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Abstract

We generalize a Hardy-Littlewood inequality and a Privalov inequality for conju-
gate harmonic functions in the plane to components of Clifford-valued monogenic
functions.

1 Introduction

Throughout this paper a domain Ω ⊂ Rn is a connected open set. Given
u : Ω → R we write

‖u‖p,Ω =

∫
Ω

|u|p
 1

p

, p > 0.

We denote the Lipschitz norm of u over Ω by

‖u‖L
k,Ω = sup

x1,x2∈Ω
x1 6=x2

|u(x1)− u(x2)|
|x1 − x2|k

for 0 < k ≤ 1. In [3], Hardy and Littlewood proved the following result.

Theorem 1.1 If u+iv is analytic in a disk D centered at z0, then there exists
a constant C, depending only on p, such that

‖u− u(z0)‖p,D ≤ C ‖v‖p,D . (1.1)

Similarly, Theorem 2.1 is given in [9] by Privalov.
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Theorem 1.2 If u + iv is analytic in a disk D, then there exists a constant
C, depending only on k, such that

‖u‖L
k,D ≤ C ‖v‖L

k,D . (1.2)

In fact Theorem 1.2 follows from Theorem 1.1 [7].

We prove versions of these theorems for components of monogenic functions
valued in the universal Clifford algebras over Rn. See Theorem 3.1.

In [12], Stein and Weiss studied systems of conjugate harmonic functions in
Rn. These are vectors of harmonic functions (u1, u2, . . . , un), which satisfy

n∑
i=1

∂ui

∂xi

= 0 and (1.3)

∂ui

∂xj

=
∂uj

∂xi

for all i and j. (1.4)

Notice for x1 = x, x2 = y, u2 = u and u1 = v these are the usual Cauchy-
Riemann equations.

The results of this paper hold in the special case of such Stein-Weiss systems.
In this special case the results appear in [6] as well as versions for quasiregu-
lar mappings. The quasiregular theory was published in [4] and subsequently
developed in [7] and [8]. The quasiregular case is a “one- dimensional” ana-
lytic theory in the sense that the properties of one component often determine
those of the rest. The theory we present here is a “one- codimensional” ana-
lytic theory. The results for Stein-Weiss systems that appear in [6] have never
been published.

We fix an orthonormal basis of Rn, (e1, e2, . . . , en), and denote by Un the (real)
Clifford algebra spanned by the reduced multi-indexed products

eα = eα1 · · · eαk
,

1 ≤ α1 < . . . < αk ≤ n, with the rule

ejek + ekej = −2δjk.

Here δjk = 0 if j 6= k, 1 if j = k. We have an increasing chain

R ⊂ C ⊂ H ⊂ U3 ⊂ . . . ⊂ Un ⊂ . . . .
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Here H is the quaternions. As such a function F : Ω → Un, can be represented
as F =

∑
α Fαeα where each Fα : Ω → R. We define a norm

|F | =
(∑

α

|Fα|2
) 1

2

.

We consider here a Dirac operator D, defined as follows. If F =
∑

α Fαeα, then

DF =
∑
α

(
n∑

i=1

∂Fα

∂xi

eieα

)
.

Definition 1.3 A Clifford-valued function F : Ω → Un is monogenic if DF =
0.

We also define the Clifford Laplacian ∆F =
∑

α ∆Fαeα. Since D2 = −∆, it
follows that the coefficients of any monogenic function are harmonic in the
usual sense.

We denote the length of a multi-index α by |α| and decompose any Clifford-
valued function into its even and odd parts. We write F = Feven + Fodd =∑
|α| even Fαeα +

∑
|α| odd Fαeα. Notice that the Dirac operator D maps even

parts to odd parts and odd parts to even parts:

D (Feven) = (DF )odd and

D (Fodd) = (DF )even .

As such, F is monogenic if and only if D(Feven) = 0 and D(Fodd) = 0.

Definition 1.4 A system of conjugate harmonic functions in a Clifford alge-
bra consists of the coefficients of Feven or Fodd for some monogenic function
F .

A way to realize the Stein-Weiss systems in this context is through the natural
embedding of Rn into Un, namely

(x1, x2, . . . , xn) 7→ x1e1 + . . . + xnen.

Here

D

(
n∑
1

uiei

)
= −

n∑
i=1

∂ui

∂xi

+
n∑

i=1

n∑
i6=j

∂ui

∂xj

ejei.

As such D(Fodd) = 0 is equivalent to (1.3) and (1.4) where F = u1e1 + . . . +
unen. We will use the notation

∇u =

(
∂u

∂x1

, . . . ,
∂u

∂xn

)
=

∂u

∂x1

e1 + . . . +
∂u

∂xn

en
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for u : Ω → R. Notice that DF = 0 is equivalent to 2n linear equations involv-
ing the components of the vectors ∇Fα. Because the operator D intertwines
parity, 2n−1 of these equations is a system for the even coefficients and the
rest for the odd.

Example 1.5 Let F = u0 + u1e1 + u2e2 + u3e3 + u4e1e2 + u5e1e3 + u6e2e3 +
u7e1e2e3. If DF = 0, then

∇u0 =

(
−∂u4

∂x2

− ∂u5

∂x2

− ∂u5

∂x3

)
e1 +

(
∂u4

∂x1

+
∂u5

∂x1

− ∂u6

∂x3

)
e2 +

(
∂u6

∂x2

)
e3

and

∇u1 =

(
−∂u2

∂x2

− ∂u3

∂x3

,
∂u2

∂x1

− ∂u7

∂x3

,
∂u3

∂x1

+
∂u7

∂x2

)
.

Notice that the second equation is a part of the Stein-Weiss system (1.3) and
(1.4) when u7 = 0.

Clearly such representations hold generally and we have the following simple
estimate.

Lemma 1.6 If {uα} is a system of conjugate harmonic functions in the Clif-
ford algebra Un, defined in Ω ⊂ Rn, then for each α,

|∇uα|2 ≤ C(n)
∑
β 6=α

|∇uβ|2 (1.5)

in Ω. Here C(n) is a constant that depends only on n.

We mention [1], [10] and [11] as references for Clifford analysis.

2 Notations and Domains

We assume throughout that w is a Muckenhoupt weight and write w ∈ Aq
M(Ω),

1 < q < ∞, 1 ≤ M < ∞, when w ≥ 0 a.e. and

1

|Q|

∫
Q

w ≤ M

 1

|Q|

∫
Q

1

w(1−q)


1−q

for all cubes Q ⊂ Ω. Here |Q| is the volume of Q. For u : Ω → R we write for
0 < p < ∞,

‖u‖]
p,Ωµ = inf

a∈R

∫
Ω

|u− a|pdµ

 1
p
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where dµ = wdx is weighted Lebesgue measure. We define the Hardy-Littlewood
sharp maximal function for 0 < p < ∞,

M ]
p(u, µ)(x) = sup

Q⊂Ω
x∈Q

µ(Q)−
1
p‖u‖]

p,Q,µ.

Also the sharp BMO norm is

‖u‖BMO
Ω,µ = sup

x∈Ω
M ]

1(u, µ)(x).

Definition 2.1 A domain Ω is a δ-John domain, 0 < δ, if there exists a point
x0 ∈ Ω which can be joined with any other point x ∈ Ω by a continuous curve
γ ⊂ Ω which satisfies

δ |ξ − x| ≤ d(ξ, ∂Ω)

for all ξ ∈ γ.

John domains do not have external cusps. Using the geometry of John do-
mains, weak local weighted Lp-estimates patch together to form global esti-
mates. It is in this way that Theorem 3.2 is obtained. See [4] and [7].

Definition 2.2 For 0 < k ≤ 1, Ω is a Lipk-extension domain if there is
a constant N such that every pair of points x1, x2 ∈ Ω can be joined by a
continuous curve γ ⊂ Ω for which

∫
γ

d(γ(s), ∂Ω)k−1ds ≤ N |x1 − x2|k .

Theorem 2.3 appears in [2].

Theorem 2.3 Suppose that Ω is a Lipk-extension domain. If there are con-
stants C1 and C2, C2 < 1, so that

|f(x1)− f(x2)| ≤ C1|x1 − x2|k,

for all x1, x2 ∈ Ω with |x1 − x2| ≤ C2d(x1, ∂Ω), then there is a constant C3,
depending only on C1, C2,N and k, so that

|f(x1)− f(x2)| ≤ C3 |x1 − x2|k ,

for all x1, x2 ∈ Ω.
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3 Main Results

Theorem 3.1 Assume that {uα} is a system of conjugate harmonic functions
in Un defined in Ω and w ∈ Aq

M(Ω). In each case C is a constant that is
independent of {uα}.

a) For 0 < p < ∞,

M ]
p (uα, x) ≤ C

∑
β 6=α

M ]
p (uβ, x) (3.1)

where C = C(p, q, M, n).
b)

‖uα‖BMO
Ω,µ ≤ C

∑
β 6=α

‖uβ‖BMO
Ω,µ (3.2)

where C = C(q, M, n).
c) If Ω is a δ-John domain, 0 < p < ∞, then

‖uα‖]
p,Ω,µ ≤ C

∑
β 6=α

‖uβ‖]
p,Ω,µ (3.3)

where C = C(p, q, M, δ, n).
d) If Ω is a Lipk-extension domain with constant N , 0 < k ≤ 1, then

‖uα‖L
k,Ω ≤ C

∑
β 6=α

‖uβ‖L
k,Ω (3.4)

where C = C(N, n, k).

Proof of Theorem 3.1. We first prove c). Assertions a), b) and d) then
follow. We use the following theorem which is a special case of Theorem 3.1
in [7] to supply a brief proof. The basic local results can be derived from the
mean value property of harmonic functions and improvement of reverse Holder
inequalities. The global result in John domains follows by patching together
the weak local results and requires the special geometry of these domains (
see [6] and [4] ).

Theorem 3.2 Suppose that 0 < p < ∞, Ω is a δ-John domain, w ∈ Aq
M(Ω)

and u and v are harmonic in Ω. If there is a constant A such that

‖∇u‖2,Q ≤ A ‖∇v‖2,2Q , (3.5)

for all cubes Q with 2Q ⊂ Ω, then there is a constant B, depending only on
A,p,n,q,δ and M, so that

inf
c∈R

‖u− c‖p,Ω,w ≤ B inf
c∈R

‖v − c‖p,Ω,w . (3.6)
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Indeed if {uα} is a system of conjugate harmonic functions in Ω, then u = uα

and v =
∑

β 6=α
uβ are harmonic for each α. Moreover (1.5) shows that (3.5)

holds and so (3.3) follows from (3.6). Since cubes are John domains, a) and b)
of Theorem 3.1 follow from c). Locally the Lipschitz norm ‖u‖L

k,Ω, 0 < k ≤ 1,

is equivalent to the norm supQ⊂Ω |Q|
−1−(k/n) ‖u− uQ‖1,Q where the supremum

is over all local cubes Q. See [5] for this result. Hence if Ω is a Lipk-extension
domain then d) follows using Theorem 2.3.
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