − 2q6 + · · ·
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for S2(Z). Thus W3 does not preserve S2(Z3). In fact, the Manin constant is
not 1 in this case (see Section 3.4.2).

At the same time, the hypothesis in the third sentence of Theorem 3.4
sometimes does hold for non-new abelian varieties. For example, take J =
J0(33) and ` = 3. Then W3 acts as an endomorphism of J , and a computation
shows that the characteristic polynomial of W3 on Jnew is (x−1) and on Jold is
(x− 1)(x+ 1). Consider the optimal elliptic curve quotient A = J/(W3 + 1)J ,
which is isogenous to J0(11). Then A is an optimal old quotient of J , and W3

acts as −1 on A, so W3 preserves the corresponding spaces of modular forms.
Thus Theorem 3.4 tells us that 3 - cA.

The following theorem generalizes Raynaud’s Theorem 2.6 (see [GL01] for
generalizations to Q-curves).

Theorem 3.7. If f ∈ S2(Γ0(N)) is a newform and ` is a prime such that
`2 - N , then ord`(cAf

) ≤ dimAf .

Note that in light of Theorem 3.4, this theorem gives new information only
at ` = 2, when 2 ‖ N . We prove the theorem in Section 4.5

Let π denote the natural quotient map J → A. When we compose π with
its dual A∨ → J∨, we get an isogeny φ : A∨ → A (for details, see [ARS]).

Definition 3.8 (Modular exponent). The modular exponent mA of A is
the exponent of the group ker(φ).

When A is an elliptic curve, the modular exponent is just the modular
degree of A (see, e.g., [AU96, p. 278]).

Theorem 3.9. If f ∈ S2(Γ0(N)) is a newform and ` | cAf
is a prime, then

`2 | N or ` | mA.

Again, in view of Theorem 3.4, this theorem gives new information only at
` = 2, when 2 ‖ N . We prove the theorem in Section 4.4.

The theorems above suggest that the Manin constant is 1 for quotients as-
sociated to newforms of square-free level. In the case when the level is not
square free, computations of [FpS+01] involving Jacobians of genus 2 curves
that are quotients of J0(N)new show that cA = 1 for 28 two-dimensional new-
form quotients. These include quotients having the following non-square-free
levels:

32 · 7, 32 · 13, 53, 33 · 5, 3 · 72, 52 · 7, 22 · 47, 33 · 7.

The above observations suggest the following conjecture, which generalizes
Conjecture 2.3:

Conjecture 3.10. If f is a newform on Γ0(N) or Γ1(N), then cAf
= 1.

3.4 Examples of nontrivial Manin constants

We present two sets of examples in which the Manin constant is not one.
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3.4.1 Joyce’s example

Using results of [Kil02], Adam Joyce [Joy05] proves the following:

Proposition 3.11 (Joyce). There is a new optimal quotient of J0(431) with
Manin constant 2.

Joyce’s methods also produce examples with Manin constant 2 at levels 503
and 2089. For the convenience of the reader, we breifly discuss his example
at level 431. There are exactly two elliptic curves E1 and E2 of prime con-
ductor 431, and E1 ∩ E2 = 0 as subvarieties of J0(431), so A = E1 × E2 is
an optimal quotient of J0(431) attached to a saturated ideal I. If fi is the
newform corresponding to Ei, then one finds that f1 ≡ f2 (mod 2), and so
g = (f1 − f2)/2 ∈ S2(Z)[I]. However g is not in the image of H0(AZ,ΩA/Z).
Thus the Manin constant of A is divisible by 2.

3.4.2 The Atkin-Lehner obstruction

Let Γ = Γ0(N) or Γ1(N) and J = Jac(XΓ).

Proposition 3.12. If the Atkin-Lehner operator W` does not preserve S2(Z`),
then ` | cJ .

Proof. If ` - cJ , then the image of H0(JZ`
,ΩJ/Z`

) in S2(Z`) equals S2(Z`).

By the Néron mapping property, W` preseves H0(JZ`
,ΩJ/Z`

), i.e., it preserves
S2(Z`). This contradicts the hypothesis.

For example, we find by computation for each prime ` ≤ 100 that W`

does not leave S2(Γ0(11`);Z) invariant. Proposition 3.12 then implies that the
Manin constant of J0(11`) is divisible by ` for these values of `.

4 Proofs of Theorems

4.1 Proof of Theorem 3.3

Suppose Γ is a subgroup of Γ0(N) that contains Γ1(N). Let J = Jac(XΓ) and
J ′ = J1(N). Suppose A is an optimal quotient of J . By [CES03, §6.1.2] the
Manin constant of J ′ is an integer, so H0(J ′

/Z,ΩJ ′/Z) ↪→ S2(Γ1(N);Z). The

maps J ′ → J → A induce a chain of inclusions

H0(AZ,ΩA/Z) ↪→ H0(JZ,ΩJ/Z) ↪→ H0(J ′

/Z,ΩJ ′/Z) ↪→ S2(Γ1(N);Z) ↪→ Z[[q]].

Combining this chain of inclusions with commutativity of the diagram

S2(Γ1(N))

q−exp

%%KKKKKKKKKK

S2(Γ)

f(q)7→f(q)
99ssssssssss
q−exp

// C[[q]]

implies that the image of H0(AZ,ΩA/Z) lies in S2(Z)[I], as claimed.
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4.2 Two lemmas

In this section, we state two lemmas that will be used in the proofs of Theo-
rems 3.4, 3.7, and 3.9.

Lemma 4.1. Suppose i : A ↪→ B is an injective homomorphism of finitely
generated torsion free abelian groups. Let C be the torsion subgroup of B/i(A).
Then a prime p divides #C if and only if the induced map A⊗ Fp → B ⊗ Fp
is not injective.

Proof. Let D denote the quotient B/i(A). Tensor the exact sequence 0 →
A → B → D → 0 with Fp. The associated long exact sequences reveals that
ker(A⊗ Fp → B ⊗ Fp) ∼= Dtor[p].

Suppose ` is a prime such that `2 - N . Let X be the smooth locus of a
minimal proper regular model for X0(N) over Z`, and let ΩX denote the sheaf
of regular differentials as in [MR91, §7] (in the notation of [Maz78, §2(e)], it is
the sheaf Ω base-changed to Z`).

Recall that π denotes the quotient map J0(N) → A. Let G be a subgroup
of H0(AZ`

,ΩAZ`
), and consider the chain of inclusions

G ↪→ H0(AZ`
,ΩAZ`

)
π∗

−−−→ H0(JZ`
,ΩJZ`

) ∼= H0(X ,ΩX )
q-exp

−−−−→ Z`[[q]], (1)

where the map q-exp is the q-expansion map on differentials as in [Maz78, §2(e)]
(actually, Mazur works over Z; our map is obtained by tensoring with Z`). De-
note by Φ the composite of the maps above. We have the following commutative
diagram

S2(Z`)

F -exp

$$IIIIIIIII

H0(AZ`
,ΩAZ`

)

ψ
88ppppppppppp
Φ // Z`[[q]],

(2)

where ψ is as in Section 3.1 and F -exp is the Fourier expansion map.
We say that a subgroup B of group C is saturated (in C) if the cokernel C/B

is torsion free.

Lemma 4.2. If ` | N , then suppose either that A is a newform quotient, or
that ` is odd and W` ·ψ(G) ⊆ S2(Z`). Assume that the induced map G⊗F` →
H0(JZ`

,ΩJZ`
) ⊗ F` is injective. Then the image of G under the composite of

the maps in (1) above is saturated in Z`[[q]].

Proof. By Lemma 4.1, it suffices to prove that the induced map Φ` : G⊗F` →
Z`[[q]] ⊗ F` = F`[[q]] is injective.

Suppose ` - N . Then by the q-expansion principle, the q-expansion map
H0(XF`

,ΩXF`
) → F`[[q]] is injective. The injectivity of Φ` now follows since by

hypothesis the induced map G ⊗ F` → H0(JZ`
,ΩJZ`

) ⊗ F` = H0(XF`
,ΩXF`

)
is injective.
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Next suppose that ` | N . By hypothesis, ψ(G) + W` · ψ(G) ⊆ S2(Z`)
(note that if A is a newform quotient, this follows since W` acts as 1 or −1).

Hence, in the commutative diagram (2), the map Φ` factors as G ⊗ F`
ψ
→

(ψ(G) +W` · ψ(G))⊗F`
F -exp
−→ F`[[q]], and so ker(Φ`) is invariant under W`. If

the characteristic ` is odd, then since W` is an involution, ker(Φ`) is a direct
sum of +1 and −1 eigenspaces for W`. If A is associated to a single newform,
then W` acts either as +1 or as −1. Thus in either case, it suffices to prove
that if ω ∈ ker(Φ`) is in either the +1 or −1 eigenspace for the action of W`

on ker(Φ`), then ω = 0.
Suppose ω ∈ ker(Φ`) is in the −1 eigenspace. Since `2 - N , we have

` || N , and so the reduction XF`
is a union of two copies of X0(N/`)F`

identi-
fied transversely at the supersingular points. These two copies are swapped
under the action of the Atkin-Lehner involution W`. Since ω ∈ ker(Φ`),
the q-expansion principle implies that ω vanishes on the irreducible compo-
nent containing the cusp ∞. Then W`(ω) vanishes on the other irreducible
component. Since W`(ω) = −ω, we see that ω is zero on both compo-
nents; hence ω = 0. Here, we have been thinking of G ⊗ F` as a subgroup
of H0(XF`

,ΩXF`
), which we can do by the hypothesis that the induced map

G ⊗ F` → H0(JZ`
,ΩJZ`

) ⊗ F` = H0(XF`
,ΩXF`

) is injective. A similar argu-
ment shows that if ω ∈ ker(Φ`) is in the +1 eigenspace for the action of W`,
then ω = 0.

4.3 Proof of Theorem 3.4

We continue to use the notation of Section 4.2 and assume in addition that
the hypotheses of Theorem 3.4 are satisfied. To show that ` - cA, we have
to show that cA is a unit in Z`. For this, it suffices to check that the image
of H0(AZ`

,ΩAZ`
) in Z`[[q]] is saturated, since the image of S2(Γ0(N);Z`)[I]

is saturated in Z`[[q]]. In view of Lemma 4.1, taking G = H0(AZ`
,ΩAZ`

), it

suffices to show that the map H0(AZ`
,ΩAZ`

) ⊗ F` → H0(JZ`
,ΩJZ`

) ⊗ F` is
injective.

Since A is optimal, ` 6= 2, and J has good or semistable reduction at `,
[Maz78, Cor 1.1] yields an exact sequence

0 → H0(AZ`
,ΩAZ`

) → H0(JZ`
,ΩJZ`

) → H0(BZ`
,ΩBZ`

) → 0

where B = ker(J → A). Since H0(BZ`
,ΩBZ`

) is torsion free, by Lemma 4.1

the map H0(AZ`
,ΩAZ`

) ⊗ F` → H0(JZ`
,ΩJZ`

) ⊗ F` is injective, as was to be
shown.

4.4 Proof of Theorem 3.9

We continue to use the notation of Section 4.2 and assume in addition that A
is a newform quotient, and that ` - mA. We have to show that then ` - cA.
As before, it suffices to check that the image of H0(AZ`

,ΩAZ`
) in Z`[[q]] is
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saturated, since the image of S2(Γ0(N);Z`)[I] is saturated in Z`[[q]]. We use
Lemma 4.2, with G = H0(AZ`

,ΩAZ`
); thus it suffices to show that the map

H0(AZ`
,ΩAZ`

) ⊗ F` → H0(JZ`
,ΩJZ`

) ⊗ F` is injective.
The composition of pullback and pushforward in the following diagram is

multiplication by the modular exponent of A:

H0(JZ`
,ΩJ/Z`

)

π∗

((QQQQQQQQQQQQ

H0(AZ`
,ΩA/Z`

)

π∗

66mmmmmmmmmmmm
mA // H0(AZ`

,ΩA/Z`
)

Let π∗ and π∗ denote the maps obtained by tensoring the diagram above with
F`. Then π∗ ◦ π

∗ is multiplication by an integer coprime to ` from the finite
dimension F`-vector space H0(AZ`

,ΩA/Z`
)⊗F` to itself, hence an isomorphism.

In particular, π∗ is injective, which is what was left to show.

Remark 4.3. Adam Joyce observed that one can also obtain injectivity of π∗

as a consequence of Prop. 7.5.3(a) of [BLR90].

4.5 Proof of Theorem 3.7

Theorem 3.7 asserts that if A = Af is a quotient of J = J0(N) attached to
a newform f , and ` is a prime such that `2 - N , then ord`(cA) ≤ dim(A).
Our proof follows [AU96], except at the end we argue using indexes instead of
multiples.

Let B denote the kernel of the quotient map J → A. Consider the exact
sequence 0 → B → J → A→ 0, and the corresponding complex BZ`

→ JZ`
→

AJZ`
of Néron models. Because JZ`

has semiabelian reduction (since `2 - N),
Theorem A.1 of the appendix of [AU96, pg. 279–280], due to Raynaud, implies
that there is an integer r and an exact sequence

0 → Tan(BZ`
) → Tan(JZ`

) → Tan(AZ`
) → (Z/`Z)r → 0.

Here Tan is the tangent space at the 0 section; it is a free abelian group of rank
equal to the dimension. Note that Tan is Z`-dual to the cotangent space, and
the cotangent space is isomorphic to the space of global differential 1-forms.
The theorem of Raynaud mentioned above is the generalization to e = `− 1 of
[Maz78, Cor. 1.1], which we used above in the proof of Theorem 3.4.

Let C be the cokernel of Tan(BZ`
) → Tan(JZ`

). We have a diagram

0 // Tan(BZ`
) // Tan(JZ`

) //

%% %%KKKKK
Tan(AZ`

) // (Z/`Z)r // 0.

C
+
®

99rrrrr

(3)

Since C ⊂ Tan(AZ`
), so C is torsion free, and hence C is a free Z`-module

of rank d = dim(A). Let C∗ = HomZ`
(C,Z`) be the Z`-linear dual of C.
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Applying the HomZ`
(−,Z`) functor to the two short exact sequences in (3), we

obtain exact sequences

0 → C∗ → H0(JZ`
,ΩJ/Z`

) → H0(BZ`
,ΩB/Z`

) → 0,

and
0 → H0(AZ`

,ΩA/Z`
) → C∗ → (Z/`Z)r → 0. (4)

The (Z/`Z)r on the right in (4) occurs as Ext1Z`
((Z/`Z)r,Z`). Also, (4) implies

that r ≤ d = dim(A).
Using Lemma 4.2, with G = C∗, we see that the image of C∗ in Z`[[q]]

under the compostie of the maps in (1) is saturated. The Manin constant for A
at ` is the index of the image via q-expansion of H0(AZ`

,ΩZ`
) in Z`[[q]] in its

saturation. Since the image of C∗ in Z`[[q]] is saturated, the image of C∗ is the
saturation of the image of H0(AZ`

,ΩZ`
), so the Manin index at ` is the index

of H0(AZ`
,ΩZ`

) in C∗, which is `r by (4), hence is at most `d.

5 Appendix by J. Cremona: Verifying that c = 1

Let f be a normalised rational newform for Γ0(N). Let Λf be its period lattice;
that is, the lattice of periods of 2πif(z)dz over H1(X0(N),Z).

We know that Ef = C/Λf is an elliptic curve Ef defined over Q and of
conductor N . This is the optimal quotient of J0(N) associated to f . Our goal
is two-fold: to identify Ef (by giving an explicit Weierstrass model for it with
integer coeffients); and to show that the associated Manin constant for Ef is 1.
In this section we will give an algorithm for this; our algorithm applies equally
to optimal quotients of J1(N).

As input to our algorithm, we have the following data:

1. a Z-basis for Λf , known to a specific precision;

2. the type of the lattice Λf (defined below); and

3. a complete isogeny class of elliptic curves {E1, . . . , Em} of conductor N ,
given by minimal models, all with L(Ej , s) = L(f, s).

So Ef is isomorphic over Q to Ej0 for a unique j0 ∈ {1, . . . ,m}.
The justification for this uses the full force of the modularity of elliptic

curves defined over Q: we have computed a full set of newforms f at level N ,
and the same number of isogeny classes of elliptic curves, and the theory tells
us that there is a bijection between these sets. Checking the first few terms
of the L-series (i.e., comparing the Hecke eigenforms of the newforms with the
traces of Frobenius for the curves) allows us to pair up each isogeny class with
a newform.

We will assume that one of the Ej , which we always label E1, is such that
Λf and Λ1 (the period lattice of E1) are approximately equal. This is true in
practice, because our method of finding the curves in the isogeny class is to
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compute the coefficients of a curve from numerical approximations to the c4
and c6 invariants of C/Λf ; in all cases these are very close to integers which are
the invariants of the minimal model of an elliptic curve of conductor N , which
we call E1. The other curves in the isogeny class are then computed from E1.
For the algorithm described here, however, it is irrelevant how the curves Ej
were obtained, provided that Λ1 and Λf are close (in a precise sense defined
below).

Normalisation of lattices: every lattice Λ in C which defined over R has a
unique Z-basis ω1, ω2 satisfying one of the following:

• Type 1: ω1 and (2ω2 − ω1)/i are real and positive; or

• Type 2: ω1 and ω2/i are real and positive.

For Λf we know the type from modular symbol calculations, and we know
ω1, ω2 to a certain precision by numerical integration; modular symbols provide
us with cycles γ1, γ2 ∈ H1(X0(N),Z) such that the integral of 2πif(z)dz over
γ1, γ2 give ω1, ω2.

For each curve Ej we compute (to a specific precision) a Z-basis for its
period lattice Λj using the standard AGM method. Here, Λj is the lattice of
periods of the Néron differential on Ej . The type of Λj is determined by the
sign of the discriminant of Ej : type 1 for negative discriminant, and type 2 for
positive discriminant.

For our algorithm we will need to know that Λ1 and Λf are approximately
equal. To be precise, we know that they have the same type, and also we verify,
for a specific postive ε, that

∣

∣

∣

∣

ω1,1

ω1,f
− 1

∣

∣

∣

∣

< ε and

∣

∣

∣

∣

im(ω2,1)

im(ω2,f )
− 1

∣

∣

∣

∣

< ε. (*)

Here ω1,j , ω2,j denote the normalised generators of Λj , and ω1,f , ω2,f those
of Λf .

Pulling back the Néron differential on Ej0 to X0(N) gives c · 2πif(z)dz
where c ∈ Z is the Manin constant for f . Hence

cΛf = Λj0 .

Our task is now to

1. identify j0, to find which of the Ej is (isomorphic to) the “optimal” curve
Ef ; and

2. determine the value of c.

Our main result is that j0 = 1 and c = 1, provided that the precision bound
ε in (*) is sufficiently small (in most cases, ε < 1 suffices). In order to state
this precisely, we need some further definitions.

A result of Stevens says that in the isogeny class there is a curve, say Ej1 ,
whose period lattice Λj1 is contained in every Λj ; this is the unique curve
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in the class with minimal Faltings height. (It is conjectured that Ej1 is the
Γ1(N)-optimal curve, but we do not need or use this fact. In many cases, the
Γ0(N)- and Γ1(N)-optimal curves are the same, so we expect that j0 = j1
often; indeed, this holds for the vast majority of cases.)

For each j, we know therefore that aj = ω1,j1/ω1,j ∈ N and also bj =
im(ω2,j1)/im(ω2,j) ∈ N. Let B be the maximum of a1 and b1.

Proposition 5.1. Suppose that (*) holds with ε = B−1; then j0 = 1 and c = 1.
That is, the curve E1 is the optimal quotient and its Manin constant is 1.

Proof. Let ε = B−1 and λ =
ω1,1

ω1,f
, so |λ − 1| < ε. For some j we have

cΛf = Λj . The idea is that lcm(a1, b1)Λ1 ⊆ Λj1 ⊆ Λj = cΛf ; if a1 = b1 = 1,
then the closeness of Λ1 and Λf forces c = 1 and equality throughout. To
cover the general case it is simpler to work with the real and imaginary periods
separately.

Firstly,
ω1,j

ω1,f
= c ∈ Z.

Then
c =

ω1,1

ω1,f

ω1,j

ω1,1
=
a1

aj
λ.

Hence

0 ≤ |λ− 1| =
|ajc− a1|

a1
< ε.

If λ 6= 1, then ε > |λ − 1| ≥ a−1
1 ≥ B−1 = ε, contradiction. Hence λ = 1, so

ω1,1 = ω1,f . Similarly, we have

im(ω2,j)

im(ω2,f )
= c ∈ Z

and again we can conclude that im(ω2,1) = im(ω2,f ), and hence ω2,1 = ω2,f .
Thus Λ1 = Λf , from which the result follows.

Theorem 5.2. For all N < 60000, every optimal elliptic quotient of J0(N)
has Manin constant equal to 1. Moreover, the optimal curve in each class is
the one whose identifying number on the tables [Cre] is 1 (except for class 990h
where the optimal curve is 990h3).

Proof. For all N < 60000 we used modular symbols to find all newforms f and
their period lattices, and also the corresponding isogeny classes of curves. In
all cases we verified that (*) held with the appropriate value of ε. (The case of
990h is only exceptional on account of an error in labelling the curves several
years ago, and is not significant.)

Remark 5.3. In the vast majority of cases, the value of B is 1, so the precision
needed for the computation of the periods is very low. For N < 60000, out
of 258502 isogeny classes, only 136 have B > 1: we found a1 = 2 in 13 cases,
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a1 = 3 in 29 cases, and a1 = 4 and a1 = 5 once each (for N = 15 and N = 11
respectively); b1 = 2 in 93 cases; and no larger values. Class 17a is the only
one for which both a1 and b1 are greater than 1 (both are 2).

Finally, we give a slightly weaker result for 60000 < N < 130000; in this
range we do not know Λf precisely, but only its projection onto the real line.
(The reason for this is that we can find the newforms using modular symbols
for H+

1 (X0(N),Z), which has half the dimension of H1(X0(N),Z); but to find
the exact period lattice requires working in H1(X0(N),Z).) The argument is
similar to the one given above, using B = a1.

Theorem 5.4. For all N in the range 60000 < N < 130000, every optimal
elliptic quotient of J0(N) has Manin constant equal to 1, except for the following
cases where the Manin constant is either 1 or 2:

62416a, 67664a, 71888e, 72916a, 75092a, 85328d, 86452a, 96116a,

106292b, 112290a, 112290a, 115664a, 121168e, 125332a.

Proof. We continue to use the notation above. We do not know the lattice Λf
but only (to a certain precision) a positive real number ω+

1,f such that either

Λf has type 1 and ω1,f = 2ω+
1,f , or Λf has type 2 and ω1,f = ω+

1,f . Curve E1

has lattice Λ1, and the ratio λ = ω+
1,1/ω

+
1,f satisfies |λ−1| < ε. In all cases this

holds with ε = 1
3 , which will suffice.

First assume that a1 = 1.
If the type of Λf is the same as that of Λ1 (for example, this must be the

case if all the Λj have the same type, which will hold whenever all the isogenies
between the Ej have odd degree) then from cΛf = Λj we deduce as before that
λ = 1 exactly, and c = a1/aj = 1/aj , hence c = aj = 1. So in this case we have
that c = 1, though there might be some ambiguity in which curve is optimal if
aj = 1 for more than one value of j.

Assume next that Λ1 has type 1 but Λf has type 2. Now λ = ω1,1/2ω1,f .
The usual argument now gives caj = 2. Hence either c = 1 and aj = 2, or
c = 2 and aj = 1. To see if the latter case could occur, we look for classes in
which a1 = 1 and Λ1 has type 1, while for some j > 1 we also have aj = 1 and
Λj of type 2. This occurs 29 times for 60000 < N < 130000, but for 15 of these
the level N is odd, so we know that c must be odd. The remaining 14 cases
are those listed in the statement of the Theorem. We note that in all of these
14 cases, the isogeny class consists of two curves, E1 of type 1 and E2 of type
2, with [Λ1 : Λ2] = 2, so that E2 rather than E1 has minimal Faltings height.

Next suppose that Λ1 has type 2 but Λf has type 1. Now λ = 2ω1,1/ω1,f .
The usual argument now gives 2caj = 1, which is impossible; so this case
cannot occur.

Finally we consider the cases where a1 > 1. There are only three of these
for 60000 < N < 130000: namely, 91270a, 117622a and 124973b, where a1 = 3.
In each case the Λj all have the same type (they are linked via 3-isogenies) and
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the usual argument shows that caj = 3. But none of these levels is divisible
by 3, so c = 1 in each case.
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Mass., 1982, pp. 219–236.

[GZ86] B. Gross and D. Zagier, Heegner points and derivatives of L-series,
Invent. Math. 84 (1986), no. 2, 225–320.

[Joy05] A. Joyce, The Manin constant of an optimal quotient of J0(431), J.
Number Theory 110 (2005), no. 2, 325–330.



18 Agashe, Ribet, Stein

[Kat76] N. M. Katz, p-adic interpolation of real analytic Eisenstein series,
Ann. of Math. (2) 104 (1976), no. 3, 459–571.

[Kil02] L. J. P. Kilford, Some non-Gorenstein Hecke algebras attached to
spaces of modular forms, J. Number Theory 97 (2002), no. 1, 157–
164.

[KM85] N. M. Katz and B. Mazur, Arithmetic moduli of elliptic curves,
Princeton University Press, Princeton, N.J., 1985.

[Lan91] S. Lang, Number theory. III, Springer-Verlag, Berlin, 1991, Diophan-
tine geometry.

[Man72] J. I. Manin, Parabolic points and zeta functions of modular curves,
Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19–66.

[Maz78] B. Mazur, Rational isogenies of prime degree (with an appendix by
D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162.

[MR91] B. Mazur and K. A. Ribet, Two-dimensional representations in the
arithmetic of modular curves, Astérisque (1991), no. 196-197, 6,
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