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                                                             Abstract
The a-posteriori error evaluation based on differential approximation of a finite-difference 
scheme and adjoint equations is addressed. The differential approximation is composed of 
primal equations and a local truncation error determined by a Taylor series in Largange form. 
This approach provides the feasibility of both refining the solution and using the Holder 
inequality for asymptotic bounding of the remaining error.  
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1. Introduction 
Starting with the results of paper [1] the adjoint (dual) equations are widely used for 

estimation of the a posteriori error of the numerical solution both for finite-element and finite 
difference discretization methods [2-29]. In a large number of ensuing publications this 
approach is applied for estimation of the numerical error of some quantities of interest (goal 
functionals, point-wise parameters etc.) using some form of the residual (truncation error). This 
approach may be also extended to estimation of model error [4] caused by a difference between 
fine and coarse models. A broad spectrum of physical models is covered. In Ref. [9] this 
approach is used for wave equations while in Ref. [12] it is used for transport equation. In Refs. 
[6-8] a posteriori error estimate is obtained for Navier-Stokes and Euler equations. In these 
works the Galerkin method is used for the local error estimation while the adjoint equations are 
used for calculating their weights in the target functional error. A similar approach is used in 
[19-29] for the refinement of practically useful functionals both by finite-element and finite-
difference discretization methods. The local truncation error (residual) was estimated by the 
action of a differential operator on the interpolated solution, while its contribution to the 
functional was calculated using an adjoint problem. 

The approach considered herein uses another approach for the calculation of the 
residual as compared with [19-29]. We use a local truncation error determined by the Taylor 
series with the remainder in Lagrange form. This enables us to both correct the error in a usual 
way as well as to obtain an asymptotic error bound (based on the Holder inequality) for the 
refined solution. This approach was used for heat transfer equation in [30] and for the 
parabolized Navier-Stokes equations in [31]. 

 
2. The error correction and bounding for finite difference approximation of heat 

conduction 
Let  be the differential operator determining the problem L 0~ =TL  and let   be the 

finite difference operator  (  is the grid function). The truncation error produces a 
field of sources 

hL
0=hhTL hT

Tδ  disturbing the exact solutionT~ . The adjoint approach permits to account 
for the impact of all these sources on the goal functional by summation over the entire 
computational domain. The truncation error may be estimated via the value of residual 

hTLT ′−=δ  engendered by action of differential operator on some extrapolation of the 
numerical solution [19]. As an alternative option we may use a differential approximation of the 

hT ′
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finite-difference scheme [32]. Then the truncation source term assumes the 
form  and is composed of Taylor series terms with coefficients containing 
some powers of the grid size. If we use the Lagrange form of Taylor series we may obtain a 
closed form of the truncation term. This form provides an opportunity to subdivide the 
truncation error into a computable part containing known values and an incomputable part 
containing the field of Lagrange coefficients (unknown parameters belonging to the unit 
interval). This approach enables us both to correct the error and to obtain some asymptotic 
bounds of the remaining error. 

hhh LTTLT −=δ

For illustrating this idea we first apply it to the unsteady one dimensional heat 
conduction equation and its finite-difference approximation. We assume that the solution is 
smooth enough to have all the required derivatives bounded. Let us consider the estimation of 
the temperature error at a checkpoint.  
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Here  is thermal capacity, λ is thermal conductivity, ConstC = Const=ρ  is density, T  is 
temperature (considered here as exact, error-free), x-coordinate, X-thickness, t - time,  - 

duration of process, Ω -domain of calculation (0,X). We consider two cases: 
ft

Const=λ , 
)(),(~ QCxtT ∞∈  and  )(2 Ω∈ Lλ , )(),(~ 1 QHxtT ∈ . In these spaces the problem is well-posed 

[33]. 
Consider a finite-difference approximation of equation (1) having the first order in time 

and second order in space (for the constant λ ): 
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Here  is the solution of finite difference equation, T τ  is temporal step and - the 

spatial step size. The simplicity of the scheme and the low order of approximation are 
deliberately chosen to illustrate the features of this approach with the simplest mathematical 
treatment and to obtain an observable (comparing with other sources) truncation error. Herein, 
we address the impact of this error on the temperature at a certain checkpoint 

 Let us denote the estimated temperature  by 

kh

),( estestest xtTT = estT ε  and express it as 
the functional. 

 
dtdxxxttxtTT estest

Q
est )()(),( −−== ∫∫ δδε  (5) 

Here δ is Dirac’s delta function. 
The error of the temperature is determined as the sum of contributions of local 

truncation error with weights depending on the transfer of disturbances and determined by the 
adjoint parameter. In order to determine the truncation error let us expand the mesh function  n

kT
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in a Taylor series and substitute into (4). Herein we imply that there exists a smooth enough 
function  that coincides with  at all grid points. Then equation (4) transforms into 
equation (6). 
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Here xt TTT δδδ += is a local truncation error engendered by the Taylor series 
remainders. We use here the Lagrange form of remainder, which contains unknown parameters 

. )1,0(,, ∈n
k

n
k

n
k γβα

 

2

2 ),(
2 t

xtTCT k
n
kn

t ∂
−∂

−=
τατρδ  

 
(7) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

−∂
+

∂
+∂

−= 4

4

4

4
2 ),(),(

24 x
hxtT

x
hxtThT

n
kkn

n
kkn

kx
γβλδ  

 
(8) 

 
The mathematical properties of the differential approximations are discussed in [32, 34]. 
According to [32] . Thus, we may consider a finite-difference equation to be 
equivalent to an approximated equation with an additional perturbation term. By introducing a 
solution error  

)(),( QCxtT ∞∈

T∆ )~( TTT ∆+=  we can reformulate (6) as  
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Let us find the error of the functional (5) as a function of the truncation error. For this purpose 
let us introduce the Lagrangian of the following form 
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Here Ψ  is the adjoint temperature defined by the solution of following adjoint (dual) problem. 
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Initial condition ;0),( =Ψ xt f  (13) 

 



 4

According to [35] problem (13) is well-posed for , )(),( Ω∈Ψ −αHxt
2
1

>
n
α

, nR∈Ω . In the 

case considered here the problem is well-posed if , however if we smooth the 
source term according to [3,33], we may obtain a solution , 

)(),( 1 Ω∈Ψ −Hxt
)(),( Ω∈Ψ βHxts 1>β  (although 

containing an error proportional to smoothing parameter , which may be as small as 
necessary). Finite difference methods for the solution of such equations are presented in [36,37]. 

)0(, >ss

It may be shown from this Lagrangian variation [38] that for solutions of primal (1-3) 
and adjoint (11-13) problems, the variation of the functional caused by the truncation error 
equals 

 
dtdxxtTTTT
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(14) 

 
2.1 Discrete form 

Taking into account  (14) and the temporal part of truncation error described by (7) we 
obtain the corresponding part of error estT∆ as 
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Further discussion is significantly devoted to the calculation of the magnitude and bounds of 
expression (15) and its analogues. Let us present (15) in a discrete form, for example: 
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Herein  is the number of time steps while  is the number of spatial nodes. tN xN
Equation (16) may be expanded in series over , τα n
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The first part of sum (17) may be used for correcting of functional (5) 
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The second part of (17) contains unknown parameters  belonging to the unit interval 

, so we may obtain a bound of this expression. If only the first order term over  
is retained in (17) an upper bound may be obtained of the form 
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Using this value we can determine the upper bound of the functional error (after refining): 
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Expression (20) is correct for exact values of adjoint parameter. In reality, the adjoint 
problem is solved by some finite-difference method, so it contains an approximation 
error . Hence, the estimation of the functional variation has a 
component determined by the adjoint problem error. 

),(),(),( xtxtxt exact ∆Ψ+Ψ=Ψ

 
dtdxxtTdtdxxtTT exactest ),(),( ∆Ψ+Ψ=∆=∆ ∫∫∫∫

ΩΩ

δδε   
(21) 

 
The second term of (21) corresponds to the remaining error according to [19] and is 

associated to the errors of approximation of both the adjoint and primal equations. It may be 
expedient to construct a mesh for the minimization of this term as in [25-27]. As an alternative, 
we may use the second order adjoint equations [39,40] for calculating this term. If the primal 
and adjoint problems are solved by methods of order  and  correspondingly, this 

term is of order . For schemes of high enough order (  or ) this term is 
asymptotically small when compared with the error bounds determined by (19).  
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The calculation of error caused by spatial approximation is performed similarly. The 
error correction is as follows 
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The incomputable error can be bounded (assuming ) in a form: 1=− n
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2.2 Numerical tests 
Let us estimate the approximation error using as a  test problem the temperature field 

evolution engendered by a pointwise heat source ( ξ,0t -is the initial time and the coordinate of 
the point source). 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

−
=

))(/(4
)(exp

))(/(2
),(

0

2

0 ttC
x

ttC
QxtTan ρλ

ξ
ρπλ

 
 

(24) 

 
We use the data  calculated by (24) as the initial data when solving (4). 

The length of the spatial interval is chosen so as to provide a negligible effect of the 
boundary condition compared with the effect of approximation. The round-off errors were 

)(0 kk xTf =
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estimated by comparing calculations with single and double precision, and the difference was 
found to be negligible. We should also ascertain that the error  engendered 

by adjoint equation approximation is sufficiently small. For calculation of  the 
following equation was used 
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(second order adjoint equation [39,40]). For Const=λ  and , the problem 

(25) is well-posed for  [33].  
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Fig 1. Initial and final temperature distribution. 1 - Initial temperature, 2- Final temperature  
 
The corresponding error of functional has the form : 
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)( . As expected, the computations 

demonstrated that the part of error related to the adjoint temperature error (25) is significantly 
smaller than the main value (related to the adjoint temperature itself). 

An implicit method (implemented using  the Thomas algorithm) was used for solution 
of both the heat transfer equation and the adjoint equations of first and second orders. The 
spatial grid consisted of 100–1000 nodes, while the temporal integration consisted of 100-10000 
steps. Thermal conductivity was λ=10-4 kW/(m⋅K) and the volume heat capacity was equal to 
Сρ=500 kJ/(m3⋅K). The initial and final temperature distributions are presented in Figure 1. The 
temperature errors were estimated via adjoint equations and compared with the deviation of the 
numerical solution from the  analytical one (24). 
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2.3 The error caused by the truncation error of time approximation 

Estimates of temperature calculation error as a function of the time step are presented in 
Fig. 2 (central point at the final moment). The spatial step is chosen to be enough small 
(h=0.0001 m) so as to provide a small impact of the spatial discretization error in comparison 
with the temporal one. The error caused by adjoint temperature approximation was calculated 
using equation (25) and was significantly smaller then the temporal one.  

The correction term is of first order of accuracy and successfully eliminated most of the 
approximation error. The bounding term is of second order and is significantly greater than the 
remaining error (discrepancy of refined solution and analytical value). The observable orders of 
both correction and bounding terms are in a good agreement with expressions (18,19). 
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Fig. 2. Variation of errors as a function of  temporal step (in decimal logarithm scale). a – deviation of calculated 
temperature from analytical value ( ), b- correction of temperature (18), c- refined solution error 

bound  (19), d-discrepancy between refined and analytic solutions ( - ) 
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Figure 3 illustrates the comparison between initial finite-difference and corrected finite-

difference solutions and the error bounds (all normalized by analytic value), (h=0.0001 m, 
τ =1.0 sec) related with results of Fig 1. 
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Fig. 3. The comparison of numerical and refined solutions (all divided by analytical value). 

a- numerical, b-refined solution, c- lower bound, d- upper bound  
 
 
 
2.4 The error of temperature calculation engendered by the spatial discretization. 

Let us consider the error caused by the truncation error of the spatial approximation. In 
order to observe this error, we should provide a small contribution of truncation error of the 
temporal approximation. With this purpose the following second order time approximation 
scheme was used. 
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It may be demonstrated in a manner similar to previous treatments that the error caused 

by the temporal approximation is of second order in τ . 
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A bound on the incomputable error caused by temporal step is: 
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The error caused by the spatial approximation retains its previous form (22,23). 
Numerical tests demonstrated that the error caused by the time step (27) was not greater 
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than  and was significantly smaller than the error caused by the spatial approximation. 
The error caused by the adjoint equation approximation  was even smaller 

by several orders of magnitude. The temperature error estimations as a function of the spatial 
step size are presented in Fig. 4 (for central point at the final time). 
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The comparison of deviations of the solution from the analytical one and the correcting 
term demonstrates that the refinement by  (22) enables us to eliminate a significant part 

of the error. Comparison of the remaining error -  and  demonstrates a reliable 

bounding by expression (23). The remaining error -  contains all uncontrolled errors 
including those caused by boundary terms, errors of upper orders etc, so it exhibits a slightly  
irregular behavior.  

corr
xT∆

corr
xT anT sup

1,xT∆
corr

xT anT

 

-6

-5

-4

-3

-2

-1

0

1

-4 -3.75 -3.5 -3.25 -3 -2.75 -2.5

Log(h)

Log(dT)

a
b
c
d

2
1

3

1

 
Fig. 4. Variation of errors as a function of spatial step (in logarithm scale).  

a – Deviation of calculated temperature from analytical value ( anTT − ), b- Correction of temperature , corr
xT∆

c- Refined solution error bound ,  d- Deviation of refined solution from analytical value ( - ) sup
1,xT∆ corr
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The quadratic character of  and the third order of  should be noted as 

coinciding with the formal order of (22,23). The convergence rate of  and  
demonstrates that the discontinuities of high order derivatives for equation (1) under initial 
conditions (24) and boundary conditions (3) did not engender any visible effect (they are 
located in zones of small Ψ ). 
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2.5 The effect of discontinuities of the derivatives 

The above considered solutions possessed an infinite number of bounded derivatives 
which  was the reason for good agreement between  observed and nominal convergence rates. If 
the physical field is specified by small number of bounded derivatives, the order of convergence 
may differ from the nominal one. 

Let us consider this problem at a heuristic level for some function ),( xtρ  having m 
bounded spatial derivatives (the derivative of thm −  order has a finite number of jump 
discontinuities). 

We consider an approximation of the derivative of the order p  by finite differences of 
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Thus, the terms of the j-th formal order of accuracy contain a component of j-th order 
(appearing due to integration over the smooth part of the solution) and a component having the 
order  (engendered by the jump discontinuity of the 1+−= pmi thm −  order derivative). The 
picture is complicated by the  dipole nature of the error caused by the discontinuity that may be 
compensated by summation. If we have a stepwise discontinuity of the first derivative at point k  
( 01 =−kρ , ∆=kρ , ∆=+1kρ ) then we obtain mutually compensated singularities: 
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The behavior of observable convergence rate of these terms may be more complicated 
since they are calculated as terms of the numerical solution that only asymptotically 
approximate the exact values. Under these conditions we can not have an expectation of 
obtaining similar results to Figs. 2 and 4 for situations where discontinuous derivatives are 
present. 

For example let us carry out  numerical tests to study the asymptotic dependence of the 
error on the space step size for a temperature gradient discontinuity. In order to deal with the 
discontinuity we used a divergent integro-interpolation method [41] well suited for the 
calculation of temperature gradient discontinuities. 

Fig. 5 presents temperature error estimates (for central point at the final moment) 
depending on the spatial step for the thermal conductivity coefficient having a 10% jump at the 
center of the grid and initial temperature of Fig. 1 (unfortunately, an analytical solution is not 
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available). 
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Fig. 5. Variation of errors as a function of the spatial step (in logarithm scale) for break in first derivative 

caused by discontinuous conductivity.   
 a - correction of temperature, b- error bound of refined solution 

 
As another test we consider the evolution of the initial temperature distribution of a step 

shape. The initial, the final distribution of temperature and the location of estimated points are 
presented in Fig 6. The break of thermal conductivity is located at the center point 

 and coincides with a stepwise discontinuity in the initial temperature. )2/( Xxs =
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Fig. 6. Initial and final temperature distribution.  

1- Initial temperature, 2- Final temperature,  А- point of estimation 
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Fig. 7. Variation of errors as a function of the spatial step (in logarithm scale) for break in first derivative 

caused by discontinuous conductivity.   

 a - Correction of temperature,   b- error bound of refined solution,   c-deviation of numerical solution from 

analytical value 

 
Fig. 7 presents the  temperature error estimates depending on the spatial step. The rate 

of convergence of  and  is close to second order despite the influence of 
discontinuity. This is caused by a mutual compensation of errors (dipole nature of error) in the 
vicinity of the discontinuity as confirmed by an analysis of local distribution of error density 

anest TT − corr
xT∆

τλ n
k

kn
k x

xtTh Ψ
∂

∂
− 4

4
3 ),(

12
 (engendering  in accordance with (22)). The order of 

 is close to one (slightly below), which corresponds to the expected influence of the 
temperature gradient discontinuity and is in contrast with the formal third order expected from 
(23)). Thus, the calculation of approximation errors by the method considered is strongly 
affected by the number of bounded derivatives of the solution.  

corr
xT∆

sup
1,xT∆

 
 

3. Error correction and bounding for viscous flow  
The heat transfer equation is providing a favorable example for our approach due to the 

great smoothness of the solutions. Let us consider the method discussed above  for the  
pointwise error in a two dimensional supersonic viscous flow. The nondivergent form of the 
parabolized Navier-Stokes equations (PNS) is used. The flow is calculated by marching along 
the X axis.  
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 P= ρRT; 
1−

==
γ
RTTCe v ; (X,Y)∈Ω=(0<X< Xmax; 0<Y<Ymax); 

On  we have , on inΓ ),( YXff i
in

i = outΓ  we have , . 

The boundary 

0/ =∂∂ Yf i )),,,(( eVUf i ρ=

outin Γ∪Γ=Γ ,  is the inflow boundary, inΓ outΓ is the outflow boundary. 
The density at some point is considered as an estimated parameter. Let us write the 

estimated value  in the form of a functional. ),( estest YXρ
 

dXdYXXYYYX estestest )()(),( −−== ∫
Ω

δδρερ  
(33)

 
We calculate the variation of the functional with respect to local disturbances 

(truncation error)  using the adjoint equations in the form described in [31,42]. ifδ
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The source in (34) corresponds to the location of the estimated parameter.  

U
X

V
Y X

V
X

e
X X

PU U
V e e

∂
∂

∂
∂

ρ
∂
∂

∂
∂

∂
∂

∂
∂ ρ

ρΨ Ψ Ψ
Ψ Ψ Ψ+ + − +

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝
⎜

⎞
⎠
⎟ +

( )
 

0
Re3
8

Re
1

2

2

=⎟
⎠
⎞

⎜
⎝
⎛ Ψ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Ψ+ eU Y

U
YY ∂

∂
∂
∂

ρ∂
∂

 
(35) 

∂
∂

∂
∂

∂
∂

∂
∂

( )U
X

V
Y

U
Y

e
Y

V V
U e

Ψ Ψ
Ψ Ψ+ − +

⎛
⎝⎜

⎞
⎠⎟ +  

0
Re3
4

2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Ψ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Ψ+

Ψ
+

ρ∂
∂

ρ∂
∂

∂
∂

ρ ρ V
e Y

P
YY

 
( 36 ) 

+Ψ⎟
⎠
⎞

⎜
⎝
⎛ +−−⎟

⎠
⎞

⎜
⎝
⎛ Ψ+Ψ

−
−

Ψ
+

Ψ
eUV

ee

Y
V

X
U

XYY
V

X
U

∂
∂

∂
∂γ

∂
∂ρ

∂
∂ρ

ρ
γ

∂
∂

∂
∂ )1(1)()(

 



 14

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Ψ
+

Ψ
−+

Ψ
−+

ρ∂
∂γ

∂
∂γ

∂
∂γ eUV

YXY 2

2

PrRe
)1()1(  

(37) 

The parameters ),,,( eVU ΨΨΨΨρ  are the adjoint analogs of density, velocity 
components, and energy, respectively.  

On boundary outΓ : 0,,, =Ψ
Γout

eVUρ , on inΓ : 
∂Ψ
∂

f

Y
= 0;  

The adjoint problem is calculated in the reverse direction along X.  
Using the solution of above adjoint problem we may express the variation of  the target 

functional as a function of the truncation error in the following form: 
 

( )dXdYeVU eVU Ψ+Ψ+Ψ+Ψ= ∫∫
Ω

δδδδρδε ρ   
(38) 

 
Here δρ  etc. are the truncation errors. 
 
 
 

3.2 Taking into account the viscosity impact 
In the tests presented below we should compare the results of finite-difference 

calculations of Parabolized Navier Stokes equations with the analytical solutions available for 
inviscid gas flows. These numerical results contain the influence of viscosity in addition to the 
impact of truncation error. On the other hand, some considered solutions contain shock waves, 
so using a viscous statement may be necessary from a computational point of view [24]. 

In this context, the influence of viscous terms in equations (29-32) on an estimated 
parameter is of interest. We will consider the solution of equations without viscosity as a non-
perturbed one. Let the viscous terms disturb this solution. For example, for the longitudinal 

velocity undisturbed values are governed by equation 0=+
Y
UV

X
UU

∂
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disturbed ones are governed by 0
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variation of the target functional due to viscous terms assumes the form  
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(39) 

 
In contrast to (34-37), the corresponding adjoint equations have no viscous terms. This approach 
may be viewed as some variant of the estimation of model error [4] caused by the difference 
between two models. Certainly, this approach is valid only when the influence of viscous terms 
is small enough, i.e. when they do not cause a radical change of the flow structure.  

Another reason for this technique development arises from  discontinuities that are 
typical  of supersonic flows described by Euler equations, for example. The approach based on 
differential approximation is not formally applicable for supersonic Euler equations due to 
unbounded derivatives. Nevertheless, we may use the parabolized Navier-Stokes for basic flow 
calculation, consider viscous terms as a perturbation, and calculate the effect of this perturbation 
on the solution. This may enable us to expand the applicability of the differential approximation 
approach to discontinuous flows as described by the Euler equations. 
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3.3. Finite difference scheme 
Herein we use a first order finite-difference scheme based on upwind differences [43]. It 

contains two steps, predictor and corrector. Both steps are calculated implicitly, using the three 
point Thomas algorithm. The tilde marks parameters computed at the first step. This scheme is 
rather simple, has a large enough truncation error and is monotonic. The last feature is very 
important for calculation of derivatives that approximate the truncation terms. The scheme (for 

 option) is presented below 0>n
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For the adjoint system a similar finite difference scheme was used. The main numerical 

feature of this system is engendered by the presence of a singular source term 
, which is related to the location of the estimated point. A mollification 

(smooth approximation of 
)()( estest YYXX −− δδ

δ -function) was used for the approximation of this term in part of the 
calculations in the form of ( )2222 //exp)( σσδ YXx −−≈ . 

 
 
 
 
 
 

3.4. Refining and bounding the error 
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Total expression for refinement of the functional determined by all first order terms of 
finite-difference scheme is derived  using above discussed method and follows: 
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(48) 

 
Total expression for error bound has the form: 
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(49) 

 
A bound on the refined functional error may be determined by these expressions as: 

supρρρρ ∆<−∆− exact
corr  (50) 

 
This bound does not account for errors of adjoint problem solution, errors caused by 

boundary condition approximation etc. It also uses derivatives whose boundedness can not be 
proven at present. So, it should be investigated by means of numerical tests. 
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3.5. Numerical tests 
First, we consider a smooth flow. The error of flow density past the expansion fan 

(Prandtl-Mayer flow) is addressed (freestream Mach number M=4, angle of flow deflection 
°= 10α ). Let us consider the related results for inviscid flow. 
Fig. 8 presents the deviation of the finite-difference solution (density) from the analytic 

one and the correction of error in accordance with (48) (all divided by analytical value of the 
density). The refinement of the solution using adjoint parameters according to (48) enables the 
elimination of a  major part of the discretization  error. The first order of computable error may 
be detected if we analyze Fig. 8. Calculations demonstrated a good agreement of the refined 
solution with the analytical one and reliability of the error bound estimate. However, the order 
of the bound is slightly smaller then the second order of accuracy provided by (49). This is due 
to the slow growth of third derivatives of the calculated flow parameters as the  step size 
decreases. It may be caused either by some properties of the finite-difference scheme or by the 
formation of weak discontinuities in the flowfield. 
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Fig. 8. The errors as functions of  the reciprocal of mesh step (Logarithm scale).  

a-deviation of finite-difference solution from analytical one, b- error correction according (48).  
c- error of refined solution, d-bound of refined solution error 

 
For comparison, let us consider the residual based approach closely related to [19] for 

an estimation of computable error without explicitly using the differential approximation. The 
truncation source term driving the error estimation has a formal appearance  
if we use the differential approximation. It may be estimated in other fashion as the residual 

hhh LL ρρδρ −= )1(

hLρδρ ′−=  engendered by action of the  differential operator on some extrapolation of the 

numerical solution [19]. Herein we use a different approach and estimate it as . 

Here is the finite difference operator of basic (low) precision,  is the finite difference 
operator of high precision and  is the differential operator. The main difference between  this 
approach and the one in [19] is in the residual calculation. We do not use an interpolation of 
flow parameters from grid points to total domain. Instead, we apply a higher order scheme on 

hhL ρρδ )2(−=′
)1(

hL )2(
hL

L
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the same numerical solution. 
Thus, the lower term of differential approximation may be estimated via the residual 

obtained from using a high order stencil on the solution calculated via main finite-difference 
scheme. Fig. 9 presents the deviation of the finite-difference solution from the analytic one, 
residual based correction of error and the error of refined solution.  
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Fig. 9. The errors as functions of  the reciprocal of mesh step (inviscid flow).  
a-deviation of finite-difference solution from analytical one, b- error of refined solution, c- residual 
based error estimation 

 
The comparison of Figs. 8 and 9 demonstrates these two approaches to be very similar 

in as far as correction of numerical error is concerned. However, the differential approximation 
approach additionally yields an upper bound of the refined solution error. 
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Fig. 10. The errors as functions of the number of grid points (viscous flow, Re=1000).  

a- deviation on numerical from exact value, b-error due to viscous terms, c-deviation of refined 
solution from analytical one, d- upper bound of refined solution error, e-low bound of refined 

solution error 
 
Let us consider results corresponding to calculations taking into account the viscosity. 

Fig. 10 presents the relative error of flow density calculation via PNS for Re=1000 as a function 
of the number of nodes in Y direction. The part of error caused by viscous terms (39), relative 

deviation 
ρ

ρρρρ exactvisc
corr −∆−∆−

of refined solution from the analytical one, and bound 

of refined solution error (49) are presented. It can be seen that the main part of error is 
determined by viscosity and it may be computed and eliminated. Figure 10 demonstrates that 
the estimation of viscosity impact using adjoint equations enables us to obtain a result close to 
the inviscid computation as far as accuracy is concerned. Thus, there exists the  feasibility for 
calculation of inviscid flow (Euler equations) and a posteriori error estimation on the basis of 
PNS equations. This extends the applicability of the considered method which is not directly 
applicable to the supersonic Euler equations due to the existence of discontinuous solutions. In 
general, for a smooth flow the errors for both inviscid flow and for viscous flow (refined via 
adjoint parameters) are close. 
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Fig. 11. The errors as functions of the reciprocal of mesh step (viscous flow, Re=1000). 

a- error correction, b- bound of error 
 
As can be seen from Figs. 10 and 11 the correction term has a first order of accuracy, 

the bound order is slightly  less then two, however the error remaining after taking into account 
the viscous term is greater than the bound for fine enough meshes. So, the account of viscosity 
impact is not accurate enough in that it is limiting the comparison of calculations and analytical 
data for viscous flowfield. 

As another test, the error of the density past crossing shocks ( , M=4, 
Re=1000) is evaluated. Fig. 12 presents the density isolines within flowfield, Fig. 13 shows the 
spatial distribution of error bound according (49). This information may be considered as the 
spatial distribution of the incomputable numerical error and used as guidance for choice of mesh 
refining. 
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Fig. 12. Isolines of density (crossing shocks) Fig. 13. Isolines of error bound density (36) 
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This test is more complicated due to presence of unbounded derivatives of gasdynamics 
parameters for inviscid flow. The presence of viscosity enables us to calculate flows with 
shocks, while at the same time it introduces an error proportional to 1/Re. 
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Fig. 14. The errors as functions of  the reciprocal of mesh step (viscous shocked flow).   

 a- deviation of refined solution from analytical one, b- error correction term (48), c-error bound (49)  
 
Fig. 14 presents results for Re=1000 as a function of the spatial step size. The adjoint 

correction and the deviation of numerical solution from exact one has an order less 0.5 that 
provides restrictions for adjoint bounding. So, the calculation of errors for shocked flows poses 
a significant challenge for further analysis. 

 
 
 

3.6 Divergent Euler equations 
A common way to handle discontinuous flows is the use of conservative form of 

equations and divergent finite-difference scheme. Unfortunately, the differential approximation 
based error correction and bounds converges only in the  one-dimensional case. Let us  now 
consider a two-dimensional problem. 

The following systems of divergent Euler equations (steady, two-dimensional) and 
related adjoint equations were used in numerical tests. 

 
( ) 0=
∂

∂
k

k

X
Uρ

; 
 

(38) 

( ) 0=
∂

+∂
k

ik
ik

X
PUU δρ

; 
 

(39) 

( ) 00 =
∂

∂
k

k

X
hUρ

; 
(40) 

 
Here , VUUU == 21 , ePh γρ =),(  is the enthalpy,   is the 

total enthalpy.  
hVUh ++= 2/)( 22

0
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Adjoint equations: 
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(43)

 
The equations (41-43) do not contain any derivatives of the field parameters in contrast 

to system (34-37) and thus should provide for a better performance for discontinuous solutions. 
Two dimensional first order finite-difference schemes were used namely  ("donor cells" 

[43] and a scheme of Courant-Isaacson-Rees [44]) with practically identical results. The 
expressions for truncation error are obtained in a way similar to (48,49) and are omitted herein 
due to their  very bulky form. As expected, the deviation of the  finite-difference solution from 
the analytic one for divergent scheme is significantly smaller compared with the nondivergent 
one and the solution is monotonic enough. Nevertheless, the error estimates do not converge. 
This is caused by the fact that the  error estimates use derivatives that are also unbounded in the 
divergent case (excluding one-dimensional flow). 

If we introduce viscosity terms into the systems (38-40) and (41-43), we can obtain 
convergent estimates of the error for the divergent scheme too (Fig. 15). The comparison of 
Figures 14 and 15 demonstrates the improved behavior of the divergent system when compared 
with (29-32) and (34-37). 

 

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

Log(1/h)

Log(Error)

a
b
c

1

1

 
Fig. 15. The error of calculation as a function of the reciprocal of mesh step (viscous flow, divergent 

scheme).  
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a -error bound, b- deviation of refined solution from analytical one, c-adjoint error correction  
 
 

4. Discussion 
The calculation of discretization errors using differential approximation and adjoint 

equations requires the existence of bounded derivatives of a relatively high order. They do not 
always exist, so, for supersonic Euler equations, these estimates may be calculated only for 
smooth solutions.  

The second order convergence predicted by formal analysis was found in numerical 
tests only for inviscid continuous flows. This may be related to the lack of solution smoothness 
for both the PNS and Euler equations. For solutions with an infinite number of bounded 
derivatives (heat conduction) similar error estimates exhibited the predicted order of 
convergence. 

For discontinuous flow the use of viscosity enables us to carry out these error estimates, 
although numerical tests revealed  a very small order of convergence. The viscosity engenders 
its own component of error, which may also be eliminated using adjoint equations.  

In general, the calculation of error for discontinuous flows poses a significant challenge 
and requires further research and analysis.  

For justification of error estimates we should verify that the unaccounted error 
component induced by approximation error of adjoint equations is small enough. This condition 
is satisfied asymptotically if the order of approximation of both primal and adjoint problem is 
high enough. On other hand, we can solve second order adjoint equations [39] for calculation of 
this component in a manner similar to [30]. 
 The computed fields used for error estimations may have numerical oscillations 
providing the growth of norm of high order derivatives. Thus, for non-monotonic finite-
difference schemes the error bounds may be too large. 
 
 
 

5. Conclusion 
The presentation of the truncation error in Lagrange form provides an opportunity for 

subdivision of approximation error into computable and incomputable parts. The computable 
part enables refinement of the solution using adjoint equations. The asymptotic bound of the 
refined solution error may be determined simultaneously using Holder inequality. 

The method is directly applicable for continuous solutions and monotonic finite-
difference schemes. 

Numerical tests demonstrated the efficiency of this method for pointwise error 
estimation on examples of heat conduction equation and parabolized Navier-Stokes. 
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Figure Captions 
Fig. 1. Initial and final temperature distribution. 1 - Initial temperature, 2- Final temperature 
Fig. 2. Variation of errors as a function of temporal step (in decimal logarithm scale). a – 
deviation of calculated temperature from analytical value ( anTT − ), b- correction of 

temperature  (18), c- refined solution error bound  (19), d-discrepancy between 

refined and analytic solutions ( - ). 

corr
xT∆ sup

1,xT∆
corr

xT anT
Fig. 3. The comparison of numerical and refined solutions (all divided by analytical value).  
a- numerical, b-refined solution, c- lower bound, d- upper bound 
Fig. 4. Variation of errors as a function of spatial step (in logarithm scale). a – Deviation of 
calculated temperature from analytical value ( anTT − ), b- Correction of temperature , c- 

Refined solution error bound ,  d- Deviation of refined solution from analytical value 

( - ) 

corr
xT∆

sup
1,xT∆

corr
xT anT

Fig. 5. Variation of errors as a function of  spatial step (in logarithm scale) for break in first 
derivative caused by discontinuous conductivity   a - Correction of temperature, b- error bound 
of refined solution  
Fig. 6. Initial and final temperature distribution. 1- Initial temperature, 2- Final temperature,    
А- point of estimation 
Fig. 7. Variation of errors as a function of  spatial step (in logarithm scale) for break in first 
derivative caused by discontinuous conductivity. a - Correction of temperature, b- error bound 
of refined solution, c-deviation of numerical solution from analytical value 
Fig. 8. The errors as functions of  the reciprocal of mesh step (Logarithm scale). a-deviation of 
finite-difference solution from analytical one, b- error correction according (48). c- error of 
refined solution, d-bound of refined solution error 
Fig. 9. The errors as functions of the reciprocal of mesh step (inviscid flow). a-deviation of 
finite-difference solution from analytical one, b- error of refined solution, c- residual based error 
estimation 
Fig. 10. The errors as functions of the number of grid points (viscous flow, Re=1000). a- 
deviation on numerical from exact value, b-error due to viscous terms, c-deviation of refined 
solution from analytical one, d- upper bound of refined solution error, e-low bound of refined 
solution error 
Fig. 11. The errors as functions of the reciprocal of mesh step (viscous flow, Re=1000). 
a- error correction, b- bound of error 
Fig. 12. Isolines of density (crossing shocks) 
Fig. 13. Isolines of error bound density (36) 
Fig. 14. The errors as functions of  the reciprocal of mesh step (viscous shocked flow).   a- 
deviation of refined solution from analytical one, b- error correction term (48), c-error bound 
(49) 
Fig. 15. The error of calculation as a function of the reciprocal of mesh step (viscous flow, 
divergent scheme). a -error bound, b- deviation of refined solution from analytical one, c-adjoint 
error correction 
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